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Deep brain stimulation of the 
subthalamic nucleus modulates 
sensitivity to decision outcome 
value in Parkinson’s disease
Ben Seymour1,2,3,*, Michael Barbe4,5,*, Peter Dayan6, Tamara Shiner2, Ray Dolan2 & 
Gereon R. Fink4,5

Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause 
a subtle but important adverse impact on behaviour, with impulsivity its most widely reported 
manifestation. However, precisely which computational components of the decision process are 
modulated is not fully understood. Here we probe a number of distinct subprocesses, including 
temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, 
reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off 
subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning 
task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. 
We found that instrumental learning performance was significantly worse following stimulation, due 
to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to 
decision values for both rewards and losses, but without any change to the learning rate or reward-loss 
trade-offs. However, we found no evidence that DBS modulated different components of temporal 
impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome 
value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more 
pervasive role of the subthalamic nucleus in the control of human decision-making than previously 
thought.

Treatment of Parkinson’s disease (PD) with subthalamic nucleus (STN) deep brain stimulation (DBS) is gen-
erally thought to disrupt (more precisely, to interfere with abnormal synchronization of) the STN1,2. DBS can 
yield subtle but complex behavioural changes, extending beyond that attributable to reductions in dopaminergic 
medication following alleviation of motor symptoms3. Accruing data indicate important changes in patients’ 
decision-making behaviour, with impulsivity being the most commonly documented manifestation4–6. Taking 
note of the fact that the unstimulated STN may not be functioning normally in PD, it suggests that the STN 
subserves a fundamental role in modulating decision-making. However, the precise nature of this function (or 
functions) remains unclear.

There are two broad perspectives concerning the role of the STN in decision-making. The first focuses on 
response inhibition, in which the STN may convey a global stop-signal or ‘set of brakes’ to inhibit pre-potent 
responses7. This is manifest, for instance, in premature task responding seen in STN-lesioned animals8,9, and 
enhanced BOLD responses associated with response inhibition in human neuroimaging studies10,11. Response 
inhibition also potentially underlies response switching, when an optimal response requires inhibiting a 
sub-optimal one12,13.

The second class focuses on inhibition of early responding in the face of decision conflict14–18. These draw on a 
mechanistic (computational) account of the decision process which invokes a dynamic competition between two 
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(or more) competing alternatives, formalized for example within race and drift diffusion models19. Accordingly, 
the STN is thought to set a decision threshold that determines when enough evidence has accrued to allow a 
response. Impulsivity in this situation involves premature and more error-prone responding.

However, it seems unlikely that these accounts explain all aspects of the behavioural phenotype of 
STN-DBS. In particular, beyond the sequel of premature responding, it is unknown whether fundamental 
choice-determining components of the decision-process, such as value, learning, and time, depend on the STN. 
For example, a recent study of PD patients showed that STN-DBS induces overestimation of own performance, 
increased risk-taking and preference for competitive environments20. To investigate this further, we studied the 
performance of Parkinson’s disease patients whilst ON and OFF STN DBS in two decision-making tasks designed 
to probe distinct aspects of impulsive choice. We adopted a computational approach to the analyses, intended 
to probe beneath global performance and thereby to interrogate functional mechanisms whence this behaviour 
emanates. We fit computational models to behaviour to isolate distinct components of the choice process. Our 
results highlight a specific role for the STN in learned outcome value, in the absence of any observable effects on 
inter-temporal choice, learning rate, reward-loss competition, or perseveration.

Materials and Methods
Subjects. We recruited 22 adult patients (mean age 55 yrs, standard deviation 7.5 yrs, 18 male, 4 female) 
diagnosed with Parkinson’s disease according to the British Brain Bank criteria21 at the Klinik und Poliklinik 
für Neurologie in Cologne, Germany. Patients between Hoehn and Yahr stages I–III were included. Patients had 
received implantation of electrodes into the subthalamic nucleus for deep brain stimulation on average 8 years 
after initial diagnosis. For implantation, the dorsolateral STN had been assessed visually by preoperative ste-
reotactic magnetic resonance imaging and computed tomography, as in standard clinical practice. Stereotactic 
X-ray was used for postoperative lead localisation. Patients were tested at least 3 months after implantation (the 
median interval between surgery and participation in the study was 333 days; range 91 days to 5 years) so that 
microlesional effects could be excluded. The individual stimulation parameters of each patient were used in the 
ON stimulation condition. All subjects gave written consent, and the study was approved by the local ethics 
committee (Ethikkommission der Medizinischen Fakultät der Universität zu Köln). The study was carried out in 
accordance with approved guidelines.

Design and setting. Subjects performed both tasks whilst ON and OFF DBS in a within-subject design. 
This was carried out on the morning and afternoon of the same day, in randomised order (to provide plenty of 
‘washout’ time). Prior to OFF testing, STN-DBS was paused for one hour. In addition, subjects attended the clinic 
after cessation of all dopaminergic medication for at least 12 hours, so that both ON and OFF manipulations were 
implemented without medication. To look for evidence of impulsivity, we employed the Barrett Impulsivity Scale, 
a trait level index of symptomatic impulsivity previously shown to detect impulsivity in Parkinson’s disease22,23.

Task details. Experiment 1: Instrumental learning of rewards and punishments. We employed a ‘4-armed 
bandit’ instrumental decision-making task, similar to one we previously employed in healthy individuals20. The 
task involved repeated choices amongst 4 options to try and win tokens yielding money and simultaneously, but 
independently, avoid accruing tokens signalling loss of money. On each trial, subjects could choose 1 of 4 options, 
signified by abstract pictures on a computer screen, each of which had a probability of yielding a positive (green) 
token, and a different probability of yielding a negative (red) token (Fig. 1). Subjects could receive green, red, nei-
ther or both tokens on each trial. At the end of the task, subjects exchanged the sum of the positive tokens minus 
the sum of the negative tokens for money, with a net value of + /−  €1 per token.

Several important features of the task enabled us to look separately at behaviour influenced by reward and 
punishment, and to disambiguate learning and performance. First, the probabilities of winning or losing tokens 
were independent of each other, and independent between each option, such that subjects needed to learn about 

Figure 1. Instrumental learning task design. Subjects were required to pick one of four options on each trial. 
3 seconds after selection, the option yielded an outcome that could comprise reward (token for €1) and/or 
punishment (token for -€1). The figure shows an example of combined reward and punishment outcome. The 
probabilities of reward and punishment were fully independent from each other, independent between options, 
and varied slowly over trials as indicated in the exemplar graph for one option. Following the outcome there was 
an inter-trial interval of 3 secs.
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the distinct reward and loss information of each option individually. That is, for each option, the probability that 
the option would return a reward was independent of the probability it would return a loss, and so knowing the 
probability of reward would tell you nothing about the probability of loss, and vice versa. Second, the proba-
bilities of reward and loss varied slowly over time for each option (according to Gaussian random diffusions), 
requiring subjects constantly to balance exploration (information accrual24) and exploitation (winning and avoid 
losing money). That is, one option might begin as good, and slowly become bad over time, and other options 
might do the opposite, or they might change little. Hence behaviour on the task involves two trade-offs: bal-
ancing reward-based and punishment-based information, and balancing information exploration and exploita-
tion. Third, the outcome probabilities of any option was independent of other options. That is, there was no 
relationship between the different options – knowing that one option was good (frequently yielded reward and 
infrequently yielded loss) would tell you nothing about the other options – they could all be good, or bad, or 
anything. This independence of probabilities both between reward and loss, and between options, removes any 
higher-order structure from the task: i.e. no reciprocal inference can be made about loss probability from reward 
probability. Therefore if an option paid frequent reward tokens, for example, it does not necessarily mean it pays 
fewer loss tokens. Similarly, if a subject has found a profitable option, this does not mean that other options are 
necessarily less profitable. Such higher-order structure frequently confounds interpretation of performance in 
decision-making tasks, because it is independently learnable.

Patients performed 360 trials in total, with the 4 options being displayed in the same position on each trial. If 
no choice was made after 10 seconds (which across subjects occurred either never, or very rarely), the next trial 
was presented automatically. Otherwise, there was no requirement to respond quickly on the task, and subjects 
were aware of this from the beginning. After a choice was made, all options remained on the screen with the cho-
sen option highlighted, and an interval of 3 seconds elapsed before presentation of the outcome. If the subject won 
the reward, a ‘Reward’ token appeared overlaid on the chosen option image. If the subject received a loss, a ‘Loss’ 
token appeared overlaid on the chosen option. If both loss and reward were received, both tokens simultaneously 
appeared overlaid on the chosen option, one above the other. The outcome was displayed for 1 second, after which 
the bandit was extinguished and the screen was blank for 3 seconds.

Subjects were instructed before the experiment that all ‘Reward’ tokens would be exchanged for €1, and 
all ‘Loss’ tokens would incur a cost of €1, and that the net amount would be faithfully remunerated. The exact 
amount was paid by cash transfer to the subjects after the experiment, along with a small fixed reimbursement for 
time and inconvenience. The rationale for using tokens in the actual task rather than money was to allow separate 
currencies for reward and loss, which were independent during the study (and to allow for convenient simultane-
ous delivery of reward and loss outcomes).

Data Analysis. We first performed a standard frequentist analysis of total reward and loss accrual between 
DBS conditions, using paired t-contrasts. Next, we looked at the frequencies of switching or not switching after 
different outcomes, to give a basic metric of the immediate influence of different outcomes on choice. We then 
performed a computational reinforcement learning analysis, identical to that previously described24. The advan-
tage of this over a switch/non-switch analysis is that it looks for acquisition of value over time, beyond the last trial 
alone. Specifically, reinforcement learning describes the general algorithmic process by which humans (and ani-
mals) learn from experience25, and is a computational rendition of Thorndike’s Law of Effect26. It formalizes the 
fact that rewards tend to reinforce an option, increasing the probability it will be chosen again on a subsequent 
trial. Most reinforcement learning models work by calculating a running average of the value of different options 
– updating this value with the outcome of each new option according to a learning rate. A high learning rate that 
the value is very sensitive to the latest outcomes, and less sensitive to much earlier outcomes. This can also be 
thought of as reflecting an influence that declines exponentially with time, such that recent outcomes influence 
decisions more than distant ones. In this sense, a high learning rate is equivalent to a high exponential decay rate. 
Similarly, losses are expected to decrease the probability of the option concerned. More formally, we can specify 
the model as follows: the net reward weight Ω i( )t

rew  for option i on trial t is given by the history of rewards in the 
recent past:
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where ωrew specifies the decay weight (i.e declines exponentially in the successively more distant past, equivalent 
to the learning rate in reinforcement learning as applied to chosen and non-chosen actions on each trial), xs is 1 
if a reward was delivered at time s, and 0 otherwise, and R is a measure of the sensitivity of the subject to the 
reward, which is multiplied by the expression in brackets. The net punishment weight Ω i( )t

pun  is determined sim-
ilarly, given the recent history of punishments:
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where ys is 1 if pain was delivered at time s, and 0 otherwise. P is the punishment sensitivity (multiplied by the 
expression in brackets).

We also incorporate an inherent tendency to repeat the last choice irrespective of outcomes (i.e. ‘pure’ per-
severation) using a choice bias weight Ci

27. This is positive for a ‘perseverative’ tendency to repeat choices, and 
negative for an ‘anti-perseverative’ tendency to switch choices.

The overall tendency to choose a particular option is then determined by a logistic choice (softmax) rule based 
on the sum of these independent weights:
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where ct-1 is the actual choice of the subject on trial t-1 and χ c( )i s  is 1 if option i was chosen on trial s and 0 other-
wise. Note that there is no ‘temperature’ parameter, as this is subsumed within the reward/punishment weights. 
As before, we use a maximum likelihood method to determine the parameters given the data:

∑=L p optionlog( ( ))
(4)trials

i

The reinforcement learning approach can be seen as a form of conditional logit regression analysis, in which 
the weights according to which preceding outcomes influence choice are constrained to decay exponentially.

For assessment of response times and conflict, as in the discounting analysis, we used the model-based analy-
sis to define difficulty in terms of a difference in estimated value, on a trial-by-trial basis, between the highest two 
valued options. Easy and hard trials were again defined as those with differences in value that were greater or less 
than the median, respectively.

Experiment 2: Temporal Discounting. Patients performed an inter-temporal choice task, based on one we previ-
ously designed28,29. The task involves choosing which of two financial options they would prefer to receive. Each 
option involved an amount of money (between €1–€100) to be paid at a given delay (between 3 to 48 weeks). This 
typically forces the subject to commit to a choice between smaller sooner amounts of money, and larger more 
distant amounts. People who favour the smaller sooner option are considered to be more temporally impulsive.

On each of 220 trials, the two options were presented sequentially on a computer monitor, for 3 seconds each 
(Fig. 2). Patients then selected the option they would prefer using a button press, after which their choice was 
highlighted for 3 seconds, followed by an inter-trial interval of 3 seconds. There was no requirement to respond 
quickly, and patients were informed of this. Patients made their choices with the knowledge that one of their 
choices would subsequently be selected at random, and that this choice would be remunerated exactly according 
to the amount of money involved and delay specified. This was faithfully carried out, involving a random selec-
tion of one of the trials, and subjects receiving the money via bank transfer on the nearest working day to their 
chosen option. This approach which entails fulfilling subjects’ choices for real is standard practice in behavioural 
economics, and encourages subjects to make choices according to their true preferences. We therefore aimed for 
ecologically valid amounts of money and delays. Subjects received the same 220 options in the task when ON 
and when OFF, to allow accurate comparison between conditions. The specific delays and amounts used for the 
two options were selected to lie roughly in the region of indifference, based on our previous data from healthy 
volunteers28,29.

Data Analysis. The analysis follows that of our previous studies in healthy individuals28,29. We first compared 
the number of times patients chose the sooner amount over the larger amount, using a sign test. To study the 
distinct components of choice, we adopted a computational approach based on current neuro-economic models 
of the functional basis of inter-temporal choice30,31. Specifically, such models propose that choice depends on two 
critical processes. First, subjects need to evaluate how much the worth of money is discounted by the given delay. 
Current theories assume that discounting is a hyperbolically decreasing function32,33 (but see ref. 34) such that 
subjects who discount more rapidly are more temporally impulsive. Second, subjects need to evaluate the utility 
of the amount of money, given the fact that utility is typically not a linear function of amount. This is captured by 
the principle of decreasing marginal returns, in which successively greater increments of money yield marginally 
smaller additions to utility35. As an illustration, the marginal increment in utility arising from addition of €10 to 
a €20 option is greater than that associated with addition of €10 to a €200 option.

Figure 2. Temporal discounting task design. On each trial, patients were presented with two financial options, 
in sequence. Each option consisted of an amount of money and a delay. After both options had been presented 
(for 3 seconds each), subjects made their choice with a button key-pad, and moved on to the next trial after 
a short period. Patients knew that at the end of the task, their chosen option from one randomly-picked trial 
would be paid faithfully.
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We formalised each of these processes, thus parameterising the extent to which individual subjects discount 
time and utility. We then compared these parameter estimates between DBS ON and OFF conditions. There are 
slightly different ways of computationally specifying temporal and utility discounting; therefore, we first com-
pared the likelihoods of a number of related models, and selected the best fitting model. As in Pine et al.29, we 
compared the following models:

Hyperbolic discounting with linear utility

= +u m kd/(1 ) (5)

Exponential discounting with linear utility

= −u me (6)kd

Hyperbolic discounting with power utility

= +u m kd/(1 ) (7)r

Hyperbolic discounting with inverse exponential utility

= − +−u e r kd(1 )/ (1 ) (8)rm

Exponential discounting with power utility

= −u m e (9)r kd

Exponential discounting with inverse exponential utility

= −− −u e e r(1 )/ (10)kd rm

In the above equations, u is the utility of the option, where m is the amount of money, d is delay in time. 
The parameters k represents a time discounting parameter, and the parameter r represents a money discounting 
parameter. Both simply parameterise the discounting effects according to the non-linear function specified in 
each of the equations. These equations allow us to calculate the utility of each option. We also formalised the deci-
sion rule by which the two options (i and j) yield a choice probability. Here, we used a standard logistic decision 
rule:

= +τ τ τp option e e e( ) /( ) (11)i
u u u/ / /i i j

Here, as is conventional in human/animal decision-making, formal models of choice are generally stochastic, 
in that they determine the probability of a choice given any set of option utilities36. Such a stochastic process 
quantifies the ‘noisiness’ of each decision, parameterised by τ, and provides a non-specific index of performance 
consistency. Thus to calculate the likelihood of each model, we computed the sum of the log likelihoods over all 
trials:

∑=L p optionlog( ( ))
(12)trials

i

We estimated the overall likelihood of each model, with the most likely parameters (k, r, τ) for each model (fit 
on an individual subject basis, to provide point estimates of individual parameters), by minimising the likelihood 
function (using standard minimisation functions implemented with Matlab (Mathworks, Inc)), and selected the 
best model using a Bayesian Model Comparison procedure using the Bayeisan Information Criteria. This incor-
porates a standard penalty for model complexity (number of parameters).

To assess whether response times were modulated as a function of difficulty, we first ‘normalised’ the reaction 
time data, and then used our model of discounted, non-linear utility, to define difficulty. Normalization was based 
on fitting a gamma distribution to the response time data; this captures the characteristic distribution of response 
times (separately parameterised when ON and OFF). We then used the corresponding gamma probability den-
sity function to generate the corresponding normalised response time values. Next, the difficulty of a trial was 
defined in terms of the difference between the values of the two options on that trial, estimated by the best-fitting 
behavioural model. In particular, easy and hard trials were defined as those whose value differences were greater 
and less (respectively) than the median value difference.

It is worth noting that the clinical OFF state might incorporate other unexpected confounds in studies of PD, 
such as effects on cognitive load and effort that could induce different cognitive strategies. These could be perva-
sive across many similar studies, but are extremely hard to evaluate and control for.

Results
On clinical assessment, patients experienced significant improvement in clinical signs of their Parkinson’s disease 
when stimulation was on (DBS ON: Unified Parkinson’s Disease Rating Scale (UPDRS) =  16.91/108) compared 
to off (DBS OFF: UPDRS =  35.55/108). The mean impulsivity index measured (whilst ON) using the Barrett 
Impulsivity scale (BIS) scale was 60.6 (s.d. =  10.0).

Instrumental reward-loss learning task. Patients performed significantly worse when ON than when 
OFF, with mean net winnings of €7.82 and €15.50, respectively (sign test p <  0.05)(Table 1).
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To examine this further, we looked at the frequency of choice repetition (i.e. sticking with the previously cho-
sen option, versus switching to a different option) with a particular option, following different outcomes. There 
was no difference between the overall frequencies of sticking/switching with/from an option between groups. 
However, DBS OFF patients were significantly more likely to switch after punishment (p <  0.005), and had a mar-
ginal trend to stick more often after rewards (p =  0.08) (see Table 2). These results suggest that subjects were more 
sensitive to outcomes (at least, punishments) when OFF than ON. We found no correlation between impulsivity, 
as measured by the BIS score, and either marginal improvement in overall performance, or tendency to stick/
switch.

To examine performance in more detail, we fit a reinforcement learning model to the behaviour. This esti-
mates the impact of rewards and losses on subsequent choices, extending the influence of outcomes on all sub-
sequent choices over time, and not just immediately succeeding choices (as a simple switch/stay analysis does). 
By capturing the core components of the learning process, such models are much more sensitive to identifying 
precise effects. The model involves two key parameters each for rewards and losses: first, the sensitivity to the 
outcome represents the magnitude of the influence of outcomes in terms of their ability to modify subsequent 
choices: second, is a learning/forgetting rate, which effectively determines how sensitive subjects are to changes in 
contingencies with low rates associated with a slowly adaptive but persistent influence over trials (we also incor-
porated an additional parameter that estimates an inherent tendency to repeat options irrespective of outcomes, 
i.e. perseveration - see methods). The influence of rewards and punishments can be easily represented graphically, 
which intuitively illustrates the nature of reinforcement learning (Fig. 3).

As shown in Fig. 3, we found a significant reduction in both sensitivity to rewards and losses when DBS 
was ON. There was no differential reduction between reward and loss sensitivity, i.e. no change in the effective 
reward-loss trade-off. The parameters are reported in Table 3. In contrast, we found no difference in either the 
learning rates or perseveration between the conditions.

We found that patients responded significantly faster when ON than OFF (mean response time 676.2 ms 
(ON) and 768.5 ms (OFF)). To look at impulsivity associated with decision conflict, we classified trials as easy or 
hard according to the difference in values of the best and second best options on each trial, estimated within the 
model-based analysis. In both ON and OFF conditions, after normalising the response times to allow accurate 
comparison across subjects (see methods) we found that patients responded slightly more slowly for more dif-
ficult trials. However, the interaction (condition x conflict difficulty) did not reach significance (p =  0.08 paired 
2-tailed post-hoc t-test; see Table 4). We also studied the proportion of correct choices (defined as the selection 
of the highest value from the model-based analysis) in the easy and hard trials, to see whether ON subjects’ worse 
performance related specifically to difficult choices. This was not the case: ON subjects selected the correct bandit 
on 86.2% and 60.3% of easy and hard trials respectively, compared to 89.3% and 58.8% when OFF.

In summary, the predominant finding was a specific reduction of outcome sensitivity to both rewards and 
punishments, that can’t be easily explained by a change in learning (per se), reward-loss trade-off, or decision 
conflict.

Inter-temporal choice task. Subjects made choices between amounts of money between €1 and €100 euro, to be 
remunerated at delays between 3 and 48 weeks, fully aware that one of these choices would be randomly selected 
and paid according to its description. The vast majority of trials involved choice between a sooner option involv-
ing a smaller amount than a later option. Over 220 trials, repeated when subjects were DBS ON and DBS OFF, we 
first compared the frequency with which they chose the sooner option. This revealed no difference between con-
ditions: when ON, the mean frequency for choosing the sooner was 120.5 (SEM 13.7), and when OFF, the mean 
frequency was 117.1 (SEM 12.9) (2 tailed t-test p =  0.3). Thus, there was no global effect of DBS on performance. 
Furthermore, there was no effect on response time (mean 5.85 secs (ON) and 5.67 secs (OFF)).

Wins Losses Net win

ON €88.05 (5.84), €80.23 (5.13). €7.82 (3.06).

OFF €93.64 (5.93), €78.14 (4.46). €15.50 (3.40)

p <  0.05 sign test

Table 1. Performance in terms of win and loss tokens accrued, and net income, when on and off 
stimulation. SEM appears in parentheses.

All outcomes Win Loss Win+Loss No win/loss

ON 0.737 (0.034) 0.918 (0.023) 0.486 (0.043) 0.741 (0.043) 0.850 (0.044)

OFF 0.731 (0.033 0.944 (0.02) 0.374 (0.048) 0.739 (0.044) 0.867 (0.036)

Paired 2-tailed t-test n/s p =  0.08 p <  0.005 n/s n/s

Table 2. Frequency of repeating an option given previous outcome. The table shows the frequency (expressed 
as a proportion) of choice repetition given the various outcomes it yielded on the preceding trial. ‘Win’ and 
‘Loss’ outcomes refer to outcomes that yielded win or loss alone, and do not include simultaneous wins and 
losses. ‘Win+ Loss’ refers to previous choices that yielded simultaneous win and loss tokens, and No win/loss 
refers to previous choices that yielded nothing. SEM are shown in parentheses.
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Global performance can mask differential effects on individual components of valuation in inter-temporal 
choice tasks. This is the case since impulsivity can be manifest either by time-preferences (the relative utility given 
to a fixed amount of money over increasing delays), and also by magnitude-preferences (the relative utility given 
to increasingly larger amounts of money)37. This latter effect is a characteristic of the fact that utility functions 
for money are typically concave, an observation known as the principle of ‘decreasing marginal returns’ (see 
methods). In such cases, a more concave utility function yields more impulsive choices. In principle, therefore, 
it is possible for opposite effects of time and magnitude to exist in the absence of significant changes in global 
performance measures on discounting tasks.

To address this latter possibility we adopted a model-based approach, designed to parameterise the distinct 
components involved in inter-temporal choice according to a computational model. We first calculated the log 
likelihood of six similar, competing models, and performed Bayesian model comparison to select the most likely 
model (see methods). As previously reported37, discounting models that incorporated a concave utility function 
provided the best fit to the data.

The model comparison is shown below (Table 5), where it can be seen that a hyperbolic model with power 
utility function provides the best fit to the data. Therefore, this model was used to calculate the parameters for 
the remainder of the analysis. These parameters were then taken as a summary statistic and compared between 
conditions using t-contrasts.

The computational model incorporates 3 key parameters: a time discounting parameter (‘k’, from a hyper-
bolic function), a concave utility parameter (‘r’, from a power utility function), and a parameter that determines 
the consistency of choice (‘β ’, from a logistic sigmoid choice rule). We estimated these parameters from each 
patients’ trial-by-trial choices when ON and OFF stimulation, as shown in Table 6. This showed no evidence of 

Figure 3. Instrumental performance between conditions. Decision weights are shown at successive trial lags 
for rewards and losses, when subjects are ON (red) and OFF (blue) stimulation. The initial magnitude of the 
weight (at Trial lag =  1) reflects the outcome sensitivity, and is significantly reduced in the DBS ON group. The 
decay rate over successive trial lags reflects the learning rate, and is not significantly different between groups.

Reward 
sensitivity

Reward 
learning rate

Loss 
sensitivity

Loss learning 
rate

Perseverative 
magnitude

ON 2.86 (0.42) 0.46 (0.07) − 1.85 (0.26) 0.63 (0.07) 2.40 (0.27)

OFF 4.46 (0.72) 0.42 (0.05) − 2.43 (0.39) 0.59 (0.06) 2.38 (0.31)

Paired t-contrast p <  0.05 n/s p <  0.05 n/s n/s

Table 3. Instrumental learning task: parameter estimates from the model-based analysis (SEM in 
parentheses).

RT Easy trials RT hard trials % correct easy trials % correct hard trials

ON 0.489 0.519 82.6 60.3

OFF 0.459 0.500 89.3 58.8

Interaction P =  0.08 n/s

Table 4. Normalised response times and performance on easy and hard trials when ON and OFF.
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any differential effects of time- and utility- preferences. Figure 4A shows the estimated time and utility prefer-
ences for the ON and OFF conditions.

We did, however, observe a significant, albeit small, difference in the temperature (τ) parameter (p <  0.05 
two-tailed t-test, uncorrected for multiple comparisons), which suggests a mild, non-specific performance 
improvement when subjects were ON stimulation. That is, subjects showed a slightly more deterministic (con-
sistent) behaviour when ON, but with no significant change in their choice preferences. However, since this was 
result was on just significant at an uncorrected (for multiple comparisons) threshold of p <  0.05, it should be 
considered exploratory.

We next considered whether patients with higher BIS impulsivity ratings (a measure of trait mpulsivity) might 
be more prone to DBS-induced temporal impulsivity. We therefore correlated the BIS score with the marginal 
difference in selection of the sooner option between the ON and OFF sessions. However, there was no significant 
correlation (r =  0.38, p =  0.08 paired, two-tailed t-test, Fig. 4B).

Finally, even though the task did not involve any requirement to respond quickly, we considered whether 
subjects manifest impulsivity as increased response latencies with high conflict choices15. High conflict was spec-
ified as trials in which the difference between the estimated values was less than the median value (given the 
computational model, using the subjects’ individually estimated parameters). We found that both ON and OFF 
stimulation, patients manifest a slight (paradoxical) response speeding, i.e. lower response latencies for higher 
conflict trials (Table 7). However there was no main effect of stimulation and no interaction between condition 
and conflict.

In summary, we found no convincing evidence of significant changes in temporal discounting in STN ON 
and OFF states.

Discussion
Our aim was to probe whether STN DBS modulates well-characterised computational components involved in 
learning and decision-making. We found evidence that DBS specifically modulates outcome sensitivity during 
trial and error learning, which describes a propensity of action outcomes to modulate those same actions in the 
future. Outcome sensitivity, for both rewards and losses, is an essential feature of learning from experience, and 
was modulated in the absence of any other observable parameters in our data.

Behavioural symptoms such as impulsivity reflect a complex, multi-faceted set of motivational processes. 
There is now relatively strong evidence, supported by coherent computational theory, that the STN modulates 
strategic aspects of the decision process, notably the ability to inhibit early responding and allow time to accrue 
evidence to enable execution of better decisions16,38. In particular, this may reflect a general process that governs 
decision strategy when there is conflict in decision value15, decision system12 and perceptual evidence39.

However, whether choice per se is modulated, outside of the context of requirement to respond quickly as 
tested here, is much less clear40. Previous rodent studies suggested a role for STN in instrumental decision-making, 
including in a 5-choice food reward task9, and in inter-temporal choice for immediate versus delayed reward41. 
On the whole, this evidence suggests that lesions42–44, high frequency stimulation (HFS)2, or pharmacological 
blockage45 influence appetitive (reward) motivation. In humans, previous studies have suggested that STN-DBS 

Model
Number of 
parameters

Negative Log 
Likelihood

Bayesian 
Information 

Criteria

Hyperbolic discounting with linear utility 2 167.57 347.31

Exponential discounting with linear utility 2 164.29 340.75

Hyperbolic discounting with power utility 3 145.34 308.94

Hyperbolic discounting with negative 
exponential utility 3 154.22 326.70

Exponential discounting with power utility 3 156.38 331.02

Exponential discounting with negative 
exponential utility 3 149.85 317.96

Table 5. Comparison of inter-temporal choice models. The table illustrates the Likelihoods, complexity, 
and BIC scores for different neuro-economic models of inter-temporal choice. The best model, Hyperbolic 
discounting with power utility, is highlighted. Performing this analysis separately for both ON and OFF reveals 
a similar result (data not shown). The winning model corresponds to a model probability of about 0.72 on each 
trial.

k (hyperbolic discounting) r (power utility function) τ (temperature)

ON 0.022 (0.007) 0.40 (0.07) 0.71 (0.39)

OFF 0.027 (0.007) 0.49 (0.08) 1.20 (0.58)

Contrast paired two-sided t-test p-value (uncorrected) 0.758 0.178 0.049

Correlation coefficient with BIS score (r) 0.04 0.30 − 0.04

Correlation with BIS score p-value 0.851 0.188 0.853

Table 6.  Parameter estimates of inter-temporal choice model (SEM in parentheses).
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impairs performance on a task which involves compound integration of previous trial-and-error learned outcome 
probabilities46, and results in a tendency towards risky decision-making in gambling tasks47. In both cases, how-
ever, there is context that invokes variable decision conflict. Furthermore, no previous study has, to our knowl-
edge, shown a role for the STN in punishment related choice.

Our data implicate a relatively specific impact on value sensitivity over and above other aspects of 
decision-making, but only observed here in the context of learned and (bearing in mind it is difficult to for-
mally contrast the two tasks) not explicit choice in discounting behaviour48). A tendency to choose small, sooner 
options in inter-temporal choice is often considered the most characteristic feature of behavioural impulsivity49. 
The lack of any positive evidence of temporal impulsivity is strengthened by a design in which subjects made 
real-life decisions for ecologically valid quantities and delays, and by the fact that small doses of the dopamine 
precursor levodopa can induce significant impulsivity, albeit in young, healthy individuals29. Thus, DBS may 
modulate learned value specifically, with no comparable effect on explicitly given or constructed outcome value. 
The only caveat to this is that the response times are not equitable between the two tasks: in the discounting task, 
the options are far more varied and the decision needs to made on the basis of new information on each trial, and 
hence subjects take much longer.

It is important to note that reduced instrumental outcome sensitivity cannot easily be attributed to a 
non-specific task-performance effect. For example, a general increase in switching behaviour50,51 (via the softmax 
temperature) would manifest as decreased sensitivity to reward and increased sensitivity to punishment – i.e. the 
effect on punishment being the opposite to what we observe here. Furthermore, in our discounting task, there 
is a tendency towards more consistent behaviour when DBS is ON. Instead, our data suggest a basic and specific 
reduction in outcome sensitivity during learning across rewards and punishments.

Figure 4. Results – inter-temporal choice.  Estimated delay and magnitude discounting functions in patients 
whilst on (red) and off (blue). In the case of delay, the curves represent a hyperbolically decreasing function 
in which more distant outcomes are discounting. In the case of magnitudes, the increasing amounts result in 
decreasing marginal returns, manifest as a concave utility function. The dotted lines represent + /−  1 standard 
error of the mean. There is no statistical difference between on and off stimulation in either case.

Low conflict trials High conflict trials Contrast p-value (two-sided paired t-test)

ON 0.5372 0.4970 0.0245

OFF 0.5418 0.4913 0.0048

Interaction n/s (p =  0.364)

Table 7.  Decision conflict. The table shows Gamma-normalised response latency as a function of decision 
conflict, which was defined by the difference between the value if the two options were presented on each trial.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:32509 | DOI: 10.1038/srep32509

This raises a deeper question of what underlies this reduction in learned value, and how this relates to existing 
models of STN function in decision-making. One conceivable explanation is that such an effect could relate to 
a lower threshold of value-based choice computation, as predicted by decision difficulty theories14–18. That is, 
even though we imposed no explicit penalty for slowness, it may be that ON subjects internally integrate val-
ues too quickly (i.e. decision time), before the full option values have had time to accrue, but where this is not 
necessarily coupled to (relatively) faster response time. Such an effect would suggest a more pervasive effect on 
decision-making than previously thought, but not necessarily inconsistent with existing theories of STN function.

If the above is the case, it is notable that in a previous instrumental learning study15 in human PD subjects, 
STN DBS did not induce an overall deficit in the ability to select rewards or avoid punishments, in contrast to 
our findings. Instead, the authors’ task highlighted a selective increase in errors associated with conflict related 
speeding when ON stimulation. By comparison, our bandit task is much more dependent on flexible instrumen-
tal performance, and the combination of the non-stationarity of the option-outcome contingencies may make 
it more sensitive to value acquisition and variable option values. In addition, our analysis methodology allowed 
us to more clearly disambiguate effects of outcome value and learning. Indeed, our data support previous asser-
tions that the STN does not appear to be involved in learning per se15,52. Furthermore, our data show similar 
effects on both reward and punishment value coding. This contrasts with a directional, valence-specific role, 
seen with dopaminergic medication (which similarly improves Parkinson’s disease symptoms), which accentuates 
reward-based decisions but impairs avoidance53,54.

An important caveat that should be noted is that the computational account of behaviour relies to a certain 
amount on the models applied. For instance, we haven’t considered more complex instantiations of reinforcement 
learning that consider multiple values systems that compete to control choices (i.e. model-based and model-free 
systems)55,56 or different classes of model, such as Bayesian decision algorithms57. Having said that, the reinforce-
ment learning model does offer a parsimonious account that is broadly consistent with current conceptions of 
human decision-making.

In conclusion, our results show that both sensitivity to reward and punishments is reduced in the context of 
experience-based decision-making in DBS treated Parkinson’s disease. The results broaden our understanding 
of the subtle but important impact of STN-DBS on behaviour, in particular because it highlights an impact on 
learning and choice. This could result in clinical manifestations distinct from those that fall under the umbrella 
of impulsivity, but suggest other aspects of adaptive behaviour might be influenced and should be considered in 
future clinically-orientated evaluations of behaviour. Perhaps the best example would be in sensitivity to rehabil-
itation, since this involves experience-based learning from both positive and negative outcomes.
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