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We study the many-body phases of bosonic atoms with N internal states confined to a 1D optical
lattice under the influence of a synthetic magnetic field and strong repulsive interactions. The N
internal states of the atoms are coupled via Raman transitions creating the synthetic magnetic field
in the space of internal spin states corresponding to recent experimental realisations. We focus on
the case of strong SU(N) invariant local density-density interactions in which each site of the 1D
lattice is at most singly occupied, and strong Raman coupling, in distinction to previous work which
has focused on the weak Raman coupling case. This allows us to keep only a single state per site
and derive a low energy effective spin 1/2 model. The effective model contains first-order nearest
neighbour tunnelling terms, and second-order nearest neighbour interactions and correlated next-
nearest neighbour tunnelling terms. By adjusting the flux φ one can tune the relative importance of
first-order and second-order terms in the effective Hamiltonian. In particular, first-order terms can
be set to zero, realising a novel model with dominant second-order terms. We show that the resulting
competition between density-dependent tunnelling and repulsive density-density interaction leads to
an interesting phase diagram including a phase with long-ranged pair-superfluid correlations. The
method can be straightforwardly extended to higher dimensions and lattices of arbitrary geometry
including geometrically frustrated lattices where the interplay of frustration, interactions and kinetic
terms is expected to lead to even richer physics.

I. INTRODUCTION

Cold-atom systems provide an ideal setting in which
to perform experiments that simulate quantum many-
body systems. The fine control and wide tunability of
system parameters, as well as precise measurements of
observables, allow cold-atom systems to simulate ideal-
ized models of solid state physics[1, 2], making them a
testing ground for condensed matter theories. However,
the natural situations that emerge in cold atom exper-
iments also introduce new models with interesting and
novel features which raise new theoretical questions.

Optical lattices can be used to confine atoms in d =
1, 2, 3-dimensional lattices of chosen geometry. An ad-
ditional synthetic dimension can be created in any d-
dimensional lattice by exploiting the internal states, e.g.
spin states, of the atoms [3, 4]. Recent progress in the
control of cold atomic gases allows the study of systems
with large (tunable) numbers of internal spin states [5–7].
Engineering the transitions between the internal states,
e.g. by Raman transitions induced by lasers, allows
the simulation of motion as along an additional (finite)
“synthetic” dimension. Moreover, this synthetic dimen-
sion can also be used to engineer artificial gauge fields
for neutral atoms [4, 8, 9], thus opening the possibil-
ity to explore topological physics in higher dimensional
settings. Experimentally, this has been realized in a 1-
dimensional lattice geometry realising the physics and
associated topological properties of a 2-dimensional sys-
tem [10, 11]. More recently, it has been proposed how
one could simulate 4-dimensional Quantum Hall physics
in cold atom setups using these techniques [12].

∗ tb494@cam.ac.uk

In this work, we will focus on one-dimensional sys-
tems with a finite synthetic dimension composed of N =
(2I + 1) spin states coupled by laser beams in such a
way as to create an artificial magnetic field. Thus, they
can alternatively be considered as frustrated N -leg lad-
ders. Optical lattice experiments with cold atoms mo-
tivate the study of both bosonic [13–18] and fermionic
systems [19–28]. The predicted behaviour includes chi-
rally ordered phases [14], vortex phases [16], magnetic
crystals and quasi-1D analogues of fractional Quantum
Hall states [25, 27, 28]. At the centre of these phenom-
ena is the interplay of the gauge fields and the SU(2I+1)
symmetric interactions [29–32]. The natural SU(2I + 1)
symmetry of the interactions between the spin states im-
plies, in the interpretation of a ladder, that the interac-
tions are infinitely ranged along the synthetic dimension
and short-ranged along the real dimension in contrast to
the situation usually considered in the solid-state con-
text. We remark that therefore the limit of hardcore
interactions of bosonic particles does not correspond to
a Tonks-Girardeau gas [33–35] and the system does not
reduce to free fermions.

Prior studies have focused on the weak Raman cou-
pling case in which one obtains helical states and edge
currents [28]. In contrast we will study the case of strong
Raman coupling and strong interactions, focusing on an
effective model of hardcore bosons/spinless fermions in
these limits which can alternatively be understood in
terms of an effective pseudo spin-1/2 system. Our main
focus will be on a regime in which the physics is domi-
nated by the interplay of density-density interactions and
correlated tunnelling terms. This will lead to a compe-
tition between phase-separation and charge-order, and
normal superfluidity and pair-superfluidity.

In 2D pair-superfluids can be realised using the long-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77414854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tb494@cam.ac.uk


2

range interactions of dipolar quantum gases [36, 37] and
confining them in bi-layer geometries [38–40]. In a mean
field analysis the presence of correlated tunnelling allows
the condensation of pairs (〈bibj〉 6= 0) in the absence of
single-particle condensation (〈bi〉 = 0) [41]. Generically,
correlated tunnelling can be understood to act as an at-
tractive interaction between the bosons favouring pair
formation, and the repulsive nearest neighbour interac-
tion is required to avoid collapse [42] or phase-separation
[43]. Correlated tunnelling has been shown to lead to
pair-superfluidity for bosons in 2D [43] and in 1D [44, 45]
in theoretical studies, but the required models are hard
to realise experimentally.

We propose a way to realise (quasi) pair-condensed
and supersolid phases of ultracold atoms starting from
an experimentally realised system. We do not require
special (long-range) interactions or complicated lattice
geometries. The proposed scheme is applicable to both
fermions and bosons, but we will limit the discussion to
the bosonic case here. We do not assume specially en-
gineered Raman couplings of the spin states to obtain
homogeneous couplings along the synthetic dimension or
periodic boundary conditions which are hard to realise
experimentally for large number of internal spin states,
but consider the highly non-homogeneous couplings and
open boundary conditions along the synthetic dimension
which occur naturally for I > 1 due to the nature of the
atom-light interaction.

We introduce the full model and the effective model
derived in the limits of large Raman coupling and strong
interactions in Sec. II. Importantly, the coupling con-
stants will turn out to depend on the flux φ, and the
freedom in tuning both the flux and the number of spin
states 2I + 1 allows great control and freedom in engi-
neering the resulting effective Hamiltonian. In Sec. III
we will focus on the special case of flux φ = π in
which the first order terms vanish and investigate the be-
haviour resulting from the dominant second order terms
in the effective model. By employing Density-Matrix-
Renormalization Group (DMRG) calculations [46] the
phase-diagram of the effective model is obtained, and de-
scribed in Sec. III A. Based on the analysis of correlation
functions and the von-Neumann entropy we establish a
phase-diagram containing a charge-density wave (CDW)
at half-filling, a supersolid phase (SS) with simultane-
aous charge-density wave order and superfluid correla-
tions, and a (quasi) pair-superfluid phase.

II. MODEL

We consider spinful bosons with N = 2I + 1 inter-
nal spin states loaded into a one-dimensional optical lat-
tice described by a Hamiltonian Ĥ = Ĥ1 + Ĥ2 + Ĥint.
Ĥ1 describes the bosonic hopping along the lattice,
Ĥ1 = −t

∑
j

∑I
m=−I

(
ĉ†j+1,mĉj,m + h.c

)
where ĉ(†)j,m are

bosonic operators annihilating (creating) bosons in spin

state m at site j and t is the hopping amplitude. Ĥ2 de-
scribes the Raman coupling of the internal spin states via
Ĥ2 = −

∑
j

∑I−1
m=−I Ωm+1

(
eiφj ĉ†j,m+1ĉj,m + h.c

)
where

Ωm = Ωgm with gm =
√
I(I + 1)−m(m− 1) and φ

is the running phase of the Raman beams (set by the
wavevector transfer ∆k and the lattice constant d). Ĥint

is taken to be an SU(2I+ 1) invariant interaction of con-
tact form, i.e. Ĥint = U

∑
j,m,m′ n̂j,m(n̂j,m′ − δm,m′). In

the next section we will consider an effective spin-1/2
model describing the dynamics in the strong coupling
limit.

A. Effective Model at strong coupling

We will consider the parameter regime t � Ω, U and
work with the resulting low-energy effective Hamiltonian
in the following. In the limit t � Ω only the lowest of
the eigenstates of Ĥ2 remains in the effective descrip-
tion coupled via direct and virtual hoppings induced by
Ĥ1. The interaction Ĥint takes the same form in the
eigenbasis of Ĥ2 due to its SU(2I + 1)-invariance and in
the limit of t � U leads to a hardcore constraint in the
effective basis. In App. A we derive the effective second-
order model describing spinless particles interacting via a
nearest neighbour interaction and hopping with nearest
neighbour, next-nearest neighbour and correlated next-
nearest neighbour tunnelling terms.

The effective Hamiltonian takes the form

Ĥeff/t = −t1(φ)
∑
j

(
d̂†j+1d̂j + h.c.

)
+ κV (φ, ũ)

∑
l

n̂ln̂l+1

− κt2(φ, ũ)
∑
j

(
d̂†j+2d̂j + h.c

)
(1)

+ κtcor(φ, ũ)
∑
j

(
d̂†j+2n̂l+1d̂j + h.c

)
where d̂j = d̂j,I is the creation operator for a particle in
the sx = I (after the unitary transformation explained in
App. A) eigenstate at site j , κ = t/Ω, and ũ = U/(4ΩI).
The explicit form and functional dependence of the cou-
pling constants on the flux φ, the interaction strength ũ
and the number of spin states I is provided in App. A,
Eq. A5-A7.

The first term describes the direct hopping between
the sx = I spin state on neighouring lattice sites, with
an energy scale that is reduced from the bare hopping
t by the factor t1(φ) = (cosφ/2)2I (Eq. A5). The re-
maining terms describe virtual hopping processes, with
energy scale proportional to tκ = t2/Ω. The nearest
neighbour repulsion V contains three contributions, orig-
inating from nearest neighbour hopping and returning to
the original site via an excited spin state on a neighbour-
ing site which is either empty or occupied or hopping onto
an occupied site in the lowest energy spin state. The cor-
related tunnelling term tcor arises from the corresponding
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FIG. 1. (a) Second order virtual proccesses in the effective
Hamiltonian Eq. 1 illustrated in the case of I = 2. The left
shows a particle hopping into an excited state on an unoc-
cupied site and back to the ground state and leads to a nor-
mal and a correlated NN neighbour hopping term t2 and tcor,
hopping via an occupied site leads to tcor, and the right cor-
responds to hopping back and forth via an excited state and
leads to an effective NN interaction V of particles on neigh-
bouring sites. (b) Coupling constants t2/V and tcor/V as a
function of rescaled interaction ũ = U/(4ΩI) of the effective
spin 1/2 model at flux φ = π, see Eq. 2

processes with the particle not returning to the original
site. These processes are illustrated in Fig. 1(a).

Importantly, the virtual hopping between the different
Raman eigenstates is controlled by κ = t/Ω. To avoid
double occupancy we only require t1(φ) � U/t, which
can be achieved even if the bare coupling t is large by
making t1(φ) small through a judicious choice of φ. This
allows us to work at relatively high energy scales using
shallow lattices with high bare tunnelling rates t, in con-
trast to the induced interactions in the Mott regime of
the Hubbard model scaling with t/U requiring deeper
lattices and lowering the overall energy scale. Further,
the dependence of the coupling constants on the flux φ
allows one to eliminate the first order tunnelling terms
and obtain an effective model with dominant second or-
der terms even for relatively shallow lattices where all
energy scales remain large.

III. MODEL AT φ = π

In the following we focus on the model at flux φ =
π. Then, the first order nearest neighbour tunnelling
term t1(φ) vanishes identically and the effective model is
determined by the second order terms only. The model
reduces to

Ĥeff/(tκ) = V
∑
j

n̂j n̂j+1 − t2
∑
j

(
ĉ†j ĉj+2 + h.c.

)
+ V/2

∑
j

(
ĉ†j n̂j+1ĉj+2 + h.c.

) (2)

where c†j is the creation operator for hard-core bosons or
spinless fermions at site j and n = c†jcj the correspond-
ing density and the couplings are the ones defined below
Eq. 1 for φ = π. Note that in these limits tcor = V/2.
Since the NN tunnelling term has dropped out, parti-
cles now only hop on their respective A/B sublattices,
the model can therefore also be understood to live on a
“zigzag” lattice.

To gain some understanding of the effective model, we
first consider the more general case in which all coupling
constants can be tuned independently, i.e. we consider
the model with couplings t2, tcor and V . Note that those
correspond to to 2-body, 3-body and 4-body terms re-
spectively. For tcor = V = 0 the model is non-interacting
and describes free hardcore bosons living separately on
each sublattice. For tcor = 0 the model corresponds to
the t2 − V -model [47]. It has been shown to undergo a
quantum phase-transition from a superfluid (SF) phase
to a supersolid (SS) at non-half filling and to a charge-
density-wave (CDW) at exactly half-filling as a function
of t2/V . For V = 0 the model is integrable and known
as Bariev’s model [48], in this limit we have two NNN
hopping terms, a normal hopping t2 and a correlated
hopping tcor for which hopping between sites depends
on the occupation of the intermediate site on the other
sublattice. Depending on tcor/t2 the model has a finite
CDW amplitude, i.e. different sublattice populations, in
the groundstate. The fermionic spin 1/2 version of this
model has recently been studied in Ref. [49]. For V = 0
and tcor = t2, the model admits an exact solution via a
mapping to free spinless particles moving on a charge lat-
tice. This solution becomes possible, because for tcor = t2
particles cannot pass each other, and the sequence of par-
ticles remains preserved throughout the dynamics. The
groundstate of the model is found to be a paired-hole su-
perconductor with hidden string order and algebraically
decaying 2-particle correlations.

For our model, we are not free to choose these cou-
plings independently. The dependence of the couplings
in the effective model Eq. 2 on the rescaled interaction
strength ũ = U/(4ΩI) is shown in Fig. 1(b). In these
limits we obtain tcor/V = 0.5 and t2/V = (1 + ũ)/(2ũ).
Thus, the model depends only on a single free parameter,
ũ, which determines the ratio t2/V , or we can alterna-
tively consider the model as a function of t2/V . Hardcore
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FIG. 2. Phase-diagram of the effective model Eq. 2 obtained
from the DMRG calculations as a function of coupling t2 and
density n. Three distinct phases are observed, a gapped CDW
at n = 0.5 and t2 ≤ 0.6, a supersolid phase (SS) with super-
fluid order on one of the sublattices with the other sublat-
tice being empty with central charge c = 1 below half-filling
n < 0.5, and a homogeneous phase with dominant superfluid
(SFA+B) order on both lattices with c = 2 for high densities
n and high t2 which also shows strong pair-superfluid corre-
lations. Above half-filling at low t2 we find phase-separation
(PS) as indicated in a jump in n(µ).

interactions correspond to t2/V = 0.5 and we will con-
sider the region of repulsive interactions corresponding
to t2/V ≥ 0.5 in Sec. III A. We note that with these pa-
rameters we are outside of the integrable limits described
above and it will be interesting to see what remains of the
physics in the parameter regime accessible in our model.

A. Phase Diagram

To characterise the ground state phases we perform
DMRG simulations using the ALPS MPS framework
[50, 51]. We consider system sizes of L = 80, 120, 160, 240
with open boundary conditions keeping a maximal num-
ber of states of m = 400, 600, 800, extrapolating results
for fixed system size in 1/m. To characterize the ground
state and obtain the phase-diagram we study two- and
four-point correlation functions and the structure factors
for CDW, superfluid and pair-superfluid order. To re-
duce the effects of the open boundary conditions corre-
lators are measured from the middle of the system and
averaged over a window of 10 sites around the central
site. We perform finite-size scaling of the correspond-
ing correlation-lengths, decay exponents and structure
factors to obtain the phase-boundaries. In addition we
characterise the phases via their entanglement entropy
and central charge.

On a bipartite lattice, due to the vanishing of the
nearest neighbour tunnelling, the sublattice populations
nA(B) =

∑
i∈A(B) ni are separately conserved, and we fo-

cus on equal populations on both sublattices nA = nB .
The phase diagram of the model as a function of t2 in
the range 0.5 ≤ t2/V ≤ 0.64 and density 0 ≤ n ≤ 1

is shown in Fig. 2. Three distinct phases are observed
in this parameter range, a charge-density wave (CDW)
with a period of two lattice sites, a supersolid (SS) with
simultaneous (quasi-) superfluid and maximal CDW or-
der, and a homogeneous phase with (quasi-) superfluidity
on both sublattices (SFA+B) with pair-superfluid corre-
lations. Since we consider the case of nA = nB , both
the CDW and the SS phases are additionally separated
into a left/right region with vanishing density on one of
the sublattices in both regions. Before the transition into
the SFA+B-phase, the maximally imbalanced state with
NA = N , NB = 0 (or the equivalent state with NA = 0,
NB = N) is slightly lower in energy, and degenerate in
the thermodynamic limit. Both the balanced and the
maximally imbalanced state are realised as thermody-
namic phases when introducing two chemical potentials
µA and µB coupling to the respective densities. Our dis-
cussion of the properties of the state does not rely on
this distinction. After the transition into the SFA+B the
imbalanced state is energetically disfavoured.

Exactly at half-filling n = 0.5 the CDW phase is sta-
bilised and persists up to t2/V = 0.6. Below half-filling
n < 0.5 at low coupling t2 the effects of the nearest neigh-
bour repulsion are still dominant, resulting in a phase
where one of the sublattices is empty and the other is
filled and becomes (quasi-)superfluid, thus forming a su-
persolid state. We remark that if one sublattice is empty,
the model reduces to free particles hopping on the other
sublattice with amplitude t2. Above half-filling n > 0.5
at low t2 particles cannot avoid the cost of the interaction
energy V and the system phase-separates. At sufficiently
high t2 the effect of the repulsion V can be overcome
and a homogeneous phase with superfluid order on both
lattices emerges. In this regime all of t2, tcor and V are
relevant.

An important tool to characterise the ground state be-
haviour of strongly correlated systems in one dimension
is the von Neumann block entropy [52]. This is defined
as SNA = Tr ρA ln ρA where ρA is the reduced density ma-
trix ρA = TrBρ obtained by dividing the chain into the
block A consisting of sites i = 1, · · · , l and B of sites
i = l + 1, · · · , L. In particular, for a gapped state the
entropy saturates whereas it diverges for a gapless state
[53, 54]. For a 1D system of size L with open bound-
ary conditions the von Neumann block entropy behaves
as SNL (l) = s1 + c

6 ln
[

2L
π sin

(
πl
L

)]
where c is the central

charge of the associated CFT and s1 is a non-universal
constant [55–57]. By fitting SNL linearly in the confor-
mal distance λ = ln

[
2L
π sin

(
πl
L

)]
we obtain the central

charge c of the phase. The behaviour of the central charge
c as a function of the coupling t2 at density n = 0.5 is
shown Fig. 3(a). The results indicate a transition close
to t2/V = 0.6. The state for t2/V ≤ 0.6 is gapped as ex-
pected for the CDW phase and the transition occurs into
a state with with central charge of c = 2 in the SFA+B.
Finally below half-filling we find a central charge c = 1
(not shown), which is consistent with superfluidity on one
of the sublattices in the SS phase.
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FIG. 3. (a) The central charge c determined from fitting the
von Neumann block entropy via SNL (l) = c

6
ln
[
2L
π

sin
(
πl
L

)]
for different system sizes as a function of the coupling t2
at density n = 0.5. The CDW is gapped and the tran-
sition occurs into the SFA+B phase with central charge
c = 2. (b) Extrapolated CDW order parameter ∆CDW =
limL→∞

√
|1/L

∑
l e
iπlG(l)| at density n = 0.5 as a func-

tion of coupling t2 showing the vanishing of CDW order at
t2/V = 0.61.

The CDW order can be directly extracted from the
density-density correlation and the static structure fac-
tor. We measure G(l) = 〈n̂in̂i+l〉. The static structure
factor is defined as SL(q) = 1/L

∑
l e
iqlG(l). The CDW

order parameter is given by the square root of the struc-
ture factor at q = π, ∆CDW(L) =

√
|SL(π)| and its

infinite system size limit, ∆CDW = limL→∞
√
|SL(π)|.

The finite system results ∆CDW(L) are extrapolated via
a quadratic fit in 1/L to infinite system size. The results
of this extrapolation are shown in Fig. 3(b). The CDW
order parameter vanishes at t2/V = 0.61 signalling the
transition into the superfluid state.

To characterize the degree of (quasi-)superfluid order
we consider the following two point correlation function
Cα(2l) = 〈ĉ†2i+αĉ2i+α+2l〉 on either sublattice (α = 0, 1).
This correlation function is shown in Fig. 4(a) for a
system of size L = 240 on sublattice A (α = 0) dis-
playing a transition from short-ranged to long-ranged
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FIG. 4. (a) Two-point correlation function Cα(l) as a func-
tion of l on sublattice A (α = 0) for a system of size L = 240
at density n = 0.5 for t2/V = 0.61, 0.6, 0.59 (top to bottom)
showing the transition from short-ranged to long-ranged cor-
relations at t2/V = 0.61. (b) System size L divided by su-
perfluid correlation length ξsf for sublattice A vs coupling t2
for L = 240, 160, 120, 80 (top to bottom). Coalescence of data
points for different L at t2/V = 0.61± 0.05 signals transition
to SF state.

correlations around t2/V = 0.61; the other sublattice
(not shown) exhibits the same behaviour. In contrast
to CDW there is no order parameter for superfluidity in
one dimension, and the whole superfluid phase is criti-
cal. Still, the superfluid phase is characterised by a di-
verging correlation length [58]. To determine the tran-
sition point we perform finite-size scaling of the corre-
lation length defined as ξsf =

√∑
l l

2Cα(l)/
∑
l Cα(l)

[59, 60]. In Fig. 4(b) L/ξsf on sublattice A (α = 0)
is shown as a function of t2 at n = 0.5 for different
system sizes, the correlations on sublattice B show the
same behaviour. The coalescence of the data signals
the transition to the superfluid state at t2/V = 0.61.
In the superfluid phase we find strong correlations be-
tween the superfluids on the sublattices. To charac-
terise this phase further we also consider possible con-
densation of pairs via P (2l) = 〈ĉ†2iĉ

†
2i+1ĉ2i+2lĉ2i+1+2l〉 −

〈ĉ†2iĉ2i+2l〉〈ĉ
†
2i+1ĉ2i+1+2l〉 and its corresponding correla-
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FIG. 5. (a) Four-point correlation function P (l) as a function
of l for a system of size L = 240 at density n = 0.5 for
t2/V = 0.61, 0.6, 0.59 (top to bottom) showing the transition
from short-ranged to long-ranged correlations at t2/V = 0.61.
(b) System size L divided by pair-superfluid correlation length
ξpf vs coupling t2 for L = 240, 160, 120, 80 (top to bottom).
Coalescence of data points for different L at t2/V = 0.61±0.05
signals transition to PSF state.

tion length ξpf =
√∑

l l
2P (l)/

∑
l P (l). The pair-

superfluid correlator is shown in Fig. 5(a) and the fi-
nite size scaling of the correlation length in Fig. 5(b).
We observe very strong pair-superfluid correlations in
the SFA+B phase consistent with quasi-condensation of
pairs as the system becomes superfluid. However, single-
particle superfluidity persists alongside pair-superfluidity
in the parameter regime we have studied.

In Fig. 6(a) and (b) we display the momentum distri-
bution of particles on sublattice A, n(q) =

∑
eiqlCA(l),

and in (c) and (d) the momentum distribution of pairs
of particles npf(q) =

∑
eiqlP (l). As for hardcore bosons

n(q = 0) is expected to scale with
√
L [61], both quan-

tities are normalised by this factor. We focus on the
transition from the SS phase in (a) and (c) to the SFA+B

phase in (b) and (d). Whereas in the single-particle mo-
mentum distribution a quasi-coherent peak is observed

in both phases, pairs only quasi-condense in the SFA+B

phase as seen in (d).
IV. CONCLUSIONS

In summary, in this work we have shown that the in-
terplay of (synthetic) gauge fields and interactions in ul-
tracold gas systems leads naturally to effective Hamilto-
nians with correlated hopping terms. We start from an
experimentally feasible set-up for the creation of artificial
magnetic field using synthetic dimensions. We consider
this model in the limits of strong Raman coupling of the
spin states and strong interactions where it reduces to
an effective model with first order nearest neighbour tun-
nelling, and second order next-nearest neighbour corre-
lated tunnelling terms and nearest neighbour repulsion.
Importantly, the additional degree of freedom given by
adjusting the flux φ allows to engineer effective models
dominated by second-order processes with large energy
scales.

By working at flux φ = π, the first order nearest neigh-
bour tunnelling term is eliminated, and we obtain a novel
model with dominant second-order terms. This is a nat-
ural route to a large density-dependent tunnelling term,
so the proposed scheme is directly relevant to the re-
alisation and study of models with interaction-assisted
hopping and kinetic frustration [62–68].

The physics of our effective model involves the compe-
tition between the correlated tunnelling which favours
pair formation, and the nearest neighbour repulsion
which favours local CDW order. We find three distinct
phases: a CDW phase; a supersolid (SS) with simultane-
ous quasi-superfluidity on either sublattice and maximal
CDW order; and a quasi-superfluid on both sublattices
with strong pair-superfluid correlations SFA+B.

The model can be directly generalised to fermionic
species and higher dimensional lattices of arbitrary ge-
ometry. In the case of fermions, the study of attrac-
tive interactions seems particularly relevant for the study
of paired phases. The extension to higher dimensions
promises even more interesting physics, e.g. BKT transi-
tions to novel superconducting states and geometrically
frustrated magnetism. We reserve the discussion of the
resulting phases for future work.
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FIG. 6. (a)-(b) Single-particle momentum-distribution n(q) =
∑
eiqlCA(l) on sublattice A. (c)-(d) Momentum distribution for

pairs of particles npf(q) =
∑
eiqlP (l). All at density n = 0.25 and (a) and (c) at t2/V = 0.51 in the SS phase and (b) and (d)

at t2/V = 0.55 in the SFA+B phase. The single-particle momentum distribution shows a quasi-coherent peak in both phases
(a) and (b). In contrast, for pairs in the SS phase in (c) no quasi-coherent peak is observed, whereas a peak forms in the SFA+B

phase in (d).
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Appendix A: Derivation of effective Model

We start from the Hamiltonian of bosons with N =
2I + 1 internal spin states loaded into a one-dimensional
optical lattice described by Ĥ = Ĥ1 + Ĥ2 + Ĥint.
Ĥ1 describes the bosonic hopping along the lattice,

Ĥ1 = −t
∑
j

I∑
m=−I

(
ĉ†j+1,mĉj,m + h.c.

)
(A1)

where ĉ(†)j,m are bosonic operators annihilating (creating)
bosons in spin state m at site j and t is the hopping
amplitude.

In addition the internal spin states are coupled by Ra-
man lasers described by the Hamiltonian

Ĥ2 = −
∑
j

I−1∑
m=−I

Ωm+1

(
eiφj ĉ†j,m+1ĉj,m + h.c.

)
(A2)

where Ωm = Ωgm with gm =
√
I(I + 1)−m(m− 1)

and φ = ∆kRd is the running phase of the Raman
beams given by the wave-vector transfer ∆kR and the
lattice spacing d. Ĥint is taken to be a SU(2I + 1)

invariant interaction of contact form, i.e. Ĥint =
U
∑
j,m,m′ n̂j,m(n̂j,m′ − δm,m′).

For open boundary conditions in the synthetic di-
rection using the unitary transformation Û defined by
Û ĉj,mÛ

† = eiφmj ĉj,m the Hamiltonian is transformed to
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)

−
∑
j
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m=−I

Ωm
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ĉ†j,m+1ĉj,m + h.c.

)
+ Ĥint

(A3)
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As we consider t � Ω we now transform to the eigen-
states of the Raman coupling Hamiltonian Ĥ2. After the
unitary transformation this is just Ĥ2 = −2Ω

∑
j Ŝx,j ,

where Ŝx,j is the Ŝx operator for spin I for particles at
site j. Note in particular that it is now site-independent
due to gauging the Raman phase into the hopping part
of the Hamiltonian. Consequently, the eigenfunctions are
just the sx eigenstates and the spectrum at each site is
given by Es = −2Ωs with s = −I, . . . , I. Due to the
gauge-transformation we performed, this actually corre-
sponds to a rotating spin-orientation in the original basis.
Ĥ1 in the new basis reads as Ĥ1 =

−t
∑
s,s′

(
Ts,s′(φ)d̂†j+1,s′ d̂j,s + h.c.

)
where d̂†j+1,s′ creates

a particle in the s′x eigenstate at site j and we defined the
hopping matrix Ts,s′(φ) = 〈sx | e−iφŜz | s′x〉 which now
couples states s and s′. As the interaction Hamiltonian
is SU(2I + 1) invariant it takes the same form in the
transformed basis, Ĥint = U

∑
j,s,s′ n̂j,s(n̂j,s′ − δs,s′)

where now the sum runs over the sx eigenstates. In the
limit of strong interactions this restricts the occupation
at each site to be 0 or 1.

We see that Ĥ2 + Ĥint is diagonal in the occupation
number basis of sx eigenstates. In the limit t � Ω, U
we treat Ĥ1 as a perturbation and derive an effective
model keeping only the lowest energy eigenstate at each
site, i.e. the s = I state, and consider the sector with
empty and singly occupied sites. To second order we ob-
tain a model describing spinless particles interacting via
a nearest neighbour interaction and hopping with nearest
neighbour, next-nearest neighbour and correlated next-
nearest neighbour tunnelling terms. The effective Hamil-
tonian takes the form

Ĥeff/t = −f It (φ)
∑
j

(
d̂†j+1d̂j + h.c.

)
+ 2κ

[
f IV (φ, ũ = 0)− f IV (φ, ũ)− f It (φ)2

2Iũ

]∑
l

n̂ln̂l+1

+ κ
[
f Icor(φ, ũ = 0)

∑
j

(
d̂†j+2(1− n̂l+1)d̂j + h.c.

)
(A4)

+ f Icor(φ, ũ)
∑
j

(
d̂†j+2n̂l+1d̂j + h.c.

)
− f It (φ)2

2Iũ

∑
j

(
d̂†j+2n̂l+1d̂j + h.c.

) ]

where d̂j = d̂j,I is the creation operator for a particle in
the sx = I eigenstate at site j, κ = t/Ω and ũ = U/(4IΩ).

The functions f (I)
i (φ) depend on the flux φ, the inter-

action strength ũ and parametrically on the number of
spin states I. The first term describes the diagonal hop-
ping between the s = I spin states and the remaining
terms describe virtual hopping processes. The nearest
neighbour repulsion V originates from nearest neighbour
hopping and returning to the original site via an excited
spin state on a neighbouring site which is either empty
(first term) or occupied (second term) or hopping onto
an occupied site in the lowest energy spin state (third
term). The correlated tunnelling term tcor arises from
the corresponding processes with the particle not return-
ing to the original site. The functions f (I)

i (φ) take the
explicit form

f It (φ) = TII(φ) = cos(φ/2)2I (A5)

f Icor(φ, ũ) = −
∑
s′ 6=I

TI,s′(φ)TI,s′(φ)

(Es′ − EI + U)/Ω
(A6)

= −cos(φ/2)4I

4Iũ

[
F (−2I, 2Iũ, 1 + 2Iũ, tan(φ/2)2)− 1

]
f IV (φ, ũ) =

∑
s′ 6=I

TI,s′(φ)T̄s′,I(φ)

(Es′ − EI + U)/Ω
(A7)

=
cos(φ/2)4I

4Iũ

[
F (−2I, 2Iũ, 1 + 2Iũ,− tan(φ/2)2)− 1

]

where ũ = U/(4IΩ) and F (a, b, c, z) = 2F 1(a, b, c, z) is
the hypergeometric function
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