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a b s t r a c t

Investigations of working memory capacity in the visual domain have converged on the

concept of a limited supply of a representational medium, flexibly distributed between

objects. Current debate centers on whether this medium is continuous, or quantized into 2

or 3 memory “slots”. The latter model makes the strong prediction that, if an item in

memory is probed, behavioral parameters will plateau when the number of items is the

same or more than the number of slots. Here we examine short-term memory for object

location using a two-dimensional pointing task. We show that recall variability for items in

memory increases monotonically from 1 to 8 items. Using a novel method to isolate only

those trials on which a participant correctly identifies the target, we show that response

latency also increases monotonically from 1 to 8 items. We argue that both these findings

are incompatible with a quantized model.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Variability of error in recall from visual working memory in-

creases monotonically with the number of items presented

(Bays & Husain, 2008; Palmer, 1990; Wilken & Ma, 2004). Items

with high physical or behavioral salience are recalled with

enhanced precision, but at a cost to other items held simul-

taneously in memory, which are remembered with reduced

fidelity (Bays, Gorgoraptis, Wee, Marshall, & Husain, 2011;

Gorgoraptis, Catalao, Bays, & Husain, 2011; Lara & Wallis,

2012; Melcher & Piazza, 2011). These results have led to the

characterization of working memory as a limited resource

that can be flexibly distributed between items: the more
hology, University of Cam
Bays).
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resource an item receives, the greater the resolution of its

storage (Bays, Catalao, & Husain, 2009; Bays & Husain, 2008;

van den Berg, Shin, Chou, George, & Ma, 2012; Fougnie,

Suchow, & Alvarez, 2012; Ma, Husain, & Bays, 2014).

Zhang and Luck (2008), extending the model of Luck and

Vogel (1997), proposed that the medium of working memory

is instead quantized into a small number of “slots”. Each slot

can hold the features of a single object in a bound represen-

tation. According to their analysis, human observers typically

possess two or three slots. These slots are distributed among

items in a resource-like way, such that multiple slots can be

dedicated to the same object. When the number of slots ex-

ceeds the set size, e.g., when only one item is presented, the

brain creates multiple independent representations of the
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same object. These independent representations are then

averaged together at recall to generate a single estimate of the

item's features. This aspect of the model is necessary to ac-

count for the experimentally-observed changes in represen-

tational precision with set size. Because slots can be allocated

unevenly between objects, this model even permits a limited

amount of flexibility in how precisely different items are

stored, similar to a resource model.

To support their slots þ averaging model, Zhang & Luck fit

response data from a color recall task with a mixture of two

components: a (circular) normally-distributed component of

error centered on the true value of a probed item, and a

uniformly-distributed component intended to capture

guesses. Themodel predicts that, when the number of items is

equal to or greater than the number of slots, every item either

has one slot or no slots. As a result, responses should either be

random, or distributed about the target with a single fixed

variability. Consistent with this, Zhang & Luck observed that

the width of the fitted normally-distributed component

reached a plateau at around 3 items. The frequency of

uniformly-distributed responses corresponded to at most 2e3

items stored.

Zhang & Luck considered only one source of error in their

analysis, i.e., variability in memory for color. However, the

color recall task required participants to use memory for

location as well, to identify which one of the items in memory

to report. Assuming location memory is also subject to vari-

ability, observers are expected to make “swap” errors on some

trials, in which they incorrectly report one of the other items

in the memory array. Critically, these errors look like random

guesses under Zhang & Luck's analysis. Bays et al. (2009)

showed that swap errors were indeed prevalent, and once

taken into account, the frequency of random responses was

substantially reduced and no longer consistent with a fixed

item limit of any size.

The neural basis of the behaviorally observed capacity

limits in visual working memory has been investigated using

functional magnetic resonance imaging (fMRI) and electro-

encephalography (EEG) studies (Anderson, Vogel, & Awh,

2011; Todd & Marois, 2004; Xu & Chun, 2006). Several regions

in prefrontal and posterior parietal cortex have been shown to

exhibit a specific, sustained increase in blood oxygen level

dependent (BOLD) signal associated with maintenance of

items in working memory. Moreover, the strength of this

signal has been found to increase with memory load, and the

BOLD signal strength has been described as reaching a plateau

at a set size of around four items (Todd & Marois, 2004). This

has previously been interpreted as support for slot models,

suggesting that the strength of the BOLD signal reflects the

number of filled slots. This view is not compatible, however,

with the slots þ averaging model, which assumes that all slots

are used even at lower set sizes to hold multiple copies of

memory items.

More recent fMRI studies have used multivariate pattern

analysis to decode the features held in working memory from

the BOLD signal (Emrich, Riggall, Larocque & Postle, 2013;

Riggall & Postle, 2012). The results showed that features

could be decoded successfully from posterior parietal areas of

cortex that did not show an overall increase in BOLD signal,

but not from regions that featured elevated delay activity. This
suggests that an elevated delay activity is not directly asso-

ciated with coding of object features, and may instead reflect

other aspects of the working memory task such as control of

attention. Moreover, Emrich et al. (2013) and Sprague, Ester,

and Serences (2014) showed that the precision with which

memorized features could be decoded from fMRI data

decreased significantly with increasing memory load. This

finding is consistent with the idea of a limited resource being

distributed among memory items. This possible link between

neural activity and observed capacity limits in working

memory tasks has been made explicit by a recent model

which proposed that the limited resource is the number of

action potentials generated in a neural population (Bays,

2014). The model has shown that decoding from a popula-

tion representation with random noise can account for the

specific distribution of response errors in working memory

tasks, and that the effect of set size on memory performance

can be explained by assuming that the total spiking activity of

the population is normalized.

The present study introduces response latency as a new

source of evidence from reproduction tasks to distinguish slot

and resource models. Resource models make a link between

the amount of resource allocated to an item and the rate of

accumulation of evidence that determines when a response is

generated: this predicts that response latency will increase

monotonically with set size (Bays, 2015; Pearson, Ra�skevi�cius,

Bays, Pertzov, & Husain, 2014). In contrast, the slot model

holds that the memory state can be fully characterized by the

allocation of the available slots to different items (Zhang &

Luck, 2008). This implies that items that are out of memory,

i.e., did not get a slot, cannot influence recall of items in

memory. Therefore, if analysis is restricted to those items that

received a slot (according to the model) performance param-

eters such as latency must reach a plateau at the point when

every item has either one or zero slots, i.e., when the number

of items equals the number of slots. This is because further

increases in set sizewill only change the number of itemswith

zero slots, leaving the status in memory of items with a slot

unchanged.

Here we directly examined the precision and latency of

working memory for location, using a pointing task in two-

dimensions. Consistent with previous results, we found that

swap errors were prevalent and guessing rare. Inconsistent

with the slots þ averaging model, variability for items in

memory increased monotonically from 1 to 8 items, with no

sign of a plateau. We introduce a novel analytical method to

explicitly identify trials on which participant's responses were

drawn from the error component centered on the target.

Examining response latency for these trials alonewe observed

a monotonic increase in latency from 1 to 8 items, again

inconsistent with the slots þ averaging model.
2. Experimental procedures

2.1. Experiment

Eight participants (five males, three females; aged

21e26 years) participated in the study after giving informed

consent, in accordance with the Declaration of Helsinki. All

http://dx.doi.org/10.1016/j.cortex.2016.07.021
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Fig. 1 e Spatial workingmemory task. (a) Participants' hand and gaze positions were recorded while they viewed a stimulus

display reflected into the plane of the hand. (beg) On each trial, a sample array was presented consisting of one to eight

discs with randomly-chosen colors and locations, followed by a mask. After a delay, a single color was presented and the

participant moved their fingertip to the corresponding remembered position.
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participants were right-handed, reported normal color vision

and had normal or corrected-to-normal visual acuity. Partic-

ipants sat with their head supported by a forehead and chin

rest and their right index finger touching an inclined surface

(see Fig. 1a). Index fingertip position was monitored online at

133 Hz using an electromagnetic motion sensor (Ascension

Technology Corporation). Stimuli were presented on a 21-inch

CRTmonitor with a refresh rate of 130 Hz. Participants viewed

the reflection of the monitor in a semi-silvered mirror, angled

such that the stimuli appeared to lie in the plane of the in-

clined surface. Eye position was monitored online at 1000 Hz

using an infrared eye tracker (SR Research).

Each trial began with the presentation of a central black

cross (diameter .75� of visual angle) against a gray background.

Subjects were required to fixate the cross and position their

fingertip at the cross's location. Once stable gaze and fingertip

positions were recorded within 2� of the cross, a sample array

consisting of between one and eight colored discs (.5� radius)
was presented for 2 sec (see Fig. 1c for an illustration). Each

disc's location was selected uniformly at random from the

annular space 5� to 10� from the cross. Every disc was sepa-

rated from its neighbors by a minimum of 1.5�. Colors were

chosen at random from a set of eight highly-discriminable

colors.

The sample array was followed by a brief pattern mask

(100 msec, see Fig. 1d) and then the display was blanked for

900 msec. A probe display was then shown consisting of a

single central disc (.5� radius), matched in color to one of the

discs (the target) chosen at random from the sample array.

Participants were instructed to make a single movement of

their hand to bring the fingertip to the location they remem-

bered corresponding to the probe color, keeping contact with

the surface throughout the movement. Subjects were
instructed to be as precise as possible; speed was not

emphasized. Once the participant had completed the move-

ment, a cross was displayed at the position of the fingertip for

1 sec. Each subject completed 320 trials in total, comprising 80

trials with each of the set sizes {1, 2, 4, 8}.

2.2. Analysis

Response latency for each trial was calculated as the time

from probe presentation until fingertip velocity first exceeded

5�/sec. Trials with latency less than 200 msec were excluded

from further analysis (3.7% of trials). The response position

was calculated as the fingertip location at the end of the

movement when velocity fell below 3�/sec for >250 msec. The

response error was defined as the Euclidean distance between

the response position and the target location.

To test for an influence of non-target items on responses,

we computed an expected distribution of response deviations

from non-targets under the assumption that non-target items

did not affect responses. For each trial, we generated 1000 new

random spatial configurations of non-targets, following the

same constraints for stimulus locations as in the experiment,

and with locations selected to match the distribution of target

to non-target distances within each set size. We then calcu-

lated deviations of responses from these simulated non-

targets and compared their distribution to the actual distri-

bution of deviations obtained in the experiment.

We fit a probabilistic model to the data that attributed the

distribution of responses to a mixture of three components

(illustrated in Fig. 2) corresponding to: reporting the target

location, mistakenly reporting one of the other (non-target)

locations in the memory array, and responding at random.

The model is described by the following equation:

http://dx.doi.org/10.1016/j.cortex.2016.07.021
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Fig. 2 e Components of the mixture model for generating response positions. The tiles show color-coded probability

distributions for the response location over two-dimensional space. The mixture model consists of a normal distribution

centered on the target location, normal distributions centered on each non-target item location to account for swap errors,

and a uniform distribution to account for random guessing. The weighted sum of these components is multiplied with a

distribution that reflects the expectation of possible target positions given that item locations in the task were restricted to a

fixed annulus around the fixation point. The resulting probability distribution for the response position in an example trial

is shown in the rightmost tile.
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pðbxÞ ¼ afðbx;xÞ þ b
1
M

XM
i

f
�bx; yi

�þ ghðbxÞ (1)

where bx is the response location, x is the target location, and

fy1…yMg are the M non-target locations. The probability of

correctly reporting the target item is given by a; the probability

of incorrectly reporting a non-target item by b; and the prob-

ability of responding at random by g ¼ 1 � a � b. The distri-

bution of responses around target and non-target items was

modeled as a bivariate normal with standard deviation s,

multiplied by a distribution hðbxÞ intended to reflect partici-

pants' beliefs as to where items were constrained to appear in

the display:

fðbx;xÞ ¼ 1
Z
f2

�bx � x
s

�
hðbxÞ (2)

where f2 is the unit spherical bivariate normal density func-

tion, i.e., f2ðxÞ ¼ 1
2pe

�kx2k=2, and Z is a normalization term

chosen such that ∬
ℝ2

fðbx; xÞdbx ¼ 1. For distribution hðbxÞ, a
Fig. 3 e Response position eccentricity and approximating

function. The distribution of response eccentricities (radial

distance from the fixation point) over all subjects is shown

in black; the function hðbxÞ used to approximate this

distribution is shown in red. The function hðbxÞ was used to

capture participant's prior beliefs about likely stimulus

locations in the mixture model.
function was chosen that approximated the observed distri-

bution of response eccentricities, pooled across all subjects

and trials (see Fig. 3):

hðbxÞ ¼
8><
>:

1

2pwjjbxjj
�
cos

�
2p
w

ðjjbxjj � mÞ
�
þ 1

�
if jkbxk � mj � w=2

0 if jjjbxjj � mj>w=2

(3)

A very few responses (.5% of trials) had zero probability

under the distribution hðbxÞ; these trials were excluded from

analysis.

Maximum likelihood (ML) estimates of the parameters a, b,

g, s were obtained separately for each subject and set size

using a nonlinear optimization algorithm (fminsearch in

MATLAB). As well as the full model described by Eq. (1), we

also fit reduced models in which one or both of b and g were

set to zero. Models were compared using the Akaike Infor-

mation Criterion, with a correction for finite sample size

(AICc). Predictions of error distributions under the best-fitting

model were generated using Monte Carlo simulation (>106

samples).

We calculated the probability P(T) that a response on a

given trial was drawn from the target-centered mixture

component, based on ML parameters bq obtained from the

best-fitting model, using Bayes theorem:

P
�
T
��bx; bq� ¼

p
�bx��T; bq�P�T��bq�

p
�bx��bq� ¼ bafðbx;xÞ

bafðbx; xÞ þ bb 1
M

PM
i

f
�bx; yi

�þ bghðbxÞ
(4)

We fit response times, t, with the following equation:

pðtjNÞ ¼ f�1ðt� t0;mN; lNÞ (5)

where f�1 is the inverse Gaussian probability density function

and N is the set size. This is equivalent to a drift diffusion

model (Ratcliff & Rouder, 1998) with unit threshold, non-

decision time t0, drift 1/mN and variance 1/lN. Data from each

subject were fit separately with parameters {t0, m1, m2, m4, m8, l1,

l2, l4, l8}.

We also examined a non-normal model of response gen-

eration in which the distribution of responses around target

and non-target items was modeled as the product of stable

distributions with zero mean (d ¼ 0) and skewness (b ¼ 0),

leaving scale (g) and shape (a) as free parameters.

http://dx.doi.org/10.1016/j.cortex.2016.07.021
http://dx.doi.org/10.1016/j.cortex.2016.07.021
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2.3. Replication study

We performed a replication study to test whether the results

generalized to other probe feature dimensions, specifically

shape. Eight participants (one male, seven females; aged

18e28 years) participated in the experiment after giving

informed consent. All participants were right-handed and had

normal or corrected-to-normal visual acuity. Experimental

setup and procedure were identical to the original experi-

ment, except for the stimuli used in the sample array and as

probe: Stimuli were chosen from eight different white shapes

(Supplementary Fig. 1), scaled to have an equal surface area of

.75� of visual angle squared (diameters 1.0�e1.5�). The pattern

mask was adjusted to match the stimulus features. Each

subject completed 320 trials in total, comprising 80 trials with

each of the set sizes {1, 2, 4, 8}.
3. Results

We investigated the effect of memory load on visual working

memory precision and response latencies in a manual

response task. Participants viewed an array of differently-

colored discs; after a blank retention interval, they were

cued with the color of one of the discs (the target), and

required tomake a pointingmovement with their index finger

to its memorized location.

Fig. 4a shows the distribution of response positions relative

to the target location for different set sizes (numberN of items

in the memory display). The distribution is narrowly concen-

trated on the actual target location for set size N ¼ 1, but be-

comes more dispersed with increasing set size. A repeated

measures one-way analysis of variance (ANOVA) showed a
Fig. 4 e Distribution of response positions relative to target and

density of response positions relative to target locations over tw

positions relative to the locations of non-target items.
significant effect of set size on mean response error [F(3,

28) ¼ 47.78, p < .001]. The increase of response error with set

size was well captured by a linear model (R2 ¼ .954). Subse-

quent t-tests showed a significant increase in mean response

error with every increase in set size [from N ¼ 1 to N ¼ 2:

t(7) ¼ 2.47, p ¼ .043; from N ¼ 2 to N ¼ 4: t(7) ¼ 4.34, p ¼ .003;

from N ¼ 4 to N ¼ 8: t(7) ¼ 17.61, p < .001]. The distribution of

response errors (Euclidean distance from target) for each set

size is shown in Fig. 5. The distributions become wider as set

size increases, with a higher proportion of large response er-

rors at larger set sizes.
3.1. Evidence for swap errors

Previous work suggests that swap errors make a significant

contribution to responses in working memory reproduction

tasks (Bays et al., 2009). In the context of the present study, a

swap error occurs when a subject reports the location of a

memory item other than the target. To test whether swap

errors occurred, we analyzed the distribution of response

positions relative to the locations of non-target items in the

memory display. This distribution is shown for different set

sizes in Fig. 4b. For a set size of N ¼ 8, we see a distinct con-

centration of response positions around the locations of non-

target items.

To confirm that this responsepattern is indeed evidence for

swap errors, we analyzed the distribution of response de-

viations from non-targets (Euclidean distance between the

response position and the locations of each non-target item),

shown in Fig. 5b. We compared this distribution to a baseline

distribution of deviations that would be expected if non-target

locations had no influence on the response, shown as dashed
non-target items for different set sizes. (a) Frequency

o-dimensional space. (b) Frequency density of response

http://dx.doi.org/10.1016/j.cortex.2016.07.021
http://dx.doi.org/10.1016/j.cortex.2016.07.021


Fig. 5 e Distribution of response errors and deviations from the locations of non-target items for different set sizes. (a)

Frequency density of response errors (Euclidean distance from target location). (b) Frequency densities of deviations from

non-target locations. Dots showmean frequency density for different error magnitudes, error bars show standard error over

subjects. Dashed lines show the expected frequency densities under the assumption that non-target locations do not

influence the response position; asterisks indicate significant deviations of empirical frequency from expected values

(*p < .05; **p < .01). Simulation results for the best-fitting mixture model are plotted as solid lines.
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lines. For set size N ¼ 8, the observed distribution of response

deviations from non-targets differs significantly from this

baseline distribution, with a higher proportion of trials

showing deviations less than 2�. This confirms that responses

are indeed concentrated around the locations of non-targets in

a fashion that cannot be explained by random guessing, and

provides strong evidence for the occurrence of swap errors.

3.2. Mixture model

In order to estimate the contributions of swap errors and

randomguesses to the observed pattern of response positions,

we fit the response position data with a mixture model (Bays

et al., 2009). The model contains three components, shown

in Fig. 2: a normal distribution around the target location;

normal distributions around all non-target locations to reflect

swap errors; and a uniform distribution to reflect random

guessing. The result of this mixture model is additionally

scaled with a distribution that reflects participants' expecta-
tions about possible target locations. This scaling is employed

since the actual target location is restricted to an annulus
within the two-dimensional response space: we judged that

participants were unlikely to respond substantially outside

this annulus even if they were making a random guess. The

distribution of observed response eccentricities shown in

Fig. 3 indeed suggests that participants incorporated an

expectation of possible target locations into their response

generation, and the profile of the expectation distribution in

the model is fit to this observed distribution (see Methods for

full details).

In addition to the three componentmixturemodel, we also

generated reducedmodels in which the swap component, the

uniform component, or both of them were omitted. We

compared the different mixture models using their AICc

scores, shown in Fig. 6a.

The normal distribution around the target location alone

provides a relatively poor fit of the data: including swap errors

and/or random guessing in the mixture model leads to lower

AICc scores, indicating a better fit of the data even when

adjusted for the higher number of free parameters. The lowest

AICc score was achieved by amodel that allows for swaps, but

not random guessing, and the score of this model over all

http://dx.doi.org/10.1016/j.cortex.2016.07.021
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Fig. 6 e Model comparison and parameters of mixture model fit. (a) AICc scores of different mixture model variants relative

to the score of the best-fitting model. (b) Estimated proportions of swap errors in best-fitting mixture model for different set

sizes. (c) Estimated standard deviations of normal distribution in best-fitting mixture model.
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subjects and set sizes was significantly lower than the scores

of other model variants [normal distribution with swap errors

compared to normal distribution only: t(7) ¼ 4.94, p ¼ .002;

compared to normal distribution with random guessing:

t(7) ¼ 6.65, p < .001; compared to normal distribution with

swap errors and random guessing: t(7) ¼ 3.26, p ¼ .014; t-tests

performed after finding no significant deviations from

normality in AICc scores for each model using Lilliefors test].

Moreover, even in the model variant with both swap errors

and random guesses, the estimated proportion of guesses was

very low (<.061 for all subjects and set sizes), and not signifi-

cantly different from zero for any set size [N ¼ 2: t(7) ¼ 1.55,

p ¼ .16; N ¼ 4: t(7) ¼ 1.00, p ¼ .35; N ¼ 8: t(7) ¼ 2.10, p ¼ .074].

These results indicate that human performance in this

task can be best explained as a combination of reporting the

target location and erroneously reporting the location of a

non-target. We used the corresponding mixture model to

simulate the distribution of response errors and response

deviations from non-targets in the experiment. The model

provides a good quantitative fit of the empirical results for all

set sizes (solid lines in Fig. 5a and b).

The selected mixture model has two free parameters: the

proportion of swap errors, and the standard deviation of the

normal distributions. Fig. 6b and c shows how these param-

eters change with set size. We found a significant increase in

the estimated proportion of swap errors from set sizesN¼ 2 to

N ¼ 8 in a repeated measures ANOVA [F(2, 21) ¼ 176.69,

p < .001; set size N ¼ 1 is excluded from this analysis since no

swap errors can occur]. For set size N ¼ 2, the estimated pro-

portion of swap errors was not significantly different from

zero [t(7) ¼ 1.5261, p ¼ .171], but significant proportions of

swap errors occurred at set size N ¼ 4 [t(7) ¼ 3.69, p ¼ .008] and

N ¼ 8 [t(7) ¼ 14.96, p < .001]. However, this increase in swap

errors was not the only factor that accounted for the empiri-

cally observed increase in mean response error. The standard

deviation of the normal distribution likewise increased

monotonically with set size, and the increase is partially

captured by a linear model (R2 ¼ .881). Specifically, we found a
significant increase of this parameter between set sizes N ¼ 4

and N ¼ 8 [t(7) ¼ 4.69, p ¼ .002]. This is of particular interest

since it directly contradicts a prediction of the slotsþ averaging

model proposed by Zhang and Luck (2008): based on this

model, the standard deviation should plateau for set sizes

greater than 2 or 3.

3.3. Response latencies

For the analysis of response latencies, we focus on those trials

in which the response was made towards the target location

and exclude trials in which swap errors occurred. In this way,

we avoid any confounding effects that the different pro-

portions of swap errors may have, given that the distribution

of response latencies may be different on swap trials. We

determined for each individual trial the probability P(T) that

the response was directed towards the target location (rather

than the location of a non-target), using Bayes' theorem in

combination with the parameters of the best-fitting mixture

model. Fig. 7 shows the histogram of obtained probabilities

P(T). The distribution is clearly bimodal with probability

values clustered around 0 and 1, indicating that this approach

allows an unambiguous classification for a large majority of

trials. We classified all trials with P(T) > .5 as responses to-

wards the target, and excluded all other trials from the

response time analysis (8.8% of trials).

Fig. 8 plots distributions of latency for responses directed

towards the target at each set size. Consistent with the

description of working memory retrieval as a stochastic de-

cision process (Pearson et al., 2014), we found that a drift

diffusion model (colored curves) provided a close fit to the

empirically observed distributions of response latency.

Mean response times for target-centered responses at each

set size are shown in Fig. 7b. A repeated measures one-way

ANOVA revealed a significant effect of set size on response

latency [F(3, 28) ¼ 14.70, p < .001]. The increase in latency is

partially explained by a linear model (R2 ¼ .984). Subsequent t-

tests showed a significant increase in response time for each

http://dx.doi.org/10.1016/j.cortex.2016.07.021
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Fig. 7 e Analysis of response latencies. (a) Distribution of probabilities P(T) that the response of a trial was directed towards

the target disc. Trials with P(T) > .5 are classified as responses to target (blue), all other trials as swap errors (red). (b) Mean

response times for different set sizes. Error bars indicate the standard error over subjects. (c) Mean response errors plotted

against response times. Trials are quantilized by response time. Filled circles show mean response latency and mean

response error for each quantile, error bars indicate standard error in both dimensions.

Fig. 8 e Distribution of response latencies for different set sizes. Filled circles show the mean frequency density of different

response latencies, with error bars indicating the standard error across subjects. Fits of a drift diffusion model are shown as

solid lines.
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increase in set size [N ¼ 2 vs N ¼ 1: t(7) ¼ 3.87, p ¼ .006; N ¼ 4

vs N¼ 2: t(7)¼ 4.52, p¼ .003;N¼ 8 vs N¼ 4: t(7)¼ 8.11, p < .001].

This finding provides further evidence against the slot model.

In that model, each available slot should be filled with a single

memory item for both set sizes N ¼ 4 and N ¼ 8. Since we

analyzed only trials in which the response was ultimately

directed towards the target, the target item must have been

among the stored items. The state of the slotmodel at the time

of response generation would thus be identical for the two set

sizes, and the presence or absence of additional items in the

memory display could have no effect on response latencies.
Given that we found an increase in both response error and

response latency with set size, the question arises whether

these observations are independent effects of set size, or

whether there is amore general correlation between precision

and latency that is not driven by set size effects alone. To test

this, we performed an ANCOVA on all trials classified as re-

sponses towards the target, with response error as dependent

variable and response latency as continuous independent

variable, controlling for set size. We did find a significant

correlation between response error and latency that is not

explained by set size effects [F(1, 3) ¼ 21.86, p < .001]. An

http://dx.doi.org/10.1016/j.cortex.2016.07.021
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increase in magnitude of response errors with increasing la-

tencies can be observed for all set sizes, as shown in Fig. 7c.
3.4. Non-normal error distributions

In themixturemodels presented so far, we have assumed that

the response positions around both target and non-target lo-

cations follow a normal distribution in two-dimensional

response space, consistent with earlier mixture models of

working memory (Bays et al., 2009; Zhang & Luck, 2008).

However, recent research has shown that response errors in

visual working memory tasks typically display systematic

deviations from the normal distribution that cannot be

explained by swap errors or random guessing (Bays, 2014; van

den Berg et al., 2012; Fougnie et al., 2012). To test whether such

deviations are present in the current study,we fit the response

position data with a variant of the best-fitting mixture model,

in which the normal distributions were replaced by stable

distributions. The stable distribution has a shape parameter a

as additional free parameter: it is identical to the normal

distribution for a¼ 2 and varies progressively from the normal

for a < 2, becoming more peaked with longer tails.

The estimated shape parameters for different set sizes in

these model fits are shown in Fig. 9a. The shape parameters

were significantly different from a ¼ 2 for set sizes N ¼ 4

[t(7) ¼ 2.65, p ¼ .033] and N ¼ 8 [t(7) ¼ 3.12, p ¼ .017], demon-

strating a significant deviation from the normal distribution.

Fig. 9b shows a direct comparison of the best-fitting normal

and stable distribution for each set size, highlighting a small,

but consistent deviation towards longer tails in the stable

distributions. It is noteworthy that this deviation from the
Fig. 9 e Mixture model fits with stable distributions. (a) Shape p

models. Filled circles show mean values for different set sizes, e

indicates the shape parameter corresponding to normal distribu

normal distributions (dashed lines) in best-fitting mixture mod

values of model fits over all subjects.
normal distribution is not an effect of swap errors, since these

are explicitly accounted for in themixture model, nor random

guesses, since these were not observed in the present task.

While these results provide support for deviations from

normality in the error distributions, the obtained AICc scores

for themodel fit with a stable distribution were slightly higher

than for the best-fitting model with normal distributions,

although the difference failed to reach significance [t(7)¼ 2.26,

p ¼ .059]. This indicates that the model with stable distribu-

tions, while yielding slightly higher likelihood values, does not

provide a better explanation for the empirical data when

taking into account the additional free parameter.
3.5. Replication study

In the replication study, we used shape instead of color as the

probe dimension (Supplementary Fig. 1). Response position

and latency data were analyzed in the same way as in the

original experiment, and all key findings reported there were

reproduced. In particular, we found a significant effect of set

size on mean response error [F(3, 28) ¼ 81.72, p < .001], with a

significant increase in response error with every increase in

set size. We found evidence for swap errors in the distribution

of response positions relative to the positions of non-target

items in the sample array. A specific concentration of re-

sponses around the positions of non-targets was observed for

set size N ¼ 8, and, unlike in the previous experiment, also for

N ¼ 4.

We obtained ML fits for the different versions of the

mixture model based on the normal distribution. As in the

previous experiment, the lowest AICc scores (best fits after
arameters of stable distributions in best-fitting mixture

rror bars indicate standard error over subjects. Dashed line

tion. (b) Comparison of stable distributions (solid lines) and

els. Curves for each set size are based on mean parameter
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adjustment for number of free parameters) were achieved by a

model that included swap errors, but not random guessing

(Supplementary Fig. 2a). The AICc scores for this model across

subjects were significantly lower than the scores of each other

model variant [compared to normal distribution only:

t(7) ¼ 8.92, p < .001; compared to normal distribution with

random guessing: t(7) ¼ 8.56, p < .001; compared to normal

distribution with swap errors and random guessing:

t(7) ¼ 5.01, p ¼ .002].

The estimated proportions of swap errors in the best-fitting

model were overall higher than in the original experiment

(consistent with the finding that swap errors were evident

even at set size N ¼ 4 in this experiment), with estimated

proportions significantly greater than zero at set size N ¼ 4

[t(7) ¼ 3.98, p ¼ .005] and N ¼ 8 [t(7) ¼ 16.98, p < .001;

Supplementary Fig. 2b]. The estimated standard deviation of

the normal distribution increasedmonotonically with set size,

and in particular showed a significant difference between set

sizes N ¼ 4 and N ¼ 8 [Supplementary Fig. 2c; t(7) ¼ 2.59,

p ¼ .036], reproducing this critical finding from the previous

experiment.

We analyzed response latencies for those trials whichwere

determined to be directed at the position of the target (16.3% of

trials excluded; Supplementary Fig. 3a), and found a signifi-

cant effect of set size on mean response latency [F(3,

28) ¼ 10.62, p < .001]. Critically, we again found a significant

increase in response latency with every increase in set size,

with no evidence for a plateau at higher set sizes

[Supplementary Fig. 3b; N ¼ 2 vs N ¼ 1: t(7) ¼ 5.75, p < .001;

N ¼ 4 vs N ¼ 2: t(7) ¼ 3.41, p ¼ .011; N ¼ 8 vs N ¼ 4: t(7) ¼ 3.39,

p ¼ .012]. The finding of a significant correlation between

response error and latencies when controlling for set size was

likewise reproduced in this experiment [Supplementary

Fig. 3c; F(1, 3) ¼ 13.86, p ¼ .002].

When fitting the data with a mixture model using stable

distributions, we did find a trend towards lower values of the

parameter a at higher set sizes. Unlike in the original experi-

ment, the deviation from a ¼ 2 (normal distribution) was not

significant at any set size, although it approached significance

at set sizes N ¼ 4 [t(7) ¼ 2.23, p ¼ .061] and N ¼ 8 [t(7) ¼ 2.03,

p ¼ .082]. Consistent with these low deviations from

normality, the mixture model with normal distributions

reached overall significantly lower AICc scores than themodel

with stable distributions [t(7) ¼ 2.67, p ¼ .032].
4. Discussion

Examining recall of object locations from visuospatial working

memory, we observed that recall variability increased steadily

with increasing number of to-be-remembered items. Two

explanations have previously been put forward for this

pattern. The resource hypothesis (Bays et al., 2009; Bays &

Husain, 2008; van den Berg et al., 2012; Fougnie et al., 2012;

Ma et al., 2014) proposes that all items are stored, but vari-

ability in their internal representations increases as the

number of items inmemory increases, because each item gets

a smaller share of a fixed quantity of representational me-

dium. The slots þ averaging hypothesis (Zhang & Luck, 2008,

2011) proposes that working memory holds only 2 or 3
internal representations (“slots”), each storing the features of

a single object with fixed variability; that these representa-

tions can be of the same item, in which case they are averaged

together at recall; and that probing an item without a slot

results in a random guess.

Although both models predict a monotonic increase in

error with set size, the composition of these errors is different.

The resourcemodel predicts two kinds of errors in the present

task: noisy responses distributed around the location of the

target (due to variability in memory for location) and noisy

responses distributed around the locations of other, non-

target items (swap errors, due to variability in memory for

color; see below). Both target-centered variability and swap

error frequency should increase monotonically with set size,

according to this model. The slots þ averaging model, on the

other hand, predicts a mixture of noisy responses centered on

the target and random guesses. Target-centered variability

should increase (due to averaging) until the number of items is

equal to the number of slots, then plateau; random responses

should be present only when the number of items exceeds the

number of slots, then should increase with set size.

To distinguish between these hypotheses, we fit models to

the data comprising mixtures of target-centered errors, swap

errors, and random guesses. We found no evidence for

random guessing in this task: the best-fitting model incorpo-

rated only target-centered responses and swap errors. The

variability of target-centered responses increased mono-

tonically with set size up to 8 items, with no evidence for a

plateau at 2 or 3 items. The prevalence of swap errors also

increased monotonically with set size. These results favor the

resource hypothesis.

Swap errors are an inevitable consequence of variability in

recall for the feature dimension of the probe stimulus, in the

present study either color or shape. When for instance a color

probe is presented, the subject has to select that item from

working memory whose remembered color is closest to this

probe; but since all items' colors are remembered with a

random error, there is a certain probability that a non-target

item will be selected as the closest one instead of the target,

and this non-target's location will consequently be reported.

This account of swap errors (Bays et al., 2009) predicts that

non-targets most similar to the target in the probe dimension

aremost likely to be the object of a swap error; this has indeed

been demonstrated (Bays, 2016; see also Emrich & Ferber,

2012; Rerko, Oberauer, & Lin, 2014). A previous study (Rajsic

& Wilson, 2014) examined recall of object tangential position

on a circle, and observed minimal guessing errors, consistent

with the present results. In that study it was found that rep-

resenting non-targets along with the probe stimulus sub-

stantially decreased the frequency of swap errors and

increased the frequency of target-centered responses; this

result is consistent with the hypothesis that swap errors are

due to incorrectly selecting a non-target item from working

memory for response generation: once non-targets are ruled

out as possibilities by their presence in the probe display, this

kind of error is effectively abolished.

Several previous studies that reported results in favor of

the slot model did not take swap errors into account. Zhang

and Luck (2011) observed that reducing the required preci-

sion with which four colored squares had be memorized did
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not increase the estimated numberK ofmemorized items, and

concluded that memory resources could not be flexibly

distributed to create lower-quality representations of a larger

number of items (see also He, Zhang , Li, & Guo, 2015). How-

ever, their estimate of K was based on a mixture model that

did not allow for swap errors, and may therefore underesti-

mate the number items actually held in workingmemory. It is

then in particular possible that subjects actually formed

memory representations for all items even in the high-

precision condition, so that no further increase in the esti-

mate of K could be expected by lowering the precision re-

quirements. The authors further proposed that the apparent

lack of a fixed item limit in other studies may be explained by

chunking strategies, in which some information about mul-

tiple objects can be memorized by representing e.g., the

average of their locations in a single slot. It is not clear,

however, how such chunking could account for performance

in the current task, in which subject not only have to memo-

rize the locations of multiple objects, but also their distinct

colors or shapes in order to select the target. Moreover, the

chunking approach does not appear to account for the effect

of set size on response latency, which we introduced here as

an additional measure to distinguish between slot and

resource models.

Pearson et al. (2014) showed that, in a working memory

task with a two-alternative forced choice design (Bays &

Husain, 2008), response latency increased with set size. The

distribution of latencies was consistent with an evidence-

accumulation process (Carpenter & Williams, 1995; Ratcliff,

1978; Usher & McClelland, 2001), suggesting that the rate of

accumulation depends on the amount of resource allocated to

the target item. However, this study could not distinguish

between target-centered responses, swap errors and guessing,

all of whichmay have different latency profiles. Here, we used

a Bayesian method to identify only those trials on which the

response was drawn from the target-centered distribution,

thereby excluding swap errors (and guesses had there been

any) from the analysis. The results demonstrate a monotonic

increase in retrieval latency with set size, in this case in a

reproduction task, as opposed to a forced-choice task. The

latency distributions were well-described by a drift diffusion

model of evidence accumulation (Gold & Shadlen, 2007;

Ratcliff, 1978; Smith & Ratcliff, 2004).

We further showed that reaction time was correlated with

error, with longer latencies associated with greater magni-

tudes of error within each set size. This mirrors results in

perceptual decision tasks, in which error trials typically have

longer latencies (Drugowitsch, Moreno-Bote, Churchland,

Shadlen & Pouget, 2012; Laming, 1968), and may in future

prove an important criterion for discriminating between

differentmodels of workingmemory retrieval.We note that in

the current tasks, subjects were only instructed to respond as

precisely as possible, with no instructions or limitations for

response time. Limiting the response time may significantly

alter response behavior. Further studies will be necessary to

determine how this affects response precision and proportion

of swap errors.

Unlike the resource model, the slots þ averaging model

predicts plateaus for target-centered responses in perfor-

mance metrics such as response latency. This is because,
according to the model, once the number of items is equal to

the number of slots, each item inmemory has exactly one slot.

Further increases in set size affect the proportion of items in

memory, but not the number of slots per-item. Therefore,

considering specifically target-centered responses, even if

response latency depends on the number of slots allocated to

the target item, it will not vary with set size once the 2e3 slot

limit is exceeded. We found no evidence for such a plateau in

our data, again consistent with the resource hypothesis.

While our findings are evidence against a capacity limit of a

small number of items, they cannot rule out a slotsþ averaging

model with arbitrarily high numbers of slots: indeed such a

model would be theoretically indistinguishable from a

resource model. One possibility, therefore, is that a larger

number of slots is available for locations than for features like

color, so that, in spatial recall tasks, a plateau in response time

and response precision would only be reached at higher set

sizes than tested here. However, such a separation of slots for

different feature dimensions would constitute a major devi-

ation from existing slot models, which assume that each slot

holds a bound object representation. It would require the

specification of a binding mechanism between slots for

different features, and the associated mixture model would

need to be extended to account for cases in which only a

partial memory of an object is retained. Given that the flexible

resource model has already been successful in explaining

behavioral results in a wide range of working memory tasks,

we believe that it currently provides the best explanation for

our findings.

A recent neural model of working memory recall (Bays,

2014) proposed that the limited resource is spiking activity of

neurons encoding stimuli in memory. In this model, feature

values of memorized items are assumed to be encoded in the

activity of a population of neurons with different tuning

curves. Neural activity varies from trial-to-trial with a Poisson

distribution, which leads to random errors when the encoded

feature value is decoded from the population by ML estima-

tion. Moreover, total spiking activity in the population is

limited by a normalization mechanism (Carandini & Heeger,

2012), meaning that fewer spikes are available to encode

each item as set size increases. This allows the model to ac-

count quantitatively for the decline in precision with set size:

If an item is encoded by fewer spikes, decoding variability and

recall error are increased. The error distributions produced by

this model show characteristic deviations from the normal

distribution with these deviations being particularly evident

at larger set sizes. Consistent with this model, we found evi-

dence for non-normally-distributed errors in our location

reproduction task.

This neural model has the potential to provide an inte-

grated account for the response latency and precision results

in the present task. If fewer spikes are generated to encode the

feature of a specific item, this will not only decrease the pre-

cision for decoding this feature value, but also lead to a slower

accumulation of evidence in response generation. This ex-

plainswhymean latencies for responses to the target increase

with set size (fewer spikes for encoding each item due to

normalization), and accounts for the positive correlation be-

tween latency and error across individual trials (due to trial-

to-trial variability in the number of spikes dedicated to each
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item). Further modeling work will be necessary to confirm

compatibility with this theory, and to link the theory to neural

data on the representation of working memory content in the

cortex (e.g., Emrich et al., 2013).

Previous work (Jiang, Olson, & Chun, 2000; see also

Treisman & Zhang, 2006) has argued that the locations of vi-

sual stimuli are stored in relative, rather then absolute, co-

ordinates. This conclusion was based on the observation of

poorer performance on change detection tasks when non-

target locations were varied between presentation and test.

In the present study, using a reproduction method, none of

the memory items were presented in the probe display, pre-

cluding the use of information about the location of items

relative to each other. However, the central fixation may have

acted as a stable cue relative to which item locations could be

stored.

In this studywe used relatively long (2 sec) exposures to the

memory array. Previous studies have demonstrated that

shorter exposures can disrupt recall performance due to

incomplete encoding of the memory array, resulting in in-

creases in both swap errors and guessing (Bays et al., 2009,

2011; Emrich & Ferber, 2012). However, this is unlikely to be

the critical difference that explains the discrepancy between

our results and those of Zhang and Luck (2008): the previous

study tested both short (100 msec) and long (1 sec) pre-

sentations and observed a similar plateau in representational

precision in both cases.

So why did Zhang & Luck observe a plateau of precision in

their color recall task? A key consideration is that the estimate

of precision in the mixture model is based on the width of the

normal component of the mixture distribution. If the true

distribution deviates from the normal distribution, the preci-

sion measure obtained from the model may not be a valid

estimator of the true precision: in particular, if the distribution

is long-tailed then it will systematically underestimate vari-

ability. There is now substantial evidence that the true dis-

tribution of errors deviates substantially from the normal

distribution for simple visual features such as color and

orientation, becoming long-tailed at larger set sizes. This non-

normality has been explained as a consequence of variability

in precision (double-stochasticity; van den Berg et al., 2012;

Fougnie et al., 2012), and more mechanistically as a result of

the way in which information is represented in neuronal

spiking activity (Bays, 2014). Model fits taking into account

these sources of non-normality are consistent with a mono-

tonic increase of variability with set size, without a plateau.

The present study found some evidence for non-normality

of error distributions at higher set sizes, but overall deviations

from normality were comparatively small, resulting in no

significant advantage of a mixture model with stable distri-

butions over the normal model. If the normal distribution

provides a close approximation for the error distribution in

the case of spatial recall, thismay explainwhywewere able to

observe a monotonic increase in variability with set size even

when using a mixture model with normal distributions (in

contrast to the findings in color recall tasks described above).

The finding that error distributions are close to normal in this

task presents a challenge to variable precision models

(Fougnie et al., 2012; van den Berg et al., 2012), which assume

that double-stochasticity, and hence non-normality, is a
fundamental element of working memory representation. In

contrast, it is compatible with the spiking model of Bays

(2014), in which the non-normality of the error distribution

is a function of both the gain (mean activity) of the neural

population encoding the stimuli and the width of neurons'
tuning curves. It is possible in this model that internal repre-

sentation of object locations occurs in a spiking regime, for

example one of high gain, in which deviations from normality

are small. This is consistent with the observation that non-

normality becomes increasingly evident as set size is

increased (and hence per-item activity decreased), and it

predicts that non-normality will become even more pro-

nounced at set sizes higher than the maximum tested in the

present study.

In summary, examining visuospatial recall, we found no

evidence for plateaus in working memory precision or

retrieval latency that would correspond to reaching a fixed

limit on the number of items stored. These results argue

against quantization of the representational medium into a

small number of “slots”, and instead favor a continuous

resource model of working memory.
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