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Abstract 

The adsorption kinetics of pyridine adsorption on Macronet adsorbents MN 200 and MN 500 from aqueous 

solution was investigated at various initial pyridine concentrations and temperatures. The Weber-Morris 

plots revealed the influence of both external film diffusion and intraparticle diffusion resistances. The two 

linear regions in Weber-Morris plots were attributed to macropore and micropore diffusion, which was 

associated to the bimodal pore size distribution of the adsorbents. New insights into the diffusion 

mechanisms were highlighted, with the proposed internal film diffusion resistance dominating into the 

macropore region, whereas homogeneous particle diffusion resistance describes diffusion in the micropore 

region. The importance of pore and surface diffusion in the micropores was noted in contributing to the 

observed diffusion kinetics. The pore diffusion coefficient was estimated from PFG (pulsedfield gradient) 

parameter and molecular diffusion coefficient of pyridine in bulk liquid. A greater contribution of the 

surface to the overall diffusion kinetics was found for MN 500 as inferred from a proposed calculation 

method, which agrees with its better adsorption performance. The overall findings highlight the effect of 

pore structure onto the diffusion mechanisms inside the pores and help to gain a better understanding into 

the adsorption kinetics of these Macronet adsorbents, which are promising materials for the removal of N-

heterocyclic compounds from waste water. 
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1. Introduction 

Pyridine is a parent of a series of N-heterocyclic aromatic compounds that occur naturally in the 

environment and are also produced for the manufacturing of agricultural chemicals, dyestuffs and paints 

and other chemicals [1]. Pyridine compounds are hazardous in nature because of their toxic and 

carcinogenic potential and hazardous effects on environment and organisms even at low concentrations 

[2]. Because of their high water solubility, high volatility and long-time persistence in the environment, 

they are easily transported through the soil and water and are often detected in wastewater[3]. The 

removal of these compounds is of great importance to minimise damages to health and environment.   

Adsorption of pyridine compounds from aqueous solutions is more frequently used compared to other 

processes such as biodegradation [4,5], pervaporation [6] and chemical oxidation [7,8]. Many studies have 

explored pyridine adsorption performance using porous materials including activated carbons [9–12], 

clayey till and zeolites [13,14], synthetic apatite [1], polymer resins [15,16], and metal organic frameworks 

[17,18]. 

Macronet materials present a hypercrosslinked polymeric structure providing controlled pore sizes and 

high surface areas [19]. These materials possess both macro- and micro-porosity at the same time, retained 

from their swollen-state in synthesis [20,21]. Macronet adsorbents MN 200 and MN 500 have recently 

been shown excellent performance for pyridine adsorption from aqueous solutions in batch experiments, 

where the enhanced adsorption rate and capacity were shown on MN 500, which can be attributed to the 

presence of sulfonic acid groups over the internal surface [22]. 

Adsorption kinetic is one basic requirement for optimal design of adsorption and separation processes. 

Adsorption of organic species on porous adsorbents in batch experiment can be described through a 

number of sequential processes acting in conjunction, including (a) the mass transport of adsorbate in bulk 

solution; (b) adsorbate diffusion through the liquid film towards the adsorbent particle (external film 

diffusion); (c) adsorbate diffusion within the adsorbent particle (intraparticle diffusion); and (d) van der 

Waals interaction (physisorption), or chemical reaction and other intermolecular interactions due to high 
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binding energies such as electrostatic and hydrogen bonding (chemisorption) within the adsorbent matrix. 

To understand the adsorption kinetics, an accurate rate expression is required for each mechanism in the 

process, which makes the overall kinetic model very difficult to evaluate. Typically, a proper agitation can 

reduce the resistance of adsorbate transport in solution and suppress the boundary layer around the 

adsorbent particles; hence, film diffusion on the external adsorbent surface will only affect the adsorption 

kinetics for a short initial period of time [19,23]. Chemical reaction or van der Waals interactions between 

the adsorbate and the adsorbent, in general, are not rate limiting unless chemical modifications prevalently 

occur during adsorption [24,25]. In most cases, intraparticle diffusion rate-controls the overall adsorption 

kinetics [24,26–29].  

Many mathematical models have been developed for intraparticle diffusion of liquid adsorption on porous 

materials, attempting to understand adsorption kinetics in relation to the adsorbent pore structures and 

surface properties in terms of a constant diffusion coefficient assuming homogeneous pore property of the 

adsorbent [30–38]. Study of pore size heterogeneity revealed the variation of adsorbate diffusivity within 

the porous adsorbent [23,39,40]. These processes have been modelled as a fractal-like dependence of 

diffusion coefficient [34,41,42], or to involve correlated variables, by categorising the adsorption kinetics 

into macropore and micropore diffusional regions, respectively [32,39,43]. As a key element for assessing 

the adsorption performance, the importance of surface diffusion in contributing to the total adsorbent 

mass transfer in porous materials has been highlighted in many liquid-surface adsorption systems [44,45]. 

A number of models in determining surface diffusion coefficients are given in the literature, based on 

molecular hopping, hydrodynamic, Fick’s, or combined theories [46], most of which showed joint 

contribution of pore and surface diffusions in the intraparticle diffusion processes [47–50].   

In this work, diffusion mechanisms within the Macronet adsorbents will be thoroughly evaluated in order 

to elucidate the effect of adsorbent structural and surface properties on molecular motion within the pore 

space as well as adsorption performances, which complements the analysis of the Macronet adsorbents in 

the removal of pyridine from aqueous solutions in Part 1 [22]. For these adsorbents exhibiting bimodal 
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pore property in pore size, a new intraparticle diffusion mechanism will be proposed incorporating internal 

film diffusion in large pores and homogeneous particle diffusion for adsorbate motion in smaller pores. In 

addition, an equation for surface diffusion coefficient will be introduced based on the information of 

adsorption kinetics and pore geometry of adsorbents.  

 

2. Materials and methods 

The kinetic data for adsorption of pyridine on MN 200 and MN 500 are from the previously reported 

experimental results of batch reactor studies [22]. A weighed sample of adsorbent (63 mg) was poured into 

50 mL pyridine aqueous solutions with an initial concentration of 150 mg/L and stirred at 600 rpm in a flask 

at controlled temperature. The adsorption kinetics was determined by analysing the remaining pyridine 

concentration in the reactor at certain time intervals at wavelength of ca 255 nm with a Shimazu 160A UV-

vis spectrophotometer. The adsorption uptake over time, 𝑞 (mg/L), is expressed as: 

𝑞 =
𝑉(𝐶0−𝐶)

𝑚𝑠
                                                                             (1) 

where 𝐶0 and 𝐶 are the initial and pyridine concentration and pyridine concentration at time 𝑡 in solution 

(mg/L), 𝑉 is the initial solution volume (L) and 𝑚𝑠 is the adsorbent mass (g). The temperature and initial 

pyridine concentration dependence of pyridine uptake on the adsorbents were investigated by varying the 

temperature from 25-55 0C and initial pyridine concentration from 100-200 mg/L, respectively, with the 

other condition remaining constant. To have reliable results, the experiments were repeated for three 

times and the uncertainty was up to ±10 %. 
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3. Results and discussion 

3.1. Weber-Morris equation  

Diffusion mechanisms of liquid-surface adsorption processes are typically characterised on the basis that 

one diffusion resistance is assumed to be predominant over other diffusion resistances. For the adsorption 

on synthetic polymers, the main diffusion resistance is likely to be film or intraparticle diffusion depending 

on the extend of polymer cross-linking [51]. To assess and differentiate the effect of film and intraparticle 

diffusion resistances on adsorption kinetics, the Weber-Morris equation, which was derived from Fick’s law 

for adsorbent diffusing in spherical adsorbent particles at a short adsorption time, can be used to  establish 

the relationship between the adsorbent uptake (𝑞) and the square root of adsorption time (𝑡1/2) [52] as: 

𝑞 = 𝑘𝑡1/2 + 𝐼                                                                            (2) 

The gradient (𝑘) is defined as a diffusion rate parameter (mgL-1s-1/2). The value of the intercept (𝐼), 

extrapolated from the initial linear portion of the plot back to the y-axis, is linked to the apparent thickness 

of the film boundary layer [53]. If an adsorption process is solely governed by intraparticle diffusion, the 

initial part of Weber-Morris plot is a straight line passing through the origin [54,55]. A negative value of the 

y-axis intercept in the equation indicates the effect of external film diffusion resistance [56]. A survey has 

shown positive intercepts for mostly organic compound adsorption on carbon materials [57], which can be 

attributed to a very fast initial adsorption uptake such that the initial data points cannot be immediately 

recorded in the experiments. 

The Weber-Morris plots for pyridine uptake from aqueous solutions on MN 200 and MN 500 at various 

initial pyridine concentrations and temperatures are shown in Figures 1 and 2, respectively. In most cases, 

there is a time lag (hence a negative y-axis intercept) in the initial stage of the adsorption, which indicates 

that pyridine adsorption on both adsorbents experiences external film diffusion resistance. In addition, two 

different regimes for pyridine adsorption are observed, each of them showing linear behaviour, attributing 

to the intraparticle adsorption of pyridine into the adsorbent pores. This type of behaviour has been 
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frequently observed for adsorption of organic pollutants from water on various porous carbon materials 

[58–60] and functionalised hypercrosslinked polymers [61,62].  

Macronet hypercrosslinked polymer adsorbents exhibit a bimodal pore size distribution with each 

maximum in the macroporous and microporous ranges [63]. This property can be reasonably associated to 

the  two-component behaviour of PFG-NMR diffusion measurements of guest molecules in the adsorbents 

reported in Part 1 [22]. Since the gradient of the Weber-Morris plot carries information on kinetic 

properties, the observation of two linear diffusional regions can be plausibly ascribed to the bimodal pore 

size properties of the adsorbents. Therefore, it is plausible to assign the first linear region of the Weber-

Morris plot to macropore diffusion, whereas the second accounts for micropore diffusion, each with a 

different gradient as a measure of diffusion rate constant (𝑘).  

The rate constants for macropore and micropore diffusion were determined by linear regression (using 

Equation 2) of the two regions, respectively, reported in Table 1. It is clearly shown that the diffusion rate 

constant (𝑘) becomes significantly lower in the micropore region relative to the macropore region for both 

MN 200 and MN 500. A faster adsorption process of pyridine on MN 500 is noticed as the diffusion rate 

constants for pyridine adsorption on MN 500, especially in the macropore region, are larger relative to 

those on MN 200 at the same condition.   

 

Figure 1. Weber-Morris plots on pyridine uptake on MN 200 by (a) varying temperature at initial pyridine 

concentration of 150 mg/L and by (b) varying the initial concentration at 25 0C. Uncertainty on the 

experimental data is up to ±10%. The straight lines indicate linear regression of the two regions using 

Equation 2.  

0

20

40

60

0 20 40 60 80 100

P
y
ri
d

in
e
 u

p
ta

k
e
 q

 (
m

g
/g

) 

t1/2 (s1/2) 

55 °C 45 °C

35 °C 25 °C

0

20

40

60

0 20 40 60 80 100

P
y
ri
d

in
e
 u

p
ta

k
e
 q

 (
m

g
/g

) 
 

t1/2 (s1/2) 

200 mg/L 150 mg/L

100 mg/L

(b) (a) 



8 
 

 

 

Figure 2. Weber-Morris plots on pyridine uptake on MN 500 by (a) varying temperature at initial pyridine 

concentration of 150 mg/L and by (b) varying the initial concentration at 25 0C. Uncertainty on the 

experimental data is up to ±10%. The straight lines indicate linear regression of the two regions using 

Equation 2. 

 

 

Table 1. Values of the diffusion rate parameter (𝑘) for macropore and micropore regions and linear 

regression correlation coefficient (𝑅2) of the Weber-Morris plots for pyridine adsorption on MN 200 and 

MN 500 from aqueous solutions.   

 

Adsorbent 𝑇 (0C) 𝐶0 (mg /L) 
macropore region micropore region 

𝑘 (mgL-1s-1/2) 𝑅2 𝑘 (mgL-1s-1/2) 𝑅2 

MN 200 

25 100 0.733±0.020 0.998 0.229±0.002 0.988 

25 150 0.905±0.035 0.996 0.272±0.006 0.985 

25 200 1.128±0.034 0.995 0.328±0.057 0.977 

35 150 0.812±0.029 0.991 0.239±0.004 0.970 

45 150 0.708±0.031 0.995 0.209±0.007 0.954 

55 150 0.665±0.055 0.982 0.243±0.005 0.985 

MN 500 

25 100 1.541±0.052 0.996 0.235±0.009 0.944 

25 150 1.645±0.226 0.978 0.240±0.020 0.966 

25 200 1.898±0.082 0.986 0.345±0.016 0.930 

35 150 1.922±0.047 0.995 0.290±0.009 0.943 

45 150 2.164±0.074 0.990 0.354±0.011 0.901 

55 150 2.420±0.179 0.983 0.393±0.227 0.861 

𝑇 is temperature; 𝐶0 denotes initial pyridine concentration in aqueous solutions. 
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Apart from the external film and intraparticle diffusion, the adsorbent-surface interaction (chemical or 

physical interaction) mechanism were examined in affecting the adsorption kinetics, though this is 

considered a fast process in most cases and negligible in limiting the adsorption of aromatic compounds 

onto hypercrosslinked polymeric adsorbents [58,61]. Because pyridine adsorption on MN 500 

(functionalised with sulfonic acid groups) is shown to be an activated process, that is, the pyridine uptake 

increases with the increasing temperature [22], whether the surface-adsorbent interaction limits the 

adsorption process can be tested from the activation energy of diffusion, applying the Arrhenius equation 

with 𝑙𝑛(𝑘) vs the reciprocal of temperature (𝑇) as: 

𝑙𝑛𝑘 =
𝐸𝑎

𝑅𝑇
+ 𝑙𝑛𝐴                                                                             (3) 

 where 𝐸𝑎 is the activation energy of diffusion (kJ/mol), 𝑅 is the gas constant and 𝐴 is a pre-exponential 

factor. Plots of this equation were drawn for both the macropore and micropore regions shown in Figure 3. 

The activation energies of adsorption for the macropore and micropore regions, calculated from the 

gradients, are 10.4 and 12.6 kJ/mol respectively, both of which are in the range of 8-20 kJ/mol for diffusion 

controlled processes [53]. Therefore, it can be concluded that the adsorption-surface interaction is not 

rate-controlling in the adsorption process. 

 

Figure 3. Arrhenius plots on the diffusion rate parameter 𝑘 in the Weber-Morris equation for both 

macropore and micropore diffusion regions for pyridine adsorption on MN 500 from aqueous solutions. 
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3.2. Exploring intraparticle diffusion 

Weber-Morris plots revealed negative intercepts for pyridine adsorption on MN 200 and MN 500 from 

aqueous solutions. This has often been encountered on the Macronet hypercrosslinked polymeric 

adsorbents, indicating film diffusion affected adsorption kinetics despite that the external film diffusion 

resistance was claimed to be removed or minimised by sufficient external agitation [58,64]. Because of the 

pore structure of the these adsorbents with the macropores being much larger relative to the size of the 

adsorbate molecules, the adsorbate is speculated to experience film diffusion resistance not only on the 

external adsorbent surface but also inside the large macropores, i.e., a film exists between the bulk of the 

pore and the internal pore surface. Unlike external particle film diffusion, internal film in macropores 

cannot be sufficiently removed by external agitation. Application of film diffusion model (see Supporting 

Information) to the kinetics of pyridine adsorption on MN 200 and MN 500 shows that the internal film 

diffusion mechanism is able to describe the adsorption kinetics up to approximately 40 min for both MN 

200 and MN 500, which is in line with the portion where the Weber-Morris plot described as the 

macropore diffusion region.  

Conversely, in the micropores where the pore size is comparable to the size of adsorbate molecules, 

diffusion is highly restricted by the presence of pore walls. This diffusion kinetic is described by Fick’s law: 

𝜕𝐶

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝐷𝑒

𝜕𝐶

𝜕𝑟
)                                                                   (4) 

which can be solved to the following equation in terms of the adsorbate uptake (𝑞) on the assumption that 

the pores are identical and homogeneously distributed in the spherical adsorbent particles [65,66]: 

𝑞

𝑞𝑒
= 1 −

6

𝜋2
∑

1

𝑛2 𝑒𝑥𝑝 (−
𝑛2𝜋2𝐷𝑒𝑡

𝑅2 )∞
𝑛=1                                                      (5) 

where 𝑞𝑒 is the pyridine uptake at equilibrium, 𝐷𝑒 is the effective diffusion coefficient of the adsorbate 

molecules confined within the pore space, 𝑟 is the coordinate, 𝑛 is an integer and 𝑅 is the radius of the 
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adsorbent particle. Equation 5 can be simplified to give the homogeneous particle diffusion model [34,67] 

as:  

𝑞 = 𝑞𝑒√1 − exp (−
𝜋2𝐷𝑒

𝑅2 𝑡)                                                                (6) 

The homogeneous particle diffusion model (Equation 6) was subsequently applied to determine the 

effective diffusion coefficient for pyridine adsorption on MN 200 and MN 500 at various conditions, by 

making least square fit between this equation and the experimental adsorption kinetic data (𝑞  vs 𝑡 profiles) 

of the micropore diffusion region indicated by the Weber-Morris plot to meet the minimised average 

relative deviation in percentage (ARD): 

𝐴𝑅𝐷 (%) =
1

𝑚
∑ |

𝑞𝑒𝑥𝑝𝑡−𝑞𝑐𝑎𝑙𝑐

𝑞𝑒𝑥𝑝𝑡
| × 100                                                          (7) 

where 𝑚 is the number of data point, 𝑞𝑒𝑥𝑝𝑡 and 𝑞𝑐𝑎𝑙𝑐 are the experimental and calculated pyridine uptakes 

on the adsorbents. The diameters of the MN 200 and MN 500 studied are in the range of 550-750 μm, so 

the average adsorbent radii (𝑅) were taken to be 325 μm. 

The internal film and homogeneous particle diffusion models, responsible for macropore and micropore 

diffusion regions respectively, are fitted to the pyridine adsorption kinetics on MN 200 and MN 500, and 

compared to the experimental adsorption kinetic profiles, shown in Figures 4 and 5. The homogeneous 

particle diffusion model with the effective diffusion coefficient satisfactorily fits the whole kinetics for MN 

200 at temperatures of 35, 45, 55 0C (this is also where Weber-Morris gave closer-to-zero intercept shown 

in Figure 1a, which means smaller effect of film diffusion on adsorption kinetics), while the model generally 

over-predicts the early part of the other kinetics plots, which is associated to the macropores where the 

internal film diffusion model applies. Conversely, the internal film diffusion model well fits the early part of 

the plot, whereas it significantly over-predicts for longer adsorption times (shown in Supporting 

Infornation). This makes it plausible to propose the diffusion mechanisms inside the Macronet adsorbents 

MN 200 and MN 500 taking into account of:  
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(i) internal film diffusion within the large macropores (where the pore size is much larger than the 

size of diffusing species) with a film existing between the bulk of the pore and the pore surface;  

(ii) homogeneous particle diffusion within the much smaller micropores (where the pore size 

becomes comparable with the size of diffusing species) dominated by collisions with the pore 

walls.  

In order to adsorb onto the macropore surface, the adsorbate will penetrate though a ‘film’ inside the 

pores, which is similar to that on the external adsorbent surface but cannot effectively suppressed by 

external agitation. When the adsorbate diffuses into the micropores, the diffusion pathway is more greatly 

affected by the pore walls and under this condition the adsorption kinetics is subject to a homogeneous 

particle diffusion where collisions with the pore walls dominates.  

It is shown in Table 2 that there is no significant correlation between the initial pyridine concentration and 

the adsorption kinetics for MN 200 and MN 500, in terms of internal film diffusion rate constant (𝑘𝑓) and 

effective diffusion coefficient (𝐷𝑒) for the macro- and micropore region, respectively. Conversely, both the 

two kinetics parameters show an increasing trend with temperature for both MN 200 and MN 500, which is 

expected as higher temperature increases the rate of molecular motion for the bulk-like liquids as well as 

for liquid confined in pores. The internal film diffusion rate coefficient and the effective diffusion 

coefficient for MN 500 are greater, in general, relative to MN 200 at the same condition, implying a faster 

kinetics for MN 500 in both macro and micropores, which is attributed to the pyridine-surface interaction 

further enhanced by the functionalisation with sulfonic acid groups on MN 500, despite specific surface 

area and pore volume of this adsorbent are much smaller than MN 200 [22].  

The study clearly shows that a combination of internal film and homogeneous particle diffusion models is 

appropriate to describe the adsorption kinetics of the Macronet adsorbents exhibiting a bimodal pore size 

distribution. Using δ = 𝐷𝑚/𝑘𝑓 with the molecular diffusion coefficient of pyridine in bulk liquid [19] (𝐷𝑚, 

the determination will be shown in the following section) gives an estimate of the internal film thickness (δ) 

in the scale of hundreds of nanometers, which is in line with the macropore size of the Macronet 
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hypercrosslinked polymers [68]. This confirms that the internal film diffusion resistance would probably be 

rate-controlling in the large pores also of hundred nanometers in the adsorbent particles. 

 It is also noted that the identification of internal film diffusion resistance is based on preliminary 

observation of the negative intercept in Weber-Morris plot, where the transition from internal film 

diffusion to homogeneous particle diffusion as the rate-controlling mechanism is approximated as the joint 

between macropore and micropore diffusion regions. However, in the case of a non-negative intercept , 

although there might also be two or multiple linear regions [59,61], the adsorption kinetics is more likely to 

be controlled by a homogeneous particle diffusion-like mechanism. This is where the pore size is small 

enough to sufficiently confine the diffusing adsorbates and the degree of confinement can be revealed 

from value of the Weber-Morris plot gradient (𝑘) that presents each diffusional region.  
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Figure 4. Adsorption kinetics of pyridine on MN 200 from water at various conditions. The blue diamond 

indicates the experimental data. Dashed line (---) indicates the adsorption kinetics predicted from internal 

film diffusion model and solid line (-) indicates the adsorption kinetics predicted from homogeneous 

particle diffusion model. Uncertainty in the experiment is up to ±10%. 
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Figure 5. Adsorption kinetics of pyridine on MN 500 from water at various conditions. The blue diamond 

indicates the experimental data. Dashed line (---) indicates the adsorption kinetics predicted from internal 

film diffusion model and solid line (-) indicates the adsorption kinetics predicted from homogeneous 

particle diffusion model. Uncertainty in the experiment is up to ±10%. 
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Table 2. The film diffusion rate coefficient (𝑘𝑓) and the effective diffusion coefficient (𝐷𝑒) for adsorption of 

pyridine onto MN 200 and MN 500 with different initial pyridine concentrations and temperatures. 

 

Adsorbent 𝑇 (0C) 𝐶0 (mg /L) 𝑘𝑓 (10-3/s) 𝑅2 𝐷𝑒  (10-12 m2/s) ARD (%) 

MN 200 

25 100 0.65±0.02 0.998 4.00±0.19 0.63 

25 150 0.81±0.07 0.995 3.81±0.12 1.27 

25 200 0.79±0.02 0.997 4.14±0.14 1.36 

35 150 1.12±0.10 0.990 4.67±0.15 1.82 

45 150 1.08±0.05 0.994 5.01±0.05 0.41 

55 150 1.39±0.08 0.992 5.44±0.08 0.51 

MN 500 

25 100 1.18±0.07 0.999 5.58±0.23 1.49 

25 150 1.12±0.30 0.993 6.14±0.23 1.75 

25 200 1.21±0.03 0.994 5.72±0.06 0.82 

35 150 1.31±0.02 0.999 8.58±0.24 0.81 

45 150 1.51±0.03 0.997 10.6±0.19 0.62 

55 150 1.90±0.06 0.996 12.5±0.20 0.53 

 

 

3.3. Pore and surface diffusion 

The adsorbent saturated with liquid in pores can effectively be considered as containing two distinct parts 

with differing molecular dynamics. In the void bulk of the pores, the diffusion behaviour is determined by a 

pore geometry confinement effect (i.e., the presence of the pore walls reduces the average root mean 

square displacement of molecules relative to the case of free bulk liquid diffusion), which results  in a 

decrease of diffusion rate compared to that of the free bulk liquid. This effect is denoted as pore diffusion 

[69]. On the pore surface, the molecular dynamics is altered by liquid-surface interaction (adsorption) as 

well as limited diffusion path, which can be described as surface diffusion [70].  

The pore diffusion coefficient can be measured as the molecular diffusion coefficient of the adsorbate of a 

solution confined in the tested adsorbent particles using the established PFG-NMR technique. However, 

the aqueous pyridine solutions studied in this work are at pyridine concentrations of 100-200 mg/L (mole 

fractions of pyridine of 2.5×10-5-4.5×10-5). These low concentrations make it difficult to measure molecular 
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diffusivities of pyridine in either the bulk solution or that of the solution inside the polymer porous matrix, 

because of the overwhelming signal of water together with NMR peak broadening typical of liquid in 

porous material, which does not allow to detect the pyridine signal. Hence, the pore diffusion coefficients 

were estimated using  the following expression: 

𝐷𝑝 =  𝐷𝑚
𝜀

𝜉
                                                                             (8) 

where 𝐷𝑚 is the molecular diffusivity of pyridine in the bulk liquid solution, 𝜀 is the adsorbent porosity, and 

𝜉 is the PFG parameter which is closely related to  pore tortuosity [69]. The values of porosity for MN 200 

and MN 500 are 59% and 51% taken from the literature [71]. The PFG parameter measures the effect the 

pore structure has in reducing the diffusivity of guest molecules relative to the free bulk liquid. In order to 

reflect the structural features of the porous matrix, such values of PFG parameter can be obtained by 

performing diffusion measurements using weak-interacting molecules, such as hydrocarbons, which have 

previously been reported for the polymers used in this work using PFG-NMR [22]: averagely 3.4±0.1 and 

2.4±0.1 for macropores and 14.7±1.7 and 12.8±1.3 for micropores of MN 200 and MN 500, respectively.   

The molecular diffusivities of pyridine in the aqueous solutions as bulk liquid were extracted from the 

mutual diffusivity profile of pyridine-water on the basis that the molecular diffusivity of pyridine in the 

concentration range (100-200 mg/L) can be assumed constant and equal to the molecular diffusivity of 

pyridine at infinite dilution, which is equivalent in value to the mutual diffusivity at its infinite dilution [72]. 

Thus the molecular diffusivity of pyridine (𝐷𝑚) can be determined by extrapolating the mutual diffusivity 

profile to the case where pyridine is at infinite dilution on the ground that mutual diffusivity profile of the 

binary liquid system is smooth and continuous [73]. Figure 7 shows the extrapolation of mutual diffusion 

coefficients to infinite dilution using polynomials for the pyridine-water system at 2, 13, 25, 40 0C. A linear 

dependence was found from the extrapolated mutual diffusivity of pyridine at infinite dilution; hence the 

molecular diffusivities of pyridine at desired temperature of 25, 35, 45 and 55 0C can be calculated 

according to the best fitted straight line, shown in Figure 8.  
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Figure 7. Mutual diffusivity-composition profiles of pyridine-water system at 2, 13, 25 and 40 0C (data 

accessed from the Dechema database). The solid lines indicate best-fit polynomials extrapolating the 

mutual diffusion coefficient to data points at infinite dilution. 

 

 

  
Figure 8. Molecular diffusivity of pyridine at infinite dilution in aqueous solutions (𝐷𝑚) at various 

temperatures. The blue squares are from the extrapolated diffusion coefficients for pyridine at infinite 

dilution from the mutual diffusion profiles shown in Figure 7. The solid line indicates best-fit straight line 

for interpolation and extrapolation.  Vertical bars indicate error in the determined molecular diffusivities. 

 

The molecular diffusivity (𝐷𝑚) of pyridine in the free bulk aqueous solutions and pore diffusion coefficient 

(𝐷𝑝) of pyridine in macropores and micropores of MN 200 and MN 500, respectively’ from the aqueous 

solutions are shown in Table 3. The marked reduction of pore size reasonably explains the significant 

decrease of diffusion coefficients moving from macropores to micropores. In macropores, the diffusion 

kinetics is dominated by molecule-molecule collisions and the reduction in diffusivity is due to a reduced 

average molecular displacement caused by a geometrical confinement. In the micropores, the size of 

diffusing molecules becomes comparable to that of the pore and molecule-wall collisions become the 
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dominant effect, which significantly slows down the overall diffusion processes. In such a case, the 

diffusion mechanism can be ascribed to a surface diffusion process [74,75].  

 

Table 3. Molecular (𝐷𝑚) and pore (𝐷𝑝) diffusion coefficients of infinitely diluted pyridine in aqueous 

solutions within MN 200 and MN 500 adsorbents.  

 

𝑇 (0C) 𝐷𝑚  (10-10 m2/s) 

𝐷𝑝   (10-10 m2/s) 

Macropore Micropore  

MN200 MN500 MN 200 MN 500 

25 8.80±0.46 1.53±0.10 1.87±0.15 0.35±0.04 0.35±0.04 

35 10.8±0.6 1.87±0.12 2.30±0.18 0.43±0.05 0.43±0.05 

45 13.2±0.7 2.29±0.15 2.82±0.22 0.53±0.07 0.53±0.06 

55 15.3±0.7 2.66±0.17 3.25±0.25 0.61±0.08 0.61±0.07 

 

Surface diffusion can be treated as an independent flow in addition to pore diffusion in the bulk void of the 

adsorbent in contributing to the overall flux of the adsorbate [46,75], which will be more prominent in the 

micropores, where the motion of the adsorbate is more affected by the pore walls. The total flux (𝐽) in the 

micropores using Fick’ theories can be expressed as follows: 

𝐽 = −𝜀𝐷𝑝
𝜕𝐶

𝜕𝑟
− (1 − 𝜀)𝐷𝑠

𝜕𝐶𝑠

𝜕𝑟
                                                                    (9) 

where 𝐷𝑝 and 𝐷𝑠  are the pore and surface diffusion coefficients respectively, 𝐶  and 𝐶𝑠  are the 

concentrations of adsorbate in bulk external liquid and on the adsorbent surface per unit volume, 

respectively. The corresponding mass balance equation within the pore of a spherical adsorbent is: 

𝜀
𝜕𝐶

𝜕𝑡
+ (1 − 𝜀)

𝜕𝐶𝑠

𝜕𝑡
+

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝐽) = 0                                                            (10) 

Given: 

𝜕𝐶𝑠

𝜕𝑟
=

𝜕𝐶𝑠

𝜕𝐶

𝜕𝐶

𝜕𝑟
,           

𝜕𝐶𝑠

𝜕𝑡
=

𝜕𝐶𝑠

𝜕𝐶
 
𝜕𝐶

𝜕𝑡
                                                                (11) 

Equation 10 is substituted by Equations 9 and 11 to be: 
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[𝜀 + (1 − 𝜀)
𝜕𝐶𝑠

𝜕𝐶
]

𝜕𝐶

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 [𝜀𝐷𝑝 + (1 − 𝜀)𝐷𝑠

𝜕𝐶𝑠

𝜕𝐶
]

𝜕𝐶

𝜕𝑟
)                                       (12) 

Recalling that the intraparticle diffusion of the adsorption process can be briefly expressed as Fick’s second 

law in terms of the effective diffusion coefficient (𝐷𝑒) in Equation 4. Substituting Equation 12 into Equation 

4, the effective diffusion coefficient can be written as a combination of pore and surface diffusion 

coefficients as: 

𝐷𝑒 =
𝜀𝐷𝑝+(1−𝜀)

𝜕𝐶𝑠
𝜕𝐶

𝐷𝑠

𝜀+(1−𝜀)
𝜕𝐶𝑠
𝜕𝐶

                                                                       (13) 

In a preferable adsorption process, the amount of adsorbate confined in the bulk pore void is negligible 

compared to that adsorbed onto the solid phase. Therefore, it is reasonable to assume the total adsorbate 

uptake (𝑞) as equal to the uptake on the solid phase, thus can be written as: 

𝑞 =
𝐶𝑠

𝜌𝑠
                                                                                   (14) 

where 𝜌𝑠 is the solid phase density of the adsorbent and will be taken as 1.15 and 1.57 g/cm3, respectively, 

for MN 200 and MN 500 from the literature [64,71]. Furthermore, surface diffusion will more greatly affect 

the micropore diffusion region where is close to the state of adsorption equilibrium; the derivative of 𝑞 

over 𝐶 can be approximated as:  

𝜕𝑞

𝜕𝐶
=

𝜕𝑞𝑒

𝜕𝐶𝑒
                                                                                 (15) 

where 𝑞𝑒  and 𝐶𝑒  denotes pyridine uptake and pyridine concentration in bulk liquid at equilibrium. 

Substituting Equations 14 and 15 into Equation 13, one has: 

𝐷𝑒 =
𝜀𝐷𝑝+(1−𝜀)𝜌𝑠

𝜕𝑞𝑒
𝜕𝐶𝑒

𝐷𝑠

𝜀+(1−𝜀)𝜌𝑠
𝜕𝑞𝑒
𝜕𝐶𝑒

                                                                      (16) 
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where 𝜕𝑞𝑒/𝜕𝐶𝑒  can be determined form the adsorption isotherms, for which Langmuir and Freundlich 

models have been shown to be  the best fit models for pyridine adsorption on MN 200 and MN 500, 

respectively, at 25-55 0C [22]. Thus for MN 200 and MN 500 we have, respectively: 

𝜕𝑞𝑒

𝜕𝐶𝑒
=

𝑞𝑚𝐾𝐿

(1+𝐾𝐿𝐶𝑒)2                                                                          (17) 

𝜕𝑞𝑒

𝜕𝐶𝑒
=

1

α
𝐾𝐹𝐶𝑒

1

α
−1

                                                                         (18) 

where 𝑞𝑚 and 𝐾𝐿 are the maximum uptake and the Langmuir constant, respectively, and α and 𝐾𝐹 are the 

exponent and Freundlich constant respectively.  

A similar relation of effective diffusion coefficient to pore and surface diffusion coefficients to Equation 16 

have been shown by McKay and co-workers [50] and Valderrama and co-workers [58,64], where the 

Langmuir model was applied for the adsorption isotherms. In this work, with the effective diffusion 

coefficient (𝐷𝑒) determined from the homogeneous particle diffusion model and pore diffusion coefficient 

(𝐷𝑝) from the PFG parameters for the micropore diffusion region, surface diffusion coefficients for pyridine 

adsorption on MN 200 and MN 500 from aqueous solutions were calculated using Equation 16 with a best-

fit isotherm model (Equation 17 or 18) for various initial pyridine concentrations and temperatures, shown 

in Table 4. The values of surface diffusion coefficient are close to the results for pyridine adsorption from 

aqueous solutions on granular activated carbon (e.g., 𝐷𝑠 of 6.9×10-12 m2/s with 𝐶0 of 100 mg/L at 35 0C) 

reported by Ocampo-Perez et al. [9], and show the same order of magnitude of effective diffusion 

coefficients (in Table 2) but much lower than the according pore diffusion coefficients (in Table 3), which 

indicates a significant effect of surface diffusion on the micropore adsorption kinetics. A trend shows the 

surface diffusion coefficient increases with temperature from 25 to 55 0C and this is more prominent for 

MN 500, supporting the hypothesis that surface diffusion is an activated mass transfer process, where the 

increase of temperature facilitates molecular hopping between distinct, energetically favourable 

adsorption sites on the surface [47,75,76]. The surface diffusion coefficient was reported to increase with 
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adsorbent loading, hence is expected to increase with initial adsorbent concentration according to Darken 

theory [77], although this trend is not well defined in our case, possibly due to the small concentration 

differences (100 to 200 mg/L).  

Table 4. Surface diffusion coefficients for pyridine adsorption on MN 200 and MN 500 from water 

calculated using Equation 16 with 𝜕𝑞𝑒/𝜕𝐶𝑒 for MN 200 from Langmuir isotherm model and 𝜕𝑞𝑒/𝜕𝐶𝑒 for 

MN 500 from Freundlich isotherm model.  

 

Adsorbent 𝑇 (0C) 𝐶0 (mg/L) 𝐶𝑒 (mg/L) 𝜕𝑞𝑒/𝜕𝐶𝑒 (L/g) 𝐷𝑠  (10-12 m2/s) 

MN 200 25 100 50.2 0.396 3.90±0.19 

25 150 89.7 0.205 3.62±0.13 

25 200 134 0.118 3.81±0.15 

35 150 103 0.213 4.44±0.15 

45 150 109 0.190 4.70±0.06 

55 150 114 0.188 5.06±0.09 

MN 500 25 100 29.1 0.420 5.53±0.23 

25 150 70.3 0.214 6.05±0.23 

25 200 111 0.151 5.60±0.07 

35 150 66.1 0.236 8.49±0.24 

45 150 57.7 0.285 10.5±0.2 

55 150 45.3 0.327 12.4±0.2 

 

Equation 16 can be generalised as: 

𝐷𝑒 = (1 − 𝑥𝑠)𝐷𝑝 + 𝑥𝑠𝐷𝑠                                                                  (19) 

giving:  

𝑥𝑠 =
(1−𝜀)𝜌𝑠

𝜕𝑞𝑒
𝜕𝐶𝑒

𝜀+(1−𝜀)𝜌𝑠
𝜕𝑞𝑒
𝜕𝐶𝑒

                                                                          (20) 

where 𝑥𝑠 denotes the relative weight of surface diffusion coefficients, and ratio 𝑥𝑠𝐷𝑠/𝐷𝑒 can be used as an 

indication of relative contribution of surface diffusion to the adsorption kinetics in the micropores. Values 

of 𝑥𝑠𝐷𝑠/𝐷𝑒 in percentage are shown in Figure 9 for pyridine adsorption on MN 200 and MN 500 from 

aqueous solutions at various temperature and initial pyridine concentration.  The ratio 𝑥𝑠𝐷𝑠/𝐷𝑒 decreases 
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with initial pyridine concentration for both adsorbents, which is expected as increasing the concentration, 

more pyridine molecules are likely to occupy the pore voids, hence contributing to pore diffusion rather 

than surface diffusion. However, the ratio shows a decreasing and an increasing trend as a function of 

temperature, respectively, for MN 200 and MN 500, which is similar to the temperature dependence of 

adsorption isotherms reported in Part 1 [22]. In particular, adsorption on MN 200 is an exothermic process 

and therefore an increase in temperature decreases the pyridine uptake over the surface, hence reducing 

the surface diffusion contribution. Conversely, on MN 500, which is an endothermic process, an increase in 

temperature increases the adsorption capacity of the surface, hence increasing the surface diffusion 

contribution. This suggests a relationship between the adsorption uptake and the contribution of surface 

diffusion. 

Surface diffusion coefficient in general contributes over 90 % to the effective diffusion coefficient in the 

micropore space, revealing the significance of surface diffusion in the intraparticle diffusion mechanism. As 

to compare between MN 200 and MN 500, greater surface diffusion values are observed for MN 500 

relative to MN 200. This might be because the presence of functionalised sulfonic acid groups on the MN 

500 surface lowers the energy barrier of molecular hopping due to an increased surface coverage, hence 

enhancing the diffusion rate onto the surface [78], as well as increasing surface diffusion contribution to 

the adsorption kinetics in the micropores, which agrees with its  higher pyridine uptake from aqueous 

solutions. These results give new insights and a better understanding into the adsorption kinetics of the 

Macronet adsorbents where the pore structures affect the diffusion mechanisms. 
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Figure 9. Relative contribution of surface diffusion to the effective diffusion coefficient in terms of the ratio 

𝑥𝑠𝐷𝑠/𝐷𝑒 in percentage for pyridine adsorption on MN 200 and MN 500 by (a) varying initial pyridine 

concentration at 25 0C and (b) varying temperature at initial pyridine concentration of 150 mg/L. The 

vertical bars indicate error estimates on the calculated ratios. 

 

4. Conclusions 

The adsorption kinetics of pyridine on Macronet adsorbents MN 200 and MN 500 were studied at different 

initial pyridine concentrations and temperatures. The kinetics was investigated using Weber-Morris plots, 

revealing influence of film diffusion and intraparticle diffusion resistances, and showed two distinctive 

diffusion regimes, attributed as macropore and micropore diffusion regions which are linked to the 

bimodal pore size property of the adsorbents. The adsorption mechanisms in the pores were characterised 

as film diffusion on the internal macropore surface (bulk-like behaviour where diffusion is dominated by 

molecule-molecule collisions) and intraparticle diffusion in micropores described by homogeneous particle 

diffusion model with effective diffusion coefficient (diffusion dominated by molecule-wall collisions).    

With the proposed diffusion mechanisms, the relative importance of pore and surface diffusions are noted 

in contributing to the intraparticle diffusion process in the micropores of the adsorbent particles. The pore 

diffusion, only considering the geometrical confinement of the adsorbent geometry, was estimated using 

PFG-NMR results and the molecular diffusivity of the adsorbate in bulk liquid. The surface diffusion 

coefficient was calculated from its relation to pore and effective diffusion coefficients together with the 
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adsorption isotherms data.  Greater surface diffusion contribution is found for MN 500, which agrees with 

its better adsorption performance of pyridine adsorption from aqueous solutions.  
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