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We demonstrate that yttrium iron garnet microspheres support optical whispering gallery modes
similar to those in non-magnetic dielectric materials. The direction of the ferromagnetic moment
tunes both the resonant frequency via the Voigt effect as well as the degree of polarization rotation
via the Faraday effect. An understanding of the magneto-optical coupling in whispering gallery
modes, where the propagation direction rotates with respect to the magnetization, is fundamental
to the emerging field of cavity optomagnonics.

I. INTRODUCTION

The high Q-factors and strong confinement in optical
whispering gallery mode (WGM) resonators [1, 2] have
enabled large coupling strengths to their collective modes
of mechanical vibration. This has made these resonators
central to the field of cavity optomechanics [3], allow-
ing parametric amplification and cooling of mechanical
modes [4] as well as near quantum limited measurement
sensitivity [5].

To compliment optomechanics, it is worth consider-
ing alternative collective modes that could be coupled
to the optical WGM resonators. The collective magne-
tization dynamics in ferromagnetic materials represents
one such possibility. The magnetic field tunability of the
these modes may have advantages over the fixed mechan-
ical resonances, including easier adaptation to higher mi-
crowave frequencies. Recent work towards this has ex-
plored the strong coupling of microwave cavity photons
to the magnetic modes in yttrium iron garnet (YIG) [6–
10]. This interaction has enabled the coupling of single
magnons to qubits [11] and multiple magnets together
[12]. If this new system could be taken into the opti-
cal domain it would open further experiments compara-
ble to those in optomechanics. In particular, the ease
of coupling to both low frequency (<∼ GHz) and opti-
cal (>∼ 100 THz) electromagnetic modes has led to the
prospect of bidirectional quantum-coherent conversion
between microwave and optical photons [13, 14].

In this Article, we demonstrate that the static direc-
tion of the magnetization can modulate the optical WGM
frequencies in a similar way to mechanical position in op-
tomechanics. This is achieved in YIG spheres exploiting
well-known magneto-optical effects [15, 16], which can be
large for the insulating YIG [17], and which are used in
commercial devices such as optical isolators. The opti-
cal resonant frequencies are tuned via the Voigt effect,
while the Faraday effect mixes the polarization of the
linearly polarized modes. This shows that a magnet can
be coupled to an optical cavity, opening up cavity opto-
magnonics to further experimental investigation.

Figure 1. (a) Schematic of experimental setup. The light
from the fiber-coupled laser is collimated, linearly polarized
vertically (perpendicular to the plane), and focused onto the
internal surface of the coupling prism. Two photodiodes on
the output of the prism monitor the reflection of the input
beam with vertical polarization (I) and the emission of any
horizontally linear polarized light (II) from the YIG sphere.
To account for fluctuations in laser intensity, all measure-
ments are normalized to the input power monitored with a
beamsplitter and photodiode (III) on the input path. The
YIG sphere is mounted on a xyz positioning stage to locate
it at the coupling point. (b) The optical axis of the birefrin-
gent rutile prism is out-of-plane, which separates the output
angles of the two linear polarizations for analysis via the two
photodiodes. (c) Definition of the polar (φ0) and azimuthal

(θ0) angles of the magnetization ~M .

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in
Fig. 1. We use highly polished ferrimagnetic (TC ≈
560 K) YIG spheres of various radii, mounted on ce-
ramic rods. An objective lens focuses the output of a
narrow-linewidth (≈ 100 MHz) external-cavity tunable
diode laser onto the internal surface of the coupling prism
[18], with polarization set linearly along the vertical axis.
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The evanescent coupling to the YIG sphere is measured
in the totally internally reflected beam on a photodiode
(PD I). To match the wavevector of the incident light in
the prism to the WGM the coupling angle of incidence
ϑi is set to the critical angle for total internal reflection
at the prism-sphere interface [19, 20]. The rutile cou-
pling prism is birefringent with ne ≈ 2.7 and no ≈ 2.4
(c.f. nyig ≈ 2.2 at 1300 nm). Due to this birefringence
the two linear polarizations parallel and perpendicular
to the plane of the WGM are out-coupled at different
angles. Photodiode (PD II) measures the light emitted
from the cavity with orthogonal polarization to the input
beam, that is, linearly polarized in the incidence plane.
Prism coupling is chosen over tapered [21] or polished
[22] fiber methods as the free space optics allows careful
control of the input and measured light polarization as
well as easier matching of the wavevector at the coupling
point [19].

III. OBSERVATION OF WHISPERING
GALLERY MODES

Figure 2 (a-c) show typical reflection spectra (PD I)
for three YIG spheres of radii, r = 500, 250, 125 µm. A
periodic structure of dips is observed as a function of free-
space wavelength λ. As plotted in Fig. 2 (d), this period
is inversely proportional to the radius of the sphere and is
in quantitative agreement with the expected free spectral
range for the whispering gallery modes given by

∆λ = λ2/(2πrnyig). (1)

The good agreement identifies these resonances as the
whispering gallery modes. The data show two families of
peaks. The lower intensity dips are from the excitation of
higher order WGMs due to an overlap with the coupling
angle and position of the input beam. For the rest of the
measurements we concentrate on the larger intensity dip,
which we attribute to the lowest order WGM family.

To extract the Q-factor of the WGMs the dips are fit-
ted individually with a Lorentzian lineshape, including
an anti-symmetric component, present due to an angle-
dependent phase shift of the reflected beam on the in-
ternal surface of the prism [23]. From these fits we
plot the Q-factors as a function of radius in Fig. 2 (e).
The values are much smaller than those typical in non-
magnetic WGM resonators, where extraordinarily high
Q-factors of ∼109 are achievable [24, 25]. This is to be
expected, as, although YIG is transparent in the infrared,
the absorption length is much shorter than in optical
glasses. Using a reasonable value for the absorption co-
efficient α ≈ 0.1 cm−1 [26] to find the internal Q-factor
Qi = nyig/αλ and the analytical expression for the load-
ing Q-factor Qc [19],

Qc =
π
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Figure 2. Reflected intensity (PD I) as a function of in-
put laser free-space wavelength λ for varying radius r YIG
spheres: (a) 500 µm, (b) 250 µm, and (c) 125 µm. Red lines
are separate fits to each peak, which give the peak separation
(free spectral range) (d) and Q-factors (e). The red line in (d)
is the expected free spectral range for the WGMs, ∆λ, given
by Eq. (1), and the red line in (e) is the expected Q-factor.

we can find the expected Q-factor 1/Q = 1/Qi + 1/Qc.
This is plotted as the red line in Fig. 2 (e) and is in
reasonable agreement with the measured values, further
confirming that the WGMs can be clearly identified. The
dissipation rate (∼ 2 GHz) is of the same order as the
typical ferromagnetic resonance frequencies of YIG and,
as the absorption coefficient in YIG is known to decrease
considerably with temperature [26], higher Q-factors can
be expected in low temperature experiments.

IV. MAGNETO-OPTICAL PROPERTIES

We next outline the effect of the direction of the mag-
netization of the sphere on the WGMs. The Faraday
and Voigt effects [27], corresponding to first and second
order magnetization corrections to the dielectric tensor
[15], make the WGMs substantially different to those ob-
served in non-magnetic dielectric spheres. The Faraday
effect depends linearly on the magnetization component
in the direction of propagation of the light and results
in a difference in the refractive index for the two circular
polarizations, commonly observed as a rotation of the lin-
ear polarization in transmission through a ferromagnetic
material. The Voigt effect is a birefringence quadratic
in the magnetization, which results in a different refrac-
tive index for the two linear polarizations parallel and
perpendicular to the magnetization direction. While in
non-magnetic WGM resonators the modes are horizon-
tally and vertically linear polarized, split by the difference
in boundary conditions at the interface, the off-diagonal
terms in the dielectric tensor due to the Faraday effect
mix these modes. In addition, the direction of propa-
gation of the light relative to the magnetization changes
with position around the WGM.
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To analyze the effect of magneto-optical birefringence,
we construct a simple model based only on the lowest
order WGM. We consider a single channel with a length
given by the circumference of the sphere. This ignores all
radial and azimuthal mode structure, treating the prop-
agation of light in the structure as a plane wave, but
with a wavevector that varies around the mode. The dis-
placement field ~D = (Dh, Dv), in the rotating wave ap-

proximation, satisfies η(~k) ~D − (ω2/c2) ~D/k2 = 0, where
η is the inverse dielectric tensor in the plane perpendic-

ular to the direction of propagation ~k [28], tangential to
the sphere surface. In a medium with both linear and
circular birefringence [29]

η =

(
1
n2
yig

+ b2h + bg bhbv + igk

bhbv − igk
1
n2
yig

+ bv
2 − bg

)
. (3)

The components of the linear bh, bv, and circular gk, bire-
fringence are given by bh = b sin θ sinφ, bv = b cos θ, and
gk = g sin θ cosφ with b and g the magnitudes of the
Voigt and Faraday effects. These components depend

on the projection of the magnetization ~M onto a local

coordinate system (ĥ, v̂, k̂), with orthogonal axes along
the horiztonal, vertical, and in the direction of propa-
gation. The angles θ and φ are those of the magneti-

zation to the v̂ and k̂ axes, respectively, so that on the
path around the mode θ = θ0 is constant, while φ varies
from φ0 to φ0 + 2π, with the angles θ0 and φ0 defined
relative to the lab (x̂, ŷ, ẑ) axes (see Fig. 1 (c)). The
boundary conditions in the WGM geometry result in an
effective birefringence for linear polarization perpendicu-
lar and parallel to the sphere surface. This geometrical
linear birefringence is taken into account via the con-
stant bg which does not depend on the position around
the sphere and is estimated by comparing with the mode
splitting in non-magnetic WGM resonators [20, 30],

bg ≈
c

ω

1

r

√
n2
yig − 1

n4
yig

. (4)

The geometrical linear birefringence dominates the
anisotropic parts of the inverse dielectric tensor, so that
the eigenvalues can be approximated by the diagonal
terms, and the eigenmodes remain predominantly hori-
zontally or vertically linear polarized. We therefore label
the modes h and v. The wavevectors of the eigenmodes
kh,v are found from the eigenvalues of η (Eqn. 3),

υh,v =
1

n2
yig

+
1

2

(
b2h + b2v

)
±

√(
1

2
(b2h − b2v) + bg

)2

+ b2hb
2
v + g2

k,

(5)

using υh,v = ω2

c2
1

k2
(h,v)

. Neglecting the small terms, g2
k and
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Figure 3. Reflected intensity (PD I) on a single resonance
as a function of (a) in-plane angle φ0 (θ0 = 90◦) and (b)
out-of-plane angle θ0 (φ0 = 45◦) of the magnetization with
respect to the WGM plane. The fitted gray lines are used to
extract the resonant frequency (c), (d), as a function of the
two angles. The gray lines in (c) and (d) are the expected
shifts considering only the Voigt effect given by Eq. (9).

b2hb
2
v, we obtain

kh =
ωnyig
c

(
1 − n2

yig

2
bg −

n2
yig

2
b2 sin2 θ sin2 φ

)
, (6)

kv =
ωnyig
c

(
1 +

n2
yig

2
bg −

n2
yig

2
b2 cos2 θ

)
. (7)

A. Resonant wavelengths

To find the dependence of the resonant wavelength
on the magnetization direction, the wavevectors of the
two eigenmodes are integrated over the path around the
WGM to find the total phase accumulated for each mode.
In principle, we should include the geometrical phase
due to the change in basis around the WGM [29, 31].
However, this contribution is negligible as the solid angle
subtended by the path on the Poincaré sphere is always

small. From the resonance condition,
∫ 2π

0
kh,vrdφ = lπ

for integer l, the resonant wavelength can be found,

λh = λh,0

(
1 +

n2
yig

4
b2 cos2 θ0

)
, (8)

λv = λv,0

(
1 − n2

yig

2
b2 cos2 θ0

)
, (9)

in terms of the resonant wavelengths λh,0 and λv,0 in the
absence of magnetic birefringence. The resonant wave-
length depends on the direction of the magnetization
with respect to the vertical, θ0, and is determined only
by the linear birefringence b due to the Voigt effect. In
contrast, the Faraday effect does not affect the optical
mode frequency in a significant way, as it is suppressed
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by competition with the strong geometrical birefringence
intrinsic to the WGM geometry.

To measure the magnetization direction dependence
of the WGM frequencies, we use the stray field from a
neodymium iron boron magnet to rotate the magneti-
zation both in and out of the plane of the WGM. The
magnitude of this magnetic field is ≈ 80 mT, enough to
overcome the internal demagnetizing fields which act to
break the sphere into ferromagnetic domains at low field
[32]. Figure 3 (a),(b) presents a series of reflection spec-
tra as the magnetization is rotated (a) in-plane and (b)
out-of-plane. The 500 µm sphere is used, and we concen-
trate only on a single WGM resonance. As expected, for
the in-plane rotation there is no systematic change in the
spectrum as the magnetization is rotated. However, for
the out-of-plane rotation there is clear shift in the res-
onant wavelength. The resonant wavelengths extracted
from fitting the spectra are plotted in Fig. 3 (c),(d). For
the out-of-plane rotation, the resonant wavelength os-
cillates with the expected cos2 θ0 dependence given by
Eq. (9). The amplitude of ≈ 15 pm is consistent with a
Voigt coefficient kV ≈ 75◦cm−1, as reported in Ref. [33].
Some slight deviation of the expected values (gray lines)
and measurements are due to fluctuations of the ambi-
ent temperature. These measurements show that in fer-
romagnetic WGM resonators the optical resonance fre-
quency can be modulated via the direction of the mag-
netization, with a magnitude and symmetry consistent
with the Voigt effect.

B. Coupling of linearly polarized modes

Next, we consider the consequences of the Faraday ef-
fect on the WGM properties. Due to the symmetry of
the mode there is no net component of the magnetiza-
tion along the optical path for any direction of the mag-
netic field, and it might be expected that the Faraday
effect is not important. However, the polarization of the
eigenmodes of propagation on the path are modified, and
this can affect the coupling of the linear polarized input
beam and the measurement basis to the modes in the
sphere. This can be seen by looking at the eigenvec-
tors of η (Eq. (3)), which have the form of Jones vec-
tors giving the polarization of the eigenmodes. These
are ~νh = (1,−β∗), ~νv = (β, 1), where

β = (10)

bhbv − igk

1
2 (b2h − b2v) + bg +

√(
1
2 (b2h − b2v) + bg

)2
+ b2hb

2
v + g2

k

.

To first order in g, this reduces to

β =
bhbv − igk

(b2h − b2v) + 2bg
. (11)

This parameter quantifies the mixing of the two modes,
proportional to the Faraday term gk and the diagonal lin-
ear birefringence bhbv, normalized to the dominant total
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Figure 4. Emitted intensity from WGM with horizontal lin-
ear polarization (PD II), opposite to the input beam. Emitted
intensity as a function of laser wavelength for (a) in-plane an-
gle φ0 and (b) out-of-plane angle θ0 of the magnetization.
Gray dotted lines are double peak fit to data. (c) Peak in-
tensity of the two peaks as a function of out-of-plane angle θ0
(from fitting in (b)). (d) Wavelength shift of the two peaks
as a function of out-of-plane angle θ0. The gray lines are the
expected dependence based on Voigt effect, same as Fig. 3,
for the two modes with mainly vertical (solid) and horizontal
(dotted) linear polarizations.

linear birefringence between the horizontal and vertical
(b2h − b2v) + 2bg. The modes have either predominantly
horizontal or vertical linear polarization as β � 1.

To study the coupling between the polarized modes,
we measure the horizontally polarized light output from
the YIG sphere with a second photodiode (PD II), as
shown in the diagram in Fig. 1 (a). For a non-magnetic
WGM resonator we would not expect any emission into
this orthogonal polarization. The spectra are shown in
Fig. 4 (a),(b). There are two peaks with relative ampli-
tudes depending strongly on the direction of the mag-
netization both in- and out-of-plane. The lower wave-
length peak corresponds to the main dip in the reflection
spectra (Fig. 3), and therefore is assigned to the mostly
vertically polarized mode. Importantly, if the magnetiza-
tion is out-of-plane there is no emitted intensity at either
wavelength, as shown in the peak intensities plotted as
a function of out-of-plane angle in Fig. 4 (c). At these
angles, θ0 = 0◦ and 180◦, there is no Faraday effect be-
cause there is no component of the magnetization along
the propagation direction of the light at any point around
the WGM, and correspondingly β = 0.

The two peaks are identified with what in the non-
magnetic limit are the vertical and horizontal linear po-
larized modes of the sphere. They have amplitudes that
depend on the mixing of the two linear polarizations at
the coupling point. Based on our simple model, we ex-
pect the two peaks to have the same amplitude. However,
because of a small amount of background light received
at PD II, which interferes with the emitted light, the line-
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shapes depend on their different relative phases, and it
is difficult to compare the actual intensities.

Further evidence of the polarization mixing is observed
as a dip in the magnetic field dependent reflection spec-
tra shown in Fig. 3 (b) at the same wavelength as the
higher wavelength peak in emission. The amplitude of
this dip depends on the direction of the magnetization,
and is only present when there is an in-plane component,
consistent with the Faraday effect.

The mixing of the linear polarized modes provides ac-
cess to the wavelength shifts of the predominantly hor-
izontally linearly polarized mode, which would not oth-
erwise be observed with vertically polarized input beam.
The frequency shifts of the two modes measured in emis-
sion are plotted in Fig. 4 (d), as a function of out-of-plane
angle θ0. The lower wavelength mode matches with that
measured in reflection (Fig. 3 (d)), and with Eq. (9). The
higher wavelength mode also changes with angle with
the opposite sign and a smaller amplitude, as given by
Eq. (8). This further confirms the validity of assigning
these shifts largely to the Voigt effect.

V. MODELING OF SPECTRA

We can use our model to make direct comparison
with the measured spectra. The transmission matrix
of the cavity is calculated by taking the phases accu-
mulated by the eigenmodes in propagation around the
path and transforming back into the linear polarization
basis that we measure in using the eigenmodes at the
coupling point. The diagonal matrix of the phase fac-
tors A is rotated by the column matrix of eigenvectors,
V = ( ~ν+, ~ν−), T = VAV−1. We obtain

T = eiΓ0× (12)(
cos Γd − i sin Γd

ββ∗−1
ββ∗+1 2i sin Γd

β∗

ββ∗+1

2i sin Γd
β

ββ∗+1 cos Γd + i sin Γd
ββ∗−1
ββ∗+1

)
.

This can be put into the matrix equation

~Dout =(1 − κc)R ~Din + κc[(1 − κi)T− 1]−1 ~Din (13)

=S ~Din

to find the output field from the prism-cavity system,
in terms of scattering matrix S. Here R takes into ac-
count the phase shift in the totally internal reflected light
(see appendix), and the κ, κc are the single-cavity-pass
losses for internal dissipation and external coupling re-
spectively. These are found from the corresponding Q-
factors, Qi and Qc,

κi,c = 1 − e−2πrnyig/λQi,c . (14)

A small amount (∼ 0.5%) of experimentally observed
scattered light is added to the horizontal channel which
reproduces the measured asymmetry between the two
peaks in emission.
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Figure 5. Calculated transmission spectra (|S22|2) for rotation
of the magnetization (a) in-plane (φ0 = 0 → 360◦, θ0 = 0)
and (b) out-of-plane (θ0 = 0 → 360◦, φ0 = 45◦). These
correspond to the measured data in Fig. 2 (a,b). Calculated
emission spectra (|S21|2) for rotation of the magnetization (c)
in-plane (φ0 = 0 → 360◦, θ0 = 0) and (d) out-f-plane (θ0 =
0 → 360◦, φ0 = 45◦). These correspond to the measured data
in Fig. 3 (a,b).

The results of this calculation are plotted in Fig. 5. We
see that this simple model quantitatively reproduces the
main features of the data. This justifies the asymmetric
Lorentzian fit, and neglecting of higher order corrections
to the accumulated phase and eigenmode polarizations.

VI. CONCLUSIONS

In this Article we have characterized the interaction
of the optical WGM and the magnetization in the static
limit. This provides a natural starting point for analyz-
ing the dynamical properties of the system. The para-
metric coupling of the magnetization to the optical mode
through the Voigt effect may enable analogous experi-
ments to those performed in cavity optomechanics [3].
There the coupling is understood in terms of the changes
in the path length of the cavity, typically linearly modu-
lated by the mechanical position. In contrast, our mea-
surements show that the largest coupling is quadratic in
the magnetization. In addition, the Faraday effect cou-
ples the two ordinarily linear polarized modes. The small
mode volume of the optical cavity may enhance magnon
Brillouin scattering amplitudes, towards the magnetic
analog to Raman phonon lasing in non-magnetic WGM
resonators [34]. The magnetic field tunablilty of the fer-
romagnetic resonance modes may have advantages over
the static mechanical modes of opto-mechanics, allowing
complimentary experiments and applications.

During the final stages of preparation of this
manuscript we became aware of related works [35, 36].
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Appendix: Phase shift on internal reflection

The non-symmetric Lorentzian lineshape of the mea-
sured resonances are due to phase shifts ϕh,v of the re-
flected beam on the internal surface of the prism. These

can be calculated from the Fresnel equations [23],

tanϕh = −
2 cosϑi

√
n2
o sin2 ϑi − 1

(n2
o − n4

o) + 2(1 + n4
o) cos2 ϑi

, (A.1)

tanϕv = −
2 cosϑi

√
n2
e sin2 ϑi − 1

(1 − n2
e) + 2n2

e cos2 ϑi
. (A.2)

We include these in the matrix equation (13) through the
matrix

R =

(
e−iϕh 0

0 e−iϕv

)
. (A.3)
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