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We propose a Jastrow factor for electron-electron correlations that interpolates between the radial
symmetry of the Coulomb interaction at short inter-particle distance and the space-group symmetry
of the simulation cell at large separation. The proposed Jastrow factor captures comparable levels
of the correlation energy to current formalisms, is 40% quicker to evaluate, and offers benefits in
ease of use, as we demonstrate in quantum Monte Carlo simulations.

I. INTRODUCTION

Quantum Monte Carlo (QMC) is a prominent family
of techniques for studying strong correlations in quan-
tum many-body systems1. In particular, the variational
and diffusion Monte Carlo methods (VMC and DMC)
are accurate tools for studying ground-state energies and
expectation values. Both methods are predicated on the
use of a trial wavefunction, whose similarity to the true
ground state determines the accuracy and efficiency of
the calculations2. It is therefore important to have ac-
cess to a high fidelity trial wavefunction.

A common foundation for constructing a fermionic
trial wavefunction is to begin with the Hartree–Fock
wavefunction ΨHF = D↑D↓, whereD↑ (D↓) is a Slater de-
terminant of single-electron states for the up (down) spin
species. The Slater determinants encode the fermionic
antisymmetry of the trial wavefunction, ensuring Pauli
exchange is satisfied, but do not include any effects
of electron correlation. To describe such correlations,
we modify the trial wavefunction to be of the Slater–
Jastrow3 form Ψ = eJ(R)D↑D↓, where eJ(R) is a Jas-
trow factor that is a function of all the electron positions,
R. For real J(R) the Jastrow factor is positive definite,
and hence does not modify the nodal structure of the
Hartree–Fock wavefunction.

In order to allow the Jastrow factor to accurately de-
scribe the correlations in a particular system of interest,
J(R) depends on a number of variational parameters4–11.
These parameters can be optimized using the relatively
inexpensive VMC method, and then the optimal trial
wavefunction used as the starting point for a more accu-
rate but more expensive DMC calculation. In principle
the DMC estimate of the energy depends only on the
nodal surface of the trial wavefunction12, but in practice
a more accurate trial wavefunction with an optimized
Jastrow factor allows the method to proceed more effi-
ciently.

In this paper we consider Jastrow factors for infinite,
periodic systems. These systems are amenable to numer-
ical simulation through the use of finite simulation cells
which are tessellated, with periodic boundary conditions,
to fill all of space. Jastrow factors in the literature tend
to either respect the short range radial symmetry of the
Coulomb interaction, or abide by the symmetry of the
simulation cells, but not both4–7. Here we propose a Jas-

trow factor that interpolates between these symmetries;
is easier to use than current Jastrow factors by virtue of
having a single parameter that tunes its accuracy, as op-
posed to two such parameters for other Jastrow factors
of similar accuracy; requires fewer variational parame-
ters to reach comparable accuracy; and is 40% quicker to
evaluate than these current Jastrow factors.

All of our QMC simulations were performed using
the casino package13, and we use Hartree atomic units
throughout this paper. In Section II we review common
Jastrow factors from the literature, and then show how
our proposed Jastrow factor fits into this hierarchy. In
Section III and Section IV we examine the accuracy and
efficiency of the Jastrow factors in the homogeneous elec-
tron gas and crystalline beryllium, respectively, before
drawing our conclusions in Section V.

II. JASTROW FACTOR

We are concerned with Jastrow factors that capture
correlation between electrons, and hence include func-
tions of electron-electron separation,

J(R) =
∑
j>i

σ,τ∈{↑,↓}

Jστ (rij),

where rij = ri−rj , the sum runs over all electrons labeled
i, j, and we refer to Jστ (rij) as a Jastrow function. The
Jastrow function contains variational parameters that we
optimize within a VMC calculation to minimize the vari-
ance in the local energy14.

There are some fundamental constraints on the form
of the Jastrow function. Firstly, in order to retain the
spin expectation value of the Hartree–Fock wavefunction
Jστ (rij) must be even under exchange of particles. Sec-
ondly, in order to avoid non-physical divergences in the
local energy, Jστ (rij) must be at least twice-differentiable
everywhere except at particle coalescence (rij = 0).

However, at particle coalescence the Coulombic poten-
tial energy of two electrons diverges. In order to retain
a non-divergent local energy the kinetic energy therefore
has to diverge in the opposite direction at particle coa-
lescence. This may be achieved by imposing the Kato
cusp conditions15 on the wavefunction, which may be ex-
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pressed as

∂Jστ
∂rij

∣∣∣∣
rij=0

= Γστ ,

giving spherically-symmetric behavior at short radius
Jστ (rij) = Γστrij + . . ., where, for 3D systems,
Γ↑↑ = Γ↓↓ = 1

4 and Γ↑↓ = Γ↓↑ = 1
2 . The final constraint

on the Jastrow factor is that, in periodic systems like
those we consider here, Jστ (rij) must satisfy periodic
boundary conditions at the edge of the simulation cell
in order to tessellate space.

Before presenting and testing our proposal for a Jas-
trow factor, we first review other Jastrow factors that are
commonly used in the literature. We organize the Jas-
trow factors by their symmetry, starting with a spheri-
cally symmetric function and then examining a Jastrow
factor with the symmetry of the simulation cell before
proposing our Jastrow factor that interpolates between
these symmetries.

A. Term with spherical symmetry

The interaction between two isolated electrons is
isotropic, and so it is reasonable to take the Jastrow fac-
tor as being spherically symmetric and purely a function
of particle separation where two-body effects dominate,
and especially at inter-particle separations shorter than
the average nearest-neighbor separation in many-body
systems. However, the simulation cells used in numer-
ical calculations are not spherically symmetric as they
have to tessellate to fill 3D space. Because of this re-
quirement, and in order to limit the effect of otherwise
infinite-ranged terms to within the simulation cell, radial
terms in the Jastrow factor are cut off at a finite radius
that is less than or equal to the Wigner–Seitz radius cor-
responding to the simulation cell. This is implemented
by including a term (1 − rij/Lστ )CΘ(Lστ − rij) in the
Jastrow function, which goes to zero at a radius Lστ ,
with C − 1 continuous derivatives. We take C = 3 in
order to keep the local energy continuous at the cutoff
radius5. Θ(Lστ − rij) is a Heaviside step function, which
forces the Jastrow function to be zero everywhere beyond
the radius Lστ .

It has been found in the literature5,6,16–18 that a Tay-
lor expansion in electron-electron separation captures the
most important short-ranged isotropic inter-particle cor-
relations, and so here we review that expansion. Writing
the Jastrow correlation function as a Taylor series around
particle coalescence results in an expression

uστ (rij) =

(
Lστ

3
[α1,στ − Γστ ] +

Nu∑
m=1

αm,στr
m
ij

)
×

× (1− rij/Lστ )
3

Θ (Lστ − rij) , (1)

which is referred to as a u term5,6. Here the Nu coef-
ficients αm,στ are parameters that are optimized using

VMC, and the cutoff length Lστ is also optimized varia-
tionally. The term Lστ [α1,στ − Γστ ]/3 ensures that the
Kato cusp conditions are satisfied. Using a pseudopo-
tential for the electron-electron interaction19 would set
Γστ = 0.

The u term Jastrow function with parameters opti-
mized for an homogeneous electron gas with rs = 4 is
shown in Fig. 1a. The short-range behavior of the u term
is linear to satisfy the Kato cusp condition, and then at
large separation the cutoff function limits the range of
the u term to within the Wigner-Seitz radius of the sim-
ulation cell, shown as a gray arc in Fig. 1a. This not
only limits the maximum range of the correlations that
can be captured by the u term, but also prevents it from
capturing correlations in the corners of the simulation
cell.

B. Term with simulation cell symmetry

One method to extend the ability of the Jastrow fac-
tor to capture correlations over the whole simulation cell
is to use a form of Jastrow factor that innately has the
space-group symmetry of the simulation cell. A simple
but effective example of a Jastrow function that has such
symmetry is a plane-wave basis, which also explicitly en-
sures periodicity of the Jastrow function. The so-called
p term takes the form5,6

pστ (rij) =

Np∑
`=1

a`,στ
∑
G+
`

cos(G` · rij). (2)

Here the {G`} are the reciprocal lattice vectors of the
simulation cell that belong to the `th star of vectors
equivalent under the full symmetry group of the simula-
tion cell, sorted by increasing size of |G`| (and in periodic
systems not including the trivial vector 0); “+” means
that if G` is included in the sum, −G` is excluded; and
the a`,στ are variational parameters, of which there are
Np.

A p term with Np = 1 for the homogeneous electron
gas is shown in Fig. 1b. The p term exists over the whole
simulation cell, including where the u term is cut off to
zero. This means the p term can capture correlations in
the cell corners that the u term misses. However, the p
term does not tend to a radial form at short radius and
so cannot satisfy the Kato cusp conditions at particle
coalescence, meaning that on its own it does not make
for an effective Jastrow factor. A common approach in
the literature20–27 is to combine both u and p terms to
give a composite Jastrow function

Jστ (rij) = uστ (rij) + pστ (rij), (3)

which uses the u term to capture short-range correlations
and the Kato cusp conditions, and the p term to capture
long-range correlations in the corners of the simulation
cell. We refer to such a combination as a u & p term.
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(a) u term (b) p term

(c) u and u & p terms (d) u and ν terms

FIG. 1. (Color online) The Jastrow functions discussed in the main text, showing the (a) u, (b) p, (c) u (gray) and u & p (blue),
and (d) u (gray) and ν (red) functions. The u, u & p, and ν terms each have a total of five variational parameters, optimized
using VMC in the homogeneous electron gas system. The data are taken for an opposite-spin electron pair in the z = 0 plane,
with one particle at the origin, showing one quadrant of the simulation cell. A gray arc indicates the u term’s cutoff radius,
which is comparable to the Wigner–Seitz radius LWS of the simulation cell. We have subtracted a physically-irrelevant constant
from the ν Jastrow function for clarity.

An example of this composite Jastrow function, with
Nu = 3 and Np = 1 and parameters optimized in an ho-
mogeneous electron gas, is shown in Fig. 1c. As expected,
the behavior at short range is dominated by the u term.
Yet at large radius this Jastrow function has structure
due to the p term, including in the corner of the simula-
tion cell outside the cutoff radius of the u term, shown
by the gray arc, which allows the composite u & p term
to capture longer-range correlations.

However, this construction has several undesirable
features that limit its effectiveness at capturing inter-
particle correlations. For a given amount of computing
time to be spent optimizing the parameters in the Jas-
trow factor, a choice needs to be made of the relative
number of u and p terms to be used. We do not know
a priori the optimal ratio of Nu to Np, and so must ex-
plore a two-dimensional parameter space to determine it.
A large proportion of the VMC calculation time is spent
evaluating the Jastrow factor, and so it is important that
the Jastrow factor is as simple as possible. But there is

not equality of expense between the u and p terms, as
sinusoidal p terms are more expensive to calculate than
polynomial u terms, and the expense of a p term also
increases with the number of elements of the reciprocal
lattice vector stars used to evaluate it. Higher-order stars
generally contain more elements than lower-order ones,
meaning high-order p terms are even more expensive to
calculate. To further complicate the optimization of the
u & p term, although the p term was intended to cap-
ture longer-range correlations, it does also exist at short
radius; this means it interferes with the effect of higher-
order contributions from the u term.

One further problem with the form of Jastrow func-
tion given by Eq. (3) is that the cutoff length Lστ en-
ters the expression non-linearly. To optimize the cutoff
length and other parameters we need to solve a multi-
dimensional non-linear set of equations, which is a sig-
nificantly more difficult problem than solving a multi-
dimensional linear set of equations, where the full force
of linear algebra may be applied to increase the efficiency
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of the process28.
We are interested in finding a form for the Jastrow fac-

tor that avoids these problems with the current method,
by being a term with a single tuning parameter that de-
termines the accuracy of the Jastrow factor, and which
is also cheap to evaluate with linear coefficients. At the
same time the proposed term should reproduce the ad-
vantageous properties of the u term, accurately capturing
short-range correlations, and also the p term, exhibiting
the symmetry of the simulation cell at large inter-particle
separation.

C. ν term

We propose a Jastrow factor that combines the prop-
erties and symmetries of the u term at small radius with
the properties and symmetries of the p term at large sep-
aration. The Jastrow function, referred to here as the ν
term, is

νστ (rij) =

Nν∑
n=1

cn,στ
∣∣f2x (xij) + f2y (yij) + f2z (zij)

∣∣n/2 ,

fx(x) = |x|
(

1− |x/Lx|3
4

)
, (4)

where theNν parameters cn,στ are optimized using VMC,
and the length Lx is the width of the simulation cell
in the Cartesian x-direction. In Section IV A below we
generalize the ν term to non-cuboidal geometries.

At small radius, the function fx(x) = |x| + O
(
|x|4

)
,

and so |f2x (x) + f2y (y) + f2z (z)|1/2 = r +O
(
r4
)
. This has

the correct spherical symmetry to describe short-range
electron-electron correlations, so at short radius the Jas-

trow function νστ (rij) =
∑Nν
n=1 cn,στr

n
ij + . . . consists of

an expansion in electron-electron separation, similarly to
the u term. This means the ν term will reproduce the
ability of the u term to capture short-ranged correlations
and it is easy to satisfy the Kato cusp conditions by set-
ting c1,στ = Γστ .

The function f(x) is symmetric under x → −x,
and automatically satisfies periodic boundary conditions
at the edge of the simulation cell, with f(Lxx̂) 6= 0,
f ′(Lxx̂) = 0, and f ′′(Lxx̂) 6= 0: this is achieved through
the use of the cubic power in the definition of f , chosen
by analogy to the cutoff function in the u term to dis-
tinguish long- and short-ranged components of the Jas-
trow function. Importantly, the f functions satisfying
periodic boundary conditions means any function con-
structed from them, such as the ν term, will also cor-
rectly satisfy periodic boundary conditions. The scaling
of the f functions in the different Cartesian directions
lends the ν term the symmetry of the simulation cell at
large inter-particle separation, and allows the ν term to
capture long-range correlations, similarly to the p term.
Not requiring a cut-off function also means all the vari-
ational parameters enter the expression for νστ (rij) lin-

early, and so are easier to optimize than the equivalent
number of variational parameters in the u term28.

The ν Jastrow function optimized for a homogeneous
electron gas is shown in Fig. 1d, demonstrating that it
has the same small-radius behavior as the u term. We can
also see that the ν term still has structure in the corner
of the simulation cell, similarly to the u & p term, which
allows it to capture long-range inter-particle correlations.
We will examine this similarity in more detail in a case
study of the homogeneous electron gas in Section III.

Freedom to optimize the behavior of the Jastrow factor
in the corners of the simulation cell also provides the free-
dom to change the kinetic energy of the wavefunction in
the corners of the simulation cell, as f ′′x (Lxx̂) 6= 0. This
allows the ν Jastrow factor to more accurately respond
to a finite and/or varying potential energy in the corners
of the simulation cell. From a Thomas–Fermi perspective
this provides the ν term with the freedom to counteract
changes in the potential energy from interactions with
kinetic energy in order to keep the total energy constant.

The ν term may also be adapted to systems other than
the 3D ones considered here. For 2D systems the fz func-
tion may simply be omitted; or for slab geometries, with
two directions periodic and one non-periodic, fz should
be replaced by a function that reduces to |z| at short

radius, for example |z|e−(|z|/Lz)
2

.
In order to demonstrate the advantages of the ν Jas-

trow factor, in the next two Sections we carry out simu-
lations of the homogeneous electron gas and a crystalline
solid. We examine the accuracy, efficiency, and ease of
use of the ν Jastrow factor, and compare it with other
forms of Jastrow factor used in the literature.

III. HOMOGENEOUS ELECTRON GAS

For the first test of our Jastrow factor we examine the
homogeneous electron gas (HEG). This system has been
widely studied using QMC24,29–31 and serves as an ana-
logue for electrons in a conductor. As it does not contain
any atoms it allows us to focus on the electron-electron
Jastrow factor. For simplicity we assume that the intra-
species correlations for the up- and down-spin electrons
are identical, and so fix J↑↑ = J↓↓ and J↑↓ = J↓↑.

We examine a HEG with density parameter rs = 4 in a
cubic simulation cell subject to periodic boundary condi-
tions, and use Slater determinants of plane wave orbitals.
We use a system of 57 up- and 57 down-spin electrons,
and confirmed that the main results of this section were
reproduced in systems of 33 and 81 electrons per spin
species and so are independent of system size. We opti-
mize all the Jastrow factors by minimizing the variance
in the local energy28,32, and confirmed that minimizing
the energy directly33 gave similar results. All VMC sim-
ulations are run for 1 × 106 steps. We then carry out
DMC simulations to obtain a more accurate estimate for
the energy within the fixed node approximation, EDMC,
which corresponds to the use of a perfect Jastrow factor.
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DMC simulations starting with different trial wavefunc-
tions agree to within 5× 10−6 a.u. To measure the accu-
racy of the Jastrow factors, we evaluate the percentage
of the DMC correlation energy missing from the VMC
simulation,

η =
EVMC − EDMC

EHF − EDMC
× 100%

where the Hartree–Fock energy EHF is that obtained by
using just the Slater determinant part of the wavefunc-
tion.

In Fig. 2a we compare the percentages of the corre-
lation energy missing when the various Jastrow factors
under scrutiny are used. The horizontal axis is labeled
by the number of optimizable parameters per spin chan-
nel, N , for each Jastrow function: so, for example, a u
term with a given number N of optimizable parameters
per spin channel has Nu = N − 1 optimizable parame-
ters of terms in the inter-particle separation expansion,
αm,στ , as the cutoff length Lστ is also optimized. A u & p
term with Np optimizable parameters a`,στ in the p part
leaves Nu = N − 1−Np optimizable parameters for the
u term coefficients αm,στ . For the ν term Nν = N + 1,
as the first coefficient c1,στ is set by the Kato cusp condi-
tions. The number of optimizable parameters N required
to reach a converged accuracy is an important measure
of the practicality of the Jastrow factors, as N governs
the complexity of the variance minimization procedure.

We observe that a u term alone can capture over 96%
of the correlation energy missing from the Hartree–Fock
(N = 0) result, converging when Nu ≥ 3 (N ≥ 4). The
addition of p terms improves this to only 2% of the cor-
relation energy missing, as inter-particle correlations in
the corners of the simulation cell are now captured. The
number of p terms used (if greater than zero) makes a
negligible difference to the percentage of the correlation
energy captured, as long as there are also sufficiently
many u terms present (Nu ≥ 3, for a total of N ≥ 5).
The smallest number of variational parameters required
to achieve convergence is N = 5. It is important to
capture all the short-ranged correlations at the center of
the cell, and it is also important to capture the leading
long-range correlations that reflect the symmetry of the
simulation cell. This motivates the construction of the ν
term as being based around a short-ranged expansion in
inter-particle separation that interpolates to the lowest-
order symmetries of the simulation cell at long range.

The ν Jastrow factor reproduces the best u & p ac-
curacy of η = 2% for N ≥ 4. The need for only N = 4
optimizable parameters as opposed to the N ≥ 5 required
for the u & p terms means the ν term is easier to opti-
mize. Furthermore, the ν term has a single parameter Nν
that can be increased to improve accuracy, as opposed to
having to choose both Nu and Np for the u & p term,
which reduces the size of the parameter space that needs
to be explored.

The ν term has captured all of the correlation energy
available to the u & p terms in this system, but another

(a) Correlation energy missing
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FIG. 2. (Color online) (a) The percentage of the DMC cor-
relation energy missing from VMC simulations of the homo-
geneous electron gas, with N optimizable parameters in the
Jastrow factor. Gray, blue, and red lines correspond to the u,
u & p, and ν term respectively. (b) The variance in the local
energy when using different Jastrow factors, as a percentage
of the variance in the local energy using the Hartree–Fock
wavefunction. Error bars, where not visible, are smaller than
the size of the points.

important quantity in QMC methods is the variance in
the estimate of the energy. The variance of the local
energy determines the efficiency of DMC simulations1,34

and also acts as a proxy for the quality of trial wave-
functions, as the variance in the local energy of the exact
ground state is zero. In Fig. 2b we examine the variances
in the local energy using the different Jastrow factors rel-
ative to the variance using the Hartree–Fock wavefunc-
tion. Again the u term converges for N ≥ 4, and the
addition of p terms reduces the variance by another 33%
if a good choice of Nu and Np is made with N ≥ 5. The
ν term achieves the same reduction in the variance in the
local energy as these more complicated terms but with
fewer optimizable parameters, N ≥ 4.

The similar levels of the correlation energy captured
by the ν and u & p terms may be understood in terms
of the correlations described by these Jastrow factors. In
Fig. 3 we show the ν and Np = 1 u & p Jastrow func-
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FIG. 3. (Color online) The N = 5 Jastrow functions with
the u Jastrow function subtracted, to show how the Jastrow
functions vary at large inter-particle separation.

tions with the u Jastrow function subtracted, to allow
us to focus on the long-range correlations. Both Jastrow
functions capture non-trivial correlations in the corner of
the simulation cell, outside the radius where the u term
is cut off to zero (shown by a gray arc), explaining their
improved performance over the u term. Furthermore,
the correlations captured by the ν and u & p terms are
very similar, confirming that both are able to be opti-
mized to capture all of the available correlation energy.
The similarity of the ν and u & p terms also ensures that
the zero-wavevector limits of their Fourier transforms are
likewise similar, and hence that the finite-size errors from
the Jastrow factors are comparable and can be dealt with
following the same prescription23,35.

There is one further advantage to using the ν term in
this system, rather than a u & p term. The ν term is
a polynomial expansion, like the u term, and this makes
it quicker to evaluate than the p term with its sinusoids
from each element of the stars of reciprocal lattice vec-
tors. For N = 5, where both Jastrow factors have fully
converged, the Np = 1 u & p term in the Jastrow factor is
61% slower to evaluate than the ν term, and the Np = 2
term takes over twice as long to evaluate as the ν term.
This means that simulations with the ν term can be run
significantly quicker than those with the u & p term, to
obtain similar accuracy.

We have shown that the ν Jastrow factor captures the
ground state energy of the HEG as well as a combination
of the u and p terms, achieving the same accuracy and
reduction in variance in the local energy. In addition to
this, the ν term is easier to transfer between systems, as
there is only one choice of parameter to make as opposed
to two for the u & p term; the ν term requires N = 4
linear optimizable parameters to converge, rather than
N = 5 non-linear parameters for the u & p term, making
it cheaper to optimize; and the ν term is also quicker to
evaluate. We now go on to test the ν Jastrow factor in
an inhomogeneous periodic system, for which we take the
example of crystalline beryllium.

IV. BERYLLIUM

To demonstrate that the advantages of the ν term are
not restricted to simple homogeneous systems with cubic
simulation cells, here we test it in a crystalline solid. As
discussed in Section II C, the ν term is constructed to
interpolate between the symmetry of the interaction po-
tential (purely radial) at short radius and the simulation
cell symmetry at large separation. In order to demon-
strate the generality of this construction, we will focus on
an analysis of a crystal with relatively low symmetry, in
the P63/mmc (hexagonal) space group, where it is non-
trivial to construct the long-range form of the ν term.
The simplest example of a stable crystal with this space
group at zero temperature, where QMC is applicable, is
crystalline beryllium, and so we use that as our example
system. At the end of this Section we will also discuss re-
sults in higher-symmetry face-centered cubic (FCC) and
body-centered cubic (BCC) crystals.

We model crystalline beryllium using an hexagonal
simulation cell containing 32 atoms. The Be2+ ions are
represented by pseudopotentials5,13,36,37, and the orbitals
in the Slater determinants were obtained from a den-
sity functional theory38,39 (DFT) calculation using the
castep code with a plane-wave basis set40,41, converted
to B-spline functions42,43.

The u and p terms are the same in this simulation cell
as in the previous cubic case, with the G` vectors for the p
term being the reciprocal lattice vectors of the simulation
cell, organized into stars of equal-length vectors. In order
to use the ν term we generalize its functional form to
allow for the use of non-cuboidal simulation cells.

A. Generalized form of ν term

To begin the generalization of the ν term we construct
a set of vectors {B}, formed of the reciprocal lattice vec-
tors of the simulation cell and all symmetry-equivalent
vectors. These vectors are exactly those normal to the
faces of the conventional unit cell, and so encode the sym-
metry of the simulation cell, and have length such that
|Bi · rface| = π, for any vector rface lying in the corre-
sponding conventional cell faces.

Constructing a matrix of the reciprocal lattice vec-
tors {B} and then (left-)inverting and transposing it
leads to a set of real-space vectors {A}. By measur-
ing the projection of the electron-electron separation vec-
tor r onto these real-space vectors we can express the
electron-electron separation as r =

∑
ζ Aζ(Bζ · r). The
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inter-particle distance r can then be expressed as

r =

√√√√√
∑

ζ

Aζ [Bζ · r]

 ·
∑

ξ

Aξ[Bξ · r]


=

√∑
i

Ai ·Aiw2
i + 2

∑
j>k

Aj ·Akwjwk,

where wi = Bi · r expresses the projection of r onto Ai

as a phase between −π and π as r runs between parallel
faces of the conventional cell. In a directly analogous way
to the previous, cuboidal form we then define the Jastrow
function as

νστ (r) =

Nν∑
n=1

cn,στ

∣∣∣∑
i

Ai ·Aif
2(wi)+

2
∑
j>k

Aj ·Akg(wj)g(wk)
∣∣∣n/2, (5)

where in order to reduce to a radial expression at short
radius we require that f(wi) → |wi| and g(wi) → wi as
r→ 0. In order to retain the symmetry of the simulation
cell at large radii we demand f(wi) be symmetric under
wi → −wi, whilst g(wi) is required to be antisymmet-
ric, and both functions should satisfy periodic boundary
conditions at |wi| = π. To satisfy these requirements we
take f and g to have the simple forms

f(wi) = |wi|
(

1− |wi/π|
3

4

)
g(wi) = wi

(
1− 3

2
|wi/π|+

1

2
|wi/π|2

)
. (6)

f(wi) is very similar to the cuboidal form given in Eq. (4),
and if we use a cuboidal simulation cell with orthogonal
lattice vectors, where {A} = {a1/2π,a2/2π,a3/2π} and
{B} = {b1,b2,b3}, the general form of the Jastrow func-
tion Eq. (5) reduces to the cuboidal form Eq. (4). g(wi)
is the lowest-order polynomial-like expansion that is an-
tisymmetric under wi → −wi. The sets of vectors {A}
and {B} that we use for the hexagonal simulation cell,
as well as for other common simulation cell geometries,
are given in the Appendix.

B. Electron-ion correlations

In crystalline systems there are correlations between
the ions and electrons, as well as those between electrons.
The DFT orbitals in the Slater determinants describe
most of the electron-ion correlations, but these are mod-
ified by the introduction of electron-electron correlations
in the Jastrow factor: in our simulations we add opti-
mizable electron-ion correlations to the electron-electron

Jastrow factor to counter this,

J(R) =
∑
j>i

σ,τ∈{↑,↓}

Jστ (rij) +
∑
i,I

σ∈{↑,↓}

χσ(riI),

where riI = ri − rI , for ion positions rI , i running over
all electrons, and I running over all ions. It has been
shown5,6 that a short-ranged u-like expansion in electron-
ion separation,

χσ(riI) =

Lχσ
3
β1,σ +

Nχ∑
m=1

βm,σr
m
iI

×
× (1− riI/Lχσ)

3
Θ(Lχσ − riI),

captures the most important electron-ion correlations in
the electron-ion term, without the need for a longer-
ranged p-like term. The cutoff length Lχσ is gener-
ally comparable to the inter-ionic distance, and we use
Nχ = 4 in our simulations. As we use pseudopoten-
tials for the ions there is no gradient discontinuity in the
wavefunction at electron-ion coincidence. We also tested
a cuspless form of the ν Jastrow function to capture the
electron-ion correlations, which agreed with the energies
obtained using χσ(riI) to within 10−5 a.u. with the same
number of variational parameters. This confirms that it
is the short-range electron-ion correlations that are the
most important to capture, and so we shall use the well-
established χσ(riI) term in the following investigations.

In all-electron QMC simulations, particularly of
molecules, the addition of three-body electron-electron-
ion correlations to the Jastrow factor lowers the cal-
culated energy1,6,44, as these terms allow a more de-
tailed description of tightly-bound electrons. However,
electron-electron-ion correlations are less important in
simulations using pseudopotentials, and including them
here changes the correlation energy by less than 0.9%.
Similarly to the electron-ion term the dominant effect
of electron-electron-ion terms is at short radius, and so
the ν Jastrow factor formalism is expected to offer lim-
ited improvements relative to an isotropic u-like term in
constructing such terms. As electron-electron-ion terms
make a small difference to the energy and will not help
us to discrimitate between the u, u & p, and ν terms
we neglect them here, although they should of course be
included in simulations targeting high accuracy.

The full Jastrow function is then obtained by com-
bining the electron-ion term χσ(riI) with the electron-
electron Jastrow functions under examination, the u,
u & p, and generalized ν terms. We now examine the ac-
curacy and efficiency of these Jastrow functions for sim-
ulating crystalline beryllium.

C. Results

In Fig. 4a we compare the percentages of the DMC
correlation energy missing, η, when the various Jastrow
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(a) Correlation energy missing
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FIG. 4. (Color online) (a) The percentage of the DMC cor-
relation energy missing from VMC simulations of crystalline
beryllium, with N optimizable parameters in the Jastrow fac-
tor. Gray, blue, and red lines correspond to the u, u & p, and
ν term respectively. (b) The variance in the local energy when
using different Jastrow factors, as a percentage of the variance
in the local energy using the Hartree–Fock wavefunction. Er-
ror bars, where not visible, are smaller than the size of the
points.

factors are used with N variational parameters in the
electron-electron Jastrow factor. We observe that a u
term alone is always missing nearly 20% of the correla-
tion energy, and moreover that the addition of a single p
term does not significantly improve the result. This is in
contrast to the case of the HEG, where the addition of a
single p term was the most important step in achieving
a high-accuracy u & p term. This is due to the fact that,
in the beryllium simulation cell, the b3 lattice vector or-
thogonal to the hexagonal planes is shorter than those in
the b1, b2 plane, and so the first p term only acts along
the c axis, not providing flexibility to capture correlations
in the hexagonal planes. However, the addition of just
one more p term reduces the correlation energy missing
to around 9%, and the addition of more p terms to this
does not significantly alter the result. This means that to
achieve convergence we again require N = 5 when using
the u & p term.

Crystal type (example system) ν u & p: Np = 2
Hexagonal (Be) 8.6(1)% 9.3(1)%

BCC (Li) 4.7(1)% 5.0(1)%
FCC (Si) 10.1(2)% 9.6(2)%

TABLE I. The percentage of the DMC correlation energy
missing within VMC, η, for the ν and u & p terms with
N = 5 in example systems: crystalline beryllium in a hexag-
onal simulation cell; crystalline lithium in a body-centered
cubic (BCC) simulation cell; and crystalline silicon in a face-
centered cubic (FCC) simulation cell. Bracketed numbers in-
dicate the standard error in the values for η.

As in the HEG, the ν term achieves comparable accu-
racy to the most accurate u & p terms, reaching conver-
gence by N = 2. This, combined with the necessity of
otherwise using N ≥ 5 for the u and p term, of which
Np = 2 are expensive p terms, means that the ν term is
significantly cheaper to optimize and use than alternative
Jastrow factors.

In Fig. 4b we examine the variance in the local energy
using different Jastrow factors. There is significantly less
difference here between the Jastrow factors than in the
proportion of the correlation energy they capture, but
the ν term again performs as well as the most detailed
other Jastrow factors, meaning that the trial wavefunc-
tions have similar efficiency in DMC.

As well as hexagonal crystalline beryllium, we have
also tested the electron-electron ν term in other crystals
with different symmetry. The missing correlation energy
when using the ν term and the Np = 2 u & p term is
shown in Table I. The u & p term is not significantly
improved by increasing Np in any of these crystals, and
we use N = 5 as this is where the u & p term approaches
its converged accuracy; in each case the ν term is already
converged.

The two Jastrow factors capture similar levels of the
correlation energy in each system, indicating that the ν
term is a good general choice of Jastrow factor for use in
crystalline systems, with the slight differences between
the ν and u & p terms in different systems being due
to the exact details of the symmetry of the simulation
cell in each case, some of which are better captured by
the ν term than others. However, overall the differences
between Jastrow factors are smaller than the differences
between systems, and the ν Jastrow factor achieves high
accuracy whilst having fewer (and only linear) parame-
ters to optimize and being cheaper to evaluate, due to
being polynomial as opposed to sinusoidal.

V. DISCUSSION

We have proposed and tested a form of electron-
electron Jastrow factor that interpolates between the ra-
dial symmetry of the Coulomb potential at short range
and the space-group symmetry of the simulation cell at
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large separation. The ν Jastrow factor captures com-
parable levels of the correlation energy to the most de-
tailed u & p terms used in the literature, and converges
with fewer variational parameters. There is also only one
choice of input to the ν term, the expansion order Nν ,
which reduces the parameter space to be explored com-
pared to the two variables, Nu and Np, required for the
u & p term. Finally, the polynomial ν term is quicker to
evaluate than the plane-wave p term.

It would be possible to apply the ideas behind the
ν term to higher angular-momentum terms in a Jas-
trow factor: for instance, carrying out the transformation
x/r → g(x)/

√
f2(x) + f2(y) + f2(z) would allow the Y11

spherical harmonic to be expressed in a way that satisfies
the symmetry of a cuboidal simulation cell. The ν term
could also be used in systems with interactions other than
the Coulomb potential; for instance, QMC may also be
used to study the dipolar22 and contact45 interactions
in cold atomic gases, and also more exotic interactions
such as those found in 2D semiconductors46. The inter-
polation between symmetries of the ν term could also be
applicable more widely than just in Jastrow factors. Any
expansion in or use of inter-particle separation in a nu-
merical investigation could be written instead in terms
of the f and g functions of the ν term, and so would
immediately satisfy periodic boundary conditions in the
simulation cell. Systems that might be well-suited to
this approach could include two-particle pairing orbitals
in Slater determinants47, large-amplitude phonons simu-
lated within density functional theory48, or the construc-
tion of force fields that natively reflect bond angles for
molecular dynamics simulations49.

The ν Jastrow factor is implemented in the casino
QMC package13,50. Data used for this paper are available
online51.
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Appendix: Symmetry-related vectors for the ν term

Here we enumerate the {A} and {B} vectors for use in
the ν term for some common simulation-cell geometries.

1. Cubic cell

For a cubic cell with lattice vectors a1 = a[100], a2 =
a[010], a3 = a[001], the symmetry-related vectors take
the form

{A} =
1

2π
{a1,a2,a3}

{B} = {b1,b2,b3}.

2. FCC cell

For a face-centered cubic cell with lattice vectors a1 =
a
2 [011], a2 = a

2 [101], a3 = a
2 [110], the symmetry-related

vectors take the form

{A} =
1

8π
{3a1 − a2 − a3, 3a2 − a3 − a1,

3a3 − a1 − a2,a1 + a2 + a3}
{B} = {b1,b2,b3,b1 + b2 + b3}.

3. BCC cell

For a body-centered cubic cell with lattice vectors a1 =
a
2 [1̄11], a2 = a

2 [11̄1], a3 = a
2 [111̄], the symmetry-related

vectors take the form

{A} =
1

8π
{2a1 + a2 + a3, 2a2 + a3 + a1,

2a3 + a1 + a2,a1 − a2,a1 − a3,a2 − a3}
{B} = {b1,b2,b3,b1 − b2,b1 − b3,b2 − b3}.

4. Hexagonal cell

For a hexagonal cell with lattice vectors a1 = a[100],

a2 = a[ 12

√
3
2 0], a3 = c[001], the symmetry-related vectors

take the form

{A} =
1

6π
{2a1 − a2, 2a2 − a1, 3a3,a1 + a2}

{B} = {b1,b2,b3,b1 + b2}.
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6 P. López Ŕıos, P. Seth, N.D. Drummond, and R.J. Needs,
Phys. Rev. E 86, 036703 (2012).

7 G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994).
8 W.L. McMillan, Phys. Rev. 138, A442 (1965).
9 D.M. Ceperley, Phys. Rev. B 18, 3126 (1978).
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N.D. Drummond, Phys. Rev. E 83, 066706 (2011).

35 N.D. Drummond, R.J. Needs, A. Sorouri, and
W.M.C. Foulkes, Phys. Rev. B 78, 125106 (2008).

36 V. Heine, Solid State Physics 24, 1 (1970).
37 W.E. Pickett, Computer Physics Reports, 9, 115 (1989).
38 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
39 W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
40 M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and

J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
41 S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip,

M.J. Probert, K. Refson, and M.C. Payne, Z. Kristall 220,
567 (2005).

42 E. Hernández, M.J. Gillan, and C.M. Goringe, Phys. Rev.
B 55, 13485 (1997).
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