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SUMMARY

Optogenetic studies in mice have revealed new rela-
tionships between well-defined neurons and brain
functions. However, there are currently no means to
achieve the same cell-type specificity in monkeys,
which possess an expanded behavioral repertoire
and closer anatomical homology to humans. Here,
we present a resource for cell-type-specific chan-
nelrhodopsin expression in Rhesus monkeys and
apply this technique to modulate dopamine activ-
ity and monkey choice behavior. These data show
that two viral vectors label dopamine neurons
with greater than 95% specificity. Infected neurons
were activated by light pulses, indicating functional
expression. The addition of optical stimulation to
reward outcomes promoted the learning of reward-
predicting stimuli at the neuronal and behavioral
level. Together, these results demonstrate the feasi-
bility of effective and selective stimulation of dopa-
mine neurons in non-human primates and a resource
that could be applied to other cell types in the
monkey brain.

INTRODUCTION

Dopamine neurons are involved in many facets of nervous sys-

tem function and dysfunction (Schultz, 2007; Smith et al.,

2014). Numerous studies have suggested that the fast, phasic

responses of dopamine neurons code reward prediction errors

(Bayer et al., 2007; Bromberg-Martin et al., 2010; Eshel et al.,

2015; Fiorillo et al., 2003; Hollerman and Schultz, 1998; Ko-

bayashi and Schultz, 2008; Lak et al., 2014; Ljungberg et al.,

1992; Mirenowicz and Schultz, 1996; Nakahara et al., 2004;

Schultz et al., 1993; Stauffer et al., 2014; Waelti et al., 2001).

Recent optogenetic studies in rodents have demonstrated

that dopamine plays a causal role in learning and valuation

(Jin and Costa, 2010; Steinberg et al., 2013; Tsai et al.,

2009; Witten et al., 2011). However, there is currently no

method to apply optogenetics tools specifically to dopamine
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neurons in monkeys. Thus, detailed circuit-level functionality

of dopamine in primate behavior remains unexplored. Mon-

keys, compared to rodents, possess finer behaviors (Amemori

and Graybiel, 2012; Bongard and Nieder, 2010; Stauffer et al.,

2014, 2015) and greater neuroanatomical homology to hu-

mans. Within the dopamine circuit, the anatomical differences

are especially pronounced in the mesocortical pathway, which

is implicated in working memory, attention, and disease states

like schizophrenia (Rolls et al., 2008; Smiley et al., 1994; Smith

et al., 2014; Williams and Goldman-Rakic, 1993, 1995, 1998).

To investigate the circuit-level functionality in a nervous sys-

tem with high anatomical homology to humans, previous mon-

key optogenetic studies have employed general purpose (e.g.,

hSyn, Ef1a) or excitatory-neuron-specific (e.g., CAMKII) pro-

moters (Cavanaugh et al., 2012; Dai et al., 2014; Diester et al.,

2011; Galvan et al., 2012, 2016; Gerits et al., 2012; Han et al.,

2009; Jazayeri et al., 2012; Ohayon et al., 2013). These gene

promoters are small and can easily fit in the viral vectors

commonly used to infect neurons, such as adeno-associated

virus (AAV) (Wu et al., 2010). Moreover, these promoters are

‘‘strong’’ promoters; they drive the high levels of gene expres-

sion necessary to confer optical sensitivity via ChR2 (Zhang

et al., 2010). Nevertheless, these methods do not allow for

cell-type-specific manipulation and investigation of the monkey

brain function.

Previous methodologies to target specific cell types in wild-

type animals have used pathway tracing (Gradinaru et al.,

2010; Oguchi et al., 2015) or the construction of synthetic pro-

moters elements (Zalocusky et al., 2016). However, both of these

approaches are challenging. Placing anatomically matched in-

jection in monkeys is traditionally very difficult. Likewise, a syn-

thetic promoter would need to be designed for every different

cell type. Thus, a general resource would greatly facilitate cell-

type-specific optogenetic investigation of monkey behavior.

Here, we set out to express ChR2 exclusively in midbrain

dopamine neurons of wild-type Rhesus macaques. We used

two viral vectors to accomplish this; the first vector delivered

Cre recombinase under the control of a tyrosine hydroxylase

(TH) promoter fragment, whereas a second vector delivered a

Cre-recombinase-dependent ChR2 construct. The viral vectors

were mixed together and injected in the same location. Im-

munohistological, electrophysiological, and behavioral results
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Preliminary Studies Demonstrated Dopamine Neuron-

Specific Channelrhodopsin Expression in Wild-Type Mice

(A) Schematic diagram of viral infection strategy to gain dopamine-neuron-

specific expression of ChR2. Two high-titer viruses (THp-Cre and dio-ChR2-

EYFP) were mixed 1:1 for injection.

(B) To test the ability of the viral vector combination to induce the expression of

ChR2 in dopaminergic neurons of wild-type animals, we injected the vectors

into the midbrain of 4-week-old C57BL/6 mice. The expression of ChR2, re-

ported by EYFP, was confirmed a minimum of 2 weeks later using confocal

microscopy. The expression of EYFP was compared to the labeling of

TH-positive cells in the midbrain. Dopamine neurons that express ChR2 can

be seen in yellow in the third panel.

(C) To validate the functional efficiency of the vector co-injection, we per-

formed patch-clamp recordings of green neurons in the VTA a minimum of

2 weeks after injection. Brief light pulses repeatedly drove action potentials

(APs). In those cells, APs could be triggered by light stimulations at up to

10 Hz.

(D) Application of tetrodotoxin (TTX) abolished the spike, but not the light

induced potential of the cell in (C), indicating that light flashes were directly

driving that neuron, rather than indirectly driving it through synaptic

connections.

Blue boxes indicate light flashes in (C) and (D).
demonstrate that the viral vector mixture achieved highly spe-

cific expression of ChR2 in dopamine neurons and that optical

stimulation activated single neurons and positively affected

behavioral readouts of value. By substituting the TH promoter

for other neuron-subtype-specific promoters, this optogenetic

technique should be amenable to other neuron types in monkey

brain.
RESULTS

Viral Vectors
We injected two viral vectors in a 1:1mixture to selectively express

ChR2 in monkey dopamine neurons and thus distinguish them

from the GABAergic and glutamatergic neurons also located in

the midbrain (Figure 1A). The first virus used a 300-bp fragment

of the 50 tyrosine hydroxylase (TH) promoter (THp) to express

Cre recombinase in dopamine neurons (STARMethods). The sec-

ond virus carried a standard Cre-recombinase-dependent ChR2

construct (pAAV5-DIO-Ef1a-ChR2(h134)-EYFP). Optically sensi-

tive dopamine neurons were those that expressed both proteins

(Figure 1A, orange shaded region). In preliminary testing, we veri-

fied the vector mixture’s expression (Figure 1B) and functionality

(Figures 1Cand1D) inwild-typemice and thenproceeded to inject

these constructs into monkeys’ brain.

Infection Efficacy
Viral vector injections were made alongside electrophysiologi-

cally defined monkey dopamine neurons (STAR Methods). To

evaluate the efficacy of the viral cocktail for infecting dopamine

neurons, we quantified the co-localization of ChR2-EYFP- and

TH-immunopositive neurons in four monkeys using high-magni-

fication (203) images where cell bodies could be easily identified

(Figure 2). In all four animals, we observed robust co-localization

between ChR2-EYFP- and TH-labeled neurons (Figure 2A, white

arrows, 451 of 1,214 counted TH neurons expressed ChR2-

EYFP). The specificity of ChR2 expression to dopamine neurons

was very high; only a small minority of ChR2-EYFP-positive

cells failed to show also TH immunopositivity (Figure 2A, top

row, yellow arrow, 21 of 472 ChR2-EYFP-positive neurons).

The proportion of infected dopamine neurons approached or ex-

ceeded 0.50 on coronal sections near the center of the ventral

tegmental area (VTA), where most injections were performed,

and fell to as low as 0.10 further away (Figure 2B, monkey A).

Averaged across the four animals, the proportion of ChR2-

EYFP/TH co-localization was 0.37 ± 0.04 (mean ± SD; Figure 2C,

left), whereas the average non-specific labeling was 0.04 ± 0.05

(mean ± SD; Figure 2C, right, n = 4). Moreover, the labeled pro-

portion was remarkably consistent between all subjects (0.39,

0.38, 0.31, and 0.40 in monkeys A, B, C, and D, respectively).

The majority of the injections were made within 3–4 mm of

midline, and indeed, we did not detect EYFP in the most lateral

substantia nigra (7–8 mm from midline). Likewise, EYFP labeling

was not detected in the contralateral (un-injected) dopaminergic

midbrain. These results indicate that virus cocktail injections re-

sulted in ChR2 expression mostly in dopamine neurons. Lower-

magnification images of midbrain provide further support for the

vectors’ overall distribution and specificity; the pattern of ChR2-

EYFP expression followed the irregular anatomical pattern of TH

expression throughout the midbrain (Figure S1). Together, these

results demonstrate that the viral cocktail injection resulted in

many dopamine neurons expressing ChR2, with very high spec-

ificity for this particular neuron type.

Neurophysiology
To investigate the neurophysiology of ChR2 expression in mon-

key dopamine neurons, we lowered custom-made electrodes
Cell 166, 1564–1571, September 8, 2016 1565



Figure 2. Viral Cocktail Injection into Monkey Midbrain Results in

Robust and Highly Specific Expression of ChR2 in Dopamine

Neurons

(A) Double immunohistochemistry for ChR2-EYFP (green) and TH (red) for

three monkeys. White arrows indicate the presence and location of double-

labeled cells. The yellow arrow in the top row indicates a non-specific label

(a neuron that was positive for ChR2-EYFP, but not TH). These instances were

rare and accounted for <5% of the total population.

(B) Spatial profile of ChR2-EYFP expression in one animal (monkey A), quan-

tified at multiple coronal sections starting at the anterior midbrain (0) and

moving posterior (5). Each data point represents the proportion of dopamine

neurons that expressed ChR2-EYFP at each anterior-posterior location (cor-

onal section). Gray line represents the smoothed average of the measured

proportion of co-localization. See Figure S1 for a low-magnification view of the

expression pattern.

(C) Mean proportion of co-localization (left) and specificity (right) for ChR2-

EYFP expression across n = 4 animals. Error bars are ± SD across animals.

See also Figure S1.
attached to optical fibers (optrodes) into the midbrain of two

awake monkeys (C and D) (Figure S2; STAR Methods). We iden-

tified putative dopamine neurons (Figures 3A–3E) and non-dopa-

mine neurons (Figures 3H–3J) based on classical extracel-

lular neurophysiological properties, including broad waveforms

and low baseline impulse rate (STAR Methods; Table S1), and

then delivered pulses of laser light (10 ms) to test for optical

sensitivity (Figures 3D and 3E show example waveforms that
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were optically evoked). Putative dopamine neurons displayed

significantly broader action potential waveforms (n = 50, 2.9 ±

0.5 ms [mean ± SD]) and lower baseline impulse rates (n = 50,

5.9 ± 2.3 imp/s [mean ± SD]) compared to non-dopamine

neurons (n = 10, duration = 1.7 ± 0.4 ms, impulse rate = 13.7 ±

7.5 imp/s [mean ± SD]) (p < 10�10 and 10�7 for duration and im-

pulse rate comparisons, respectively, t test). A pronounced initial

segment (IS) break was visible in some of the recorded dopa-

mine neurons (black arrows in Figures 3B, 3D, and 3E). An

IS break was commonly observed in prior studies where the

dopaminergic identity of selected neurons was confirmed by

apomorphine injection (Figures 3F and 3G) (Guyenet and Agha-

janian, 1978; Schultz and Romo, 1987). Together, these data

indicate that the dopamine neurons identified and recorded

here were consistent with classically described dopamine

neuron properties.

Pulses of laser (10ms duration) were delivered while recording

neuronal action potentials. In one example dopamine neuron,

optical stimulation reliably evoked action potentials on a 1:1 ba-

sis; almost every laser pulse caused the neuron to spike (Fig-

ure 4A). However, the majority of driven dopamine neurons

showed a tendency to miss light pulses delivered later in a pulse

train, especially at the high pulse rates we used (Figure 4B, 15–

30ms inter-pulse interval). To distinguish optically sensitive neu-

rons quantitatively, we compared the neural response during the

400-ms light pulse train to the 400 ms of neural activity that

immediately preceded it. Out of 50 recorded dopamine neurons,

10 displayed significantly increased impulse rate (Figure 4C, blue

dots; p < 0.05, Wilcoxon). The latency of the light-evoked re-

sponses also indicated two distinct groups (Figure 4C, inset;

p < 0.05, Hartigan’s dip test). Cluster analysis revealed a group

of 12 neurons with small response latency variability (K-means

clustering with k = 2). The grouping of neurons identified by the

clustering algorithm largely overlapped with the neurons that

were significant in the Wilcoxon test (Figure 4C, compare blue

dots and black circles). Importantly, no neurons displayed a

significantly decreased impulse rate in response to light flashes

(Figure 4C, red dots; p > 0.05, Wilcoxon test), as might occur if

optical stimulation drove local inhibitory neurons. We used the

clustering results to divide the neurons into two groups and

plotted the resulting population histograms aligned to light pulse

train onset (Figure 4D). The two population histograms revealed

that only the cluster that contained the short-latency neurons

responded to light pulse trains (Figure 4D, blue versus red).

Moreover, the optical sensitivity population histogram shows

that later light pulses are less effective in evoking spikes in opti-

cally sensitive dopamine neurons (Figure 4D, blue line). Finally,

light stimulation failed to activate sampled neurons that did not

conform to traditional dopamine waveform characteristics (Fig-

ure 4E; n = 10). These results demonstrate that the two-virus

infection resulted in optically sensitive dopamine neurons and

provides electrophysiological support for the immunohistologi-

cally observed specificity.

The dopamine reward prediction error response is thought

to be a teaching signal, specifically a utility teaching signal (Ko-

bayashi and Schultz, 2008; Lak et al., 2014; Stauffer et al.,

2014). Accordingly, optical stimulation of ChR2-expressing

dopamine neurons should increase reward subjective value.



Figure 3. Identification of Dopamine

Neurons

(A–E) Ten example waveforms from each of five

different dopamine neurons. Black waveforms are

spontaneous waveforms and blue waveforms are

evoked by optical stimulation. Black arrows on (B),

(D), and (E) indicate initial segment (IS) breaks

commonly seen in dopamine neurons with initial

positive deflections. Blue lines in (D) and (E) show

the time course of laser pulses.

(F andG)Prior studiesusedapomorphine injections

to identify dopamine neurons and consistently

demonstrated that apomorphine identifieddopamineneuronsdisplayedbroadwaveformsandprominent ISbreaks (black arrows). (F) and (G)were reproduced from

Schultz and Romo (1987) and Guyenet and Aghajanian (1978), respectively.

(H–J) Ten example waveform from each of three non-dopamine neurons. See Figure S2 for an image of the optrodes used for combined recording and

stimulation, and Table S1 for the impulse duration and rate for all recorded neurons.

See also Figure S2.
We compared the neural response to reward plus optical stimu-

lation with the neural response to reward delivered alone. We

observed more action potentials following reward plus stimula-

tion than after reward alone (Figure 5A). This positive modulation

was strong enough to be significant in both monkeys’ population

responses that included all neurons, whether or not they were

individually sensitive (Figure 5B; p < 0.05, paired Wilcoxon, n =

32 and 18 in monkeys C and D, respectively). These results

demonstrated that the viral manipulation and optical stimulation

could significantly augment the natural reward response and

suggested that reward plus optical stimulation would have a

higher value than the reward delivered alone. Neural evidence

for this value difference was observed in the responses recorded

frommonkey C to conditioned stimuli (CS) that predicted reward

plus optical stimulation. CS that predicted reward plus optical

stimulation evoked larger neuronal responses than CS that pre-

dicted reward alone in single neurons (Figure 5C; p < 0.001 in six

of eight neurons, Wilcoxon test) and population responses (Fig-

ure 5D; p = 0.015, paired Wilcoxon). These neuronal data predict

that the animal will prefer the stimulated option over the non-

stimulated option.

Behavior
To behaviorally test the prediction that optogenetic stimulation

at the time of reward will increase choices for the stimulation-

paired reward, we presented the animals with a choice between

two naive visual CS; one conditioned stimulus predicted paired

reward and optical stimulation, whereas the other conditioned

stimulus predicted the same reward delivered alone (Figures

5C, top, and 6A). The animals had to explore both options to

learn the values. Within single learning sessions, both monkeys

learned to choose the optically reinforced CS (Figure 6B, blue

line). Behavioral testing was repeated with new images, which

had never before seen before, serving as CS. The monkeys

sampled randomly at the start of sessions but learned to prefer

the optically stimulated option after�10 trials when optical stim-

ulation was delivered to the infected hemisphere (Figure 6C, blue

bars; p < 0.03, ANOVA followed by Tukey-Kramer post hoc anal-

ysis; n = 43 and 8 CS pairs in monkeys C and D, respectively).

Optical stimulation in the contralateral hemisphere had no effect

on choice behavior, indicating that non-specific tissue heating

sometimes caused by laser flashes was not sufficient to induce
a decision bias (Figures 6B, red line, and 6C, red dots; p < 0.9,

ANOVA; n = 25 and 8 novel CS pairs in monkeys C and D,

respectively). In a separate test, a choice bias toward the

stimulated option was observed, even in the absence of exoge-

nous reward (Figure S2; p < 0.01 paired t test, monkey B, n = 8

CS pairs). Together, these data confirm that phasic stimulation

of dopamine neurons augments the choice preferences for the

option associated with the optogenetic stimulation, thus re-

flecting an increase in reward value induced by dopamine

stimulation.

DISCUSSION

Here, we demonstrate that a two-virus approach can lead to se-

lective and functional optogenetic labeling of dopamine neurons

in wild-type Rhesus macaques. Near the location where the in-

jections were performed, ChR2 expression was seen in >50%

of dopamine neurons (Figure 2). The ChR2 expression was highly

specific to dopamine neurons, as <5% of ChR2-expressing neu-

rons were not dopaminergic (Figure 2). Moreover, light stimula-

tion drove action potentials in electrophysiologically identified

dopamine neurons, but light stimulation elicited no activity in

neurons that were not classified as dopamine neurons based

on waveform and impulse activity (Figures 3 and 4). As in

previous rodent studies, optogenetic stimulation of dopamine

neurons during behavior demonstrated that dopamine activity

positively influenced behavioral measures of value (Kim et al.,

2012; Steinberg et al., 2013; Tsai et al., 2009). This behavioral ef-

fect was significant when the optical stimulation was paired with

natural juice reward (Figure 6) and in the absence of exogenous

reward (Figure S3, but only tested in one animal). Together, these

results demonstrate an efficient mechanism for dopamine-

neuron-specific optogenetic experimentation in Rhesus ma-

caque brain.

Early on, it was observed that electrical stimulation of dopa-

mine-rich areas provided positive reinforcement (Olds and Mil-

ner, 1954). This result was recently observed also in monkeys

(Arsenault et al., 2014). Here, dopamine responses to external

cues that predicted dopamine optogenetic stimulation were

larger than responses to cues that did not predict dopamine

optogenetic stimulation (Figure 5). This result suggests that

the dopamine reward response is a neural teaching signal.
Cell 166, 1564–1571, September 8, 2016 1567



Figure 4. Optogenetic Activation of Monkey Dopamine Neurons

(A) Example voltage traces from one dopamine neuron showing light evoked

impulses. Blue bars indicate the timing of the laser pulses in (A), (B), (D), and (E).

(B) High-time-resolution voltage trace from a second example neuron high-

lights the widely observed tendency to miss light pulses later in the pulse train.

(C) Scatterplot of baseline impulse rate versus optical stimulation response

rate for each dopamine neuron. Blue dots represent dopamine neurons

that displayed significantly higher impulse rate during optical stimulation,

compared to baseline (p < 0.05, Wilcoxon test). Red dots represent neurons

that displayed no significant differences. Black circles indicate neurons that

formed a cluster with low variability in the latency between optical command

and action potential. Error bars are SEM across trials (8–20 trials per condi-

tions, n = 50 dopamine neurons) (inset) Distribution of average (per neuron)

latency between timing of optical command and action potential arrival. Blue

and red dashed lines indicate the mean latency of all significant and not sig-

nificant neurons, respectively, as determined by the Wilcoxon test. *p = 0.03,

Hartigan’s dip test.

(D) Peri-stimulus time histograms (PSTHs) for two clusters of neurons, iden-

tified by k-means clustering of light-onset – action potential latency variability.

Blue and red lines derived from 12 and 38 neurons that had smaller and larger

latency variances, respectively.

(E) Example voltage traces from one non-dopaminergic neuron showing a lack

of light evoked impulses.

Figure 5. Dopamine-Specific Optogenetic Stimulation Augments

Neuronal Response to Reward

(A) Optical stimulation facilitated the natural dopamine reward response.

Raster plot and PSTH of a dopamine neuron in response to reward (left) and

reward plus optical stimulation (right). Blue boxes indicate the laser pulses.

(B) Population PSTHs averaged across all neurons (n = 32 and 18 neurons in

monkeys C and D, respectively) and aligned to reward alone (red) or reward

plus optical stimulation (blue).

(C) One cue predicted the delivery of reward plus optical stimulation, whereas

a second cue predicted the same reward, delivered alone (top). Blue raster plot

and PSTH aligned onto the appearance of cues predicting reward plus optical

stimulation (bottom). Red raster plot and PSTH aligned onto the appearance of

cues predicting reward alone in the same neuron.

(D) Population PSTH averaged across all neurons (n = 8 dopamine neurons

from monkey C) and aligned to cue onset. Blue PSTH includes responses

to cues predicting reward plus optical stimulation, whereas the red PSTH

includes responses to reward alone.
Crucially, this signal constitutes a possible neural mechanism

for the classically observed behavioral preference for dopamine

stimulation.

Many cell-type-specific gene promoters are too large to fit in

standard viral backbones. For instance, the entire promoter

region of the TH gene is estimated to be �7 kb (Kessler et al.,

2003). Fragments of cell-type specific gene promoters usually

suffer because they are less sensitive and have lower levels of

expression, compared to their intact counterparts (Oh et al.,

2009; Sohal et al., 2009). Our methods allowed us to use a frag-

ment of the TH promoter. We used the fragment of the TH pro-

moter to drive the expression of Cre recombinase, rather than

ChR2 directly. Cre recombinase is an enzyme (Nagy, 2000).

Accordingly, it is not consumed during the recombination,
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and even low Cre recombinase expression can result in robust

ChR2 expression. Thus, we sidestepped the issue related to

lower levels of expression. Likewise, in our experiments, the

specificity did not appear to suffer; it stayed above 95%. The

high specificity could be due to the 300 base promoter fragment

itself, or it could be due to propensity for the AAV5 serotype to

preferentially infect dopamine neurons (McFarland et al., 2009).

Larger fragments of the TH promoter delivered by lentivirus

(LV) have been shown to drive high levels of GFP expression in

monkey dopamine neurons (Lerchner et al., 2014); the use of

LV and larger promoter fragments will be an avenue of active

research as this technique is further refined.

Recently, controversy has surrounded the electrophysiolog-

ical identification of dopamine neurons (Ungless and Grace,

2012). Accordingly, there have been renewed questions about

whether dopamine neurons preferentially code for information

about reward (Fiorillo, 2013; Fiorillo et al., 2013; Mirenowicz

and Schultz, 1996) or whether there are distinct sub-populations

of dopamine neurons concerned with other variables (Matsu-

moto and Hikosaka, 2009). Thus, accurate identification of

dopamine neurons is a critical issue. Along with apomorphine in-

jections, which selectively silence dopamine neurons (Bunney



Figure 6. Dopamine-Specific Optogenetic

Stimulation Adds Reward Value to a

Stimulus

(A) Schematic diagram of behavioral setup. Mon-

keys made gaze-directed choices between two

cues that predicted the same liquid reward, but

one cue predicted optical stimulation as well (as in

Figure 5C).

(B) One example learning session with the optical

probe in the injected hemisphere (blue line), and

one example learning session with the optical

probe in the contralateral, non-injected hemi-

sphere (red line). Traces are moving average of ten trials. The ‘‘X’’ marks show the animal’s choices on each trial. The blue (red) X’s indicate choices during the

session with the probe in the injected (non-injected) hemisphere.

(C) Learning across trials. Blue bars (red dots) represent the average probability of choosing the stimulated option with the probe in the injected (non-injected)

hemisphere. Trials were binned into four groups of ten trials and averaged across sessions (n = 43 and 8 CS pairs in monkeys C and D, respectively, for the

injected hemisphere; n = 25 and 8 novel CS pairs in monkeys C and D, respectively, for the non-injected hemisphere).

Error bars represent ± SEM across sessions. See Figure S3 for similar behavioral data without exogenous reward.
et al., 1973; Grace and Bunney, 1983; Schultz and Romo, 1987),

and juxtacellular labeling (Brischoux et al., 2009), which uses a

glass pipette to deliver a dye to recorded neurons, optogenetics

has recently been used to identify dopamine neurons and

examine their function (Cohen et al., 2012). In the current exper-

iments, every optogenetically identified neuron possessed the

broad waveform and low impulse rates classically regarded

as identifying dopamine neurons, and all identified neurons re-

sponded to reward. On the other hand, none of the neurons

with higher impulse rates or shorter waveforms responded to op-

tical stimulation or reward. However, it is important to state that

the low numbers of tested neurons in the current study prohibits

us from weighing in on this controversy with regard to neuron

identification or behavioral function. Nevertheless, future studies

can use the resource described here to exhaustively charac-

terize the entire dopamine population.

Perhaps most importantly, our results suggest a framework

for attaining cell-type-specific expression in a wide variety of

neuron subtypes in the non-human primate brain. Optogenetics

has been a powerful toolset to study the functional roles of

genetically defined neurons, yet the genetic inaccessibility of

non-human primates has limited cell-type-specific studies in

these species (Cavanaugh et al., 2012; Dai et al., 2014; Diester

et al., 2011; Galvan et al., 2012, 2016; Gerits et al., 2012;

Han et al., 2009; Jazayeri et al., 2012; Ohayon et al., 2013).

Our approach enabled the use of a reduced promoter region

and sidestepped the efficacy issue associated with using

such gene promoters to drive ChR2 directly (Sohal et al.,

2009). Small, neuron-subtype-specific promoters have been

identified for many neuron types, including D1- and D2-recep-

tor-expressing medium spiny neurons and cholinergic interneu-

rons (Bausero et al., 1993; Minowa et al., 1992; Zalocusky

et al., 2016; Zhou et al., 1992). These promoter regions could

be swapped with the TH promoter, and these new viruses

could be quickly assayed in monkey brain. Moreover, mixing

and co-injecting the two viruses simultaneously avoids the

difficulty associated with making matched injections into

anatomically connected regions, as used in other two-virus ap-

proaches (Gradinaru et al., 2010; Oguchi et al., 2015). Thus,

these immunohistological, electrophysiological, and behavioral

data demonstrate that this two-virus approach works well for
specific stimulation of dopamine neurons and suggest a road-

map to gaining neuron subtype specificity in various cell types

of the non-human primate brain.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-TH antibody, Mouse monoclonal to TH Millipore CAT#MAB318

Anti-GFP antibody, Chicken polyclonal to GFP Abcam CAT#AB13970; RRID: AB_300798

Alexa Fluor 488 594 donkey anti-mouse antibody Life Technologies CAT#A-21203

Alexa Fluor 488 Goat Anti-Chicken antibody Life Technologies CAT#A-11039

Experimental Models: Organisms/Strains

Rhesus macaque The Centre for Macaques (CFM), Defense

Science and Technologies Laboratory (DSTL)

N/A

Mouse: wild-type C57BL/6 Harlan, UK CAT# 057

Recombinant DNA

AAV2/9-rTH-PI-Cre-SV40 Penn Vector Core N/A

AAV5-Ef1a-DIO-hChR2(H134R)-EYFP-WPRE-pA UNC Vector Core N/A

Software and Algorithms

MATLAB MathWorks N/A

Other

Optical fiber patch cables 105 Thorlabs CAT#M15L01

Sharpened optical fibers Thomas Recording N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Please direct all methodological and resource sharing questions to the corresponding author, William Stauffer (wrs@pitt.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male Rhesus macaque monkeys (Macaca mulatta) were used for these studies (ages: 8.5, 11.8, 10.5, and 11.1 years; weights:

9.1, 13.1,12 and 18.3 kg, respectively). Young adult C57BL/6 mice of either sex (4-8 weeks old; Harlan UK, now Envigo) were housed

in polycarbonate cages of 5–10mice on a 12-h light/dark cycle (7:00 AM–7:00 PM), and had access to food and water ad libitum. The

mice were used for preliminary testing of viruses. The Home Office of the United Kingdom approved all experimental protocols and

procedures.

METHOD DETAILS

Surgery and Experimental Setup
A custom-made head holder and recording and stimulating chamber were aseptically implanted under general anesthesia before the

experiment. During experiments, animals sat in a primate chair (Crist Instruments) positioned 30 cm from a computer monitor. Eye

position was monitored noninvasively using infrared eye tracking (ETL200; ISCAN). Eye data and digital task event signals were

sampled at 2 kHz and stored at 200 Hz (eye) or 1 kHz. Liquid reward was delivered bymeans of a computer controlled solenoid liquid

valve (0.004ml /ms opening time). Custom-made software (MATLAB,MathWorks Inc.) running on aMicrosoftWindows XP computer

controlled the behavioral tasks as well as the laser.

Viral Vectors
We used a novel two-viral vector combination to gain specific optogenetic control of dopamine neurons (Figure 1A top). The first

viral vector (pAAV9-TH-Cre-SV40, UPenn Vector Core) delivered Cre recombinase under the control of a 300-base Tyrosine Hydrox-

ylase (TH) promoter sequence. The sequence of the 300 bp fragment was: ctagcggtctcctgtcccacagaataccagccagcccctgccc

tacgtcgtgcctcgggctgagggtgattcagaggcaggtgcctgtgacagtggatgcaattagatctaatgggacggaggcctttctcgtcgccctcgctccatgcccacccccg

cctccctcaggcacagcaggcgtggagaggatgcgcaggaggtaggaggtgggggacccagaggggctttgacgtcagcctggcctttaaagagggcgcctgcctggcga

gggctgtggagacagaactcgggaccaccag. The second vector delivered a standard Cre recombinase-dependent ChR2 construct
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(pAAV5-EF1a-dio-hChR2(H123R)-EYFP-WPRE-pA, UNC Vector Core). The total titer of both viruses was approximately 1012

particles (as such, the combination included approximately 5x1011 particles of each virus).

Virus Injections
Themonkey injection coordinates were based upon the location of electrophysiologically identified dopamine neurons. Approximate

coordinates were established using an X-ray image. Then, the midbrain was electrophysiologically localized with respect to the so-

matosensory thalamus. In the anesthetized animal, large cutaneous receptive fields were located on the contralateral limbs by

manual manipulation. We advanced the electrode vertically downward and located small receptive fields on ipsilateral and contra-

lateral peri-oral regions, indicating that the electrode tip was located in the ventral posteromedial nucleus of the thalamus (VPM) (Loe

et al., 1977). In awake animals, VPM location was confirmed on a daily basis. Liquid reward delivery reliably activated sensory like

responses at this depth. Ventral to the VPM, we found ocular pre-motor neurons that fired sharp bursts of action potentials at the

onset of saccades. We reliably located putative dopamine neurons approximately 2 mm ventral to the ocular pre-motor responses,

and dorsal to and intermixed with tonic eye-position coding neurons. Dopamine neurons were classified based on their well-estab-

lished electrophysiological signatures, broad waveforms and low background activity (Table S1). Moreover, we verified that these

neurons responded to unpredicted reward. As in many previous experiments, we found clear dopamine waveforms and responses

8-13 mm anterior to the intra-aural line, and 2-5 mm lateral to the midline. Our horizontal reference point was arbitrary, taken with

respect to the fixed headstage, but we estimate that the dopamine cell bodies were located approximately between 3 and 3.5 cm

below the dural surface. In total we injected 65 ml of the viral cocktail into Monkey A, 60 ml into monkey B, 160 ml in monkey C,

and 40 ml inMonkeyD. Inmonkey A, the total volumewas separated into 65 1 ml injections, whereas inmonkeys B-D, we did injections

of 20 ml (3, 8 and 2 separate injections inmonkey B, C andD respectively). Behavioral and electrophysiological testing started 8weeks

after the final injection.

Neuronal Data Recording
Dopamine neurons were localized according to the procedure described above (Virus Injections). Raw data signals were amplified

and band-pass filtered between 300 Hz and 5 kHz. Action potentials were isolated on-line using a Bak window discriminator; custom

made software running in MATLAB stored the action potential time-stamps and waveforms for later analysis. We recorded a total of

60 neurons (50 dopaminergic and 10 non-dopaminergic) from monkeys C and D.

Immunohistochemistry
Sections were cut (50 mm) and stored in sodium azide until staining. Primary antibodies against TH (MAB318, Millipore, used at 1:100)

and GFP (AB13970, Abcam, used at 1:200) were combined with Alexa Fluor 594 (A-21203, Life Technologies) and 488 secondary

antibodies (A-11039, Life Technologies, both used at 1:1000), respectively. Following a 15 min rinse in PBS, sections were blocked

using normal serum, then incubated overnight at 4�C in a solution containing the primary antibodies. Following a 15min rinse in PBS,

sections were incubated overnight at 4�C in a solution containing the secondary antibodies. Sections were mounted using Sigma

mounting medium.

Optrodes
We used custom made optrodes as well as Thomas optrodes. Custom made optrodes were made from optical fibers (Thorlabs

M15L01, 105 mm diameter, NA = 0.22) that were cleaved and then affixed to custom made-glass coated tungsten electrodes using

cyanoacrylate. The most effective distances between the optical fiber and the electrode were between 250 and 500 microns. We

used these probes to measure the effect of light flashes on dopamine neuron physiology, and a restricted portion of the behavioral

tests. Optrodes with a beveled tip were obtained from Thomas recording and used for the majority of the behavioral experiments.

These fibers were not paired with electrodes; instead traditional dopamine recordings were performed on separate days to verify

the locations were indeed dopamine rich. As a power source, we used a 50 mW, 488 nm laser (SDL-473-050T, Shanghai Dream La-

sers Technology Co., Ltd.). We measured the power at the end of the fiber on every recording day using a power meter (Thorlabs,

PM100D).We always used themaximumpower we could generate (9-15mW). If themaximumpower was lower than 9mW,we didn’t

use the fiber.

Behavioral Tasks
To test the functionality of the incorporated ChR2, we used a behavioral choice assay. We used a simple preference learning task,

which presented the animal with two naive fractal pictures that it had to explore and select between. A central fixation spot appeared

on the screen to start the trial. After the animal shifted his gaze to the spot, the two CS were presented at random locations on either

side of the spot (sometimes right-left, sometimes top-bottom, and sometimes on the diagonal). The animal had to shift its gaze to one

of two cues and hold it there for 0.5 s after which the unchosen cue disappeared. After an additional 1.5 s reward (blackcurrant juice)

was delivered. After 50-60 trials, the two fractals were replaced with another two naive fractals.
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Quantification and Statistical Analysis
Statistical values including the exact n, the definition of center, dispersion and precision measures and statistical significance are

reported in the Figure Legends and in the main text. ANOVA was used where appropriate (i.e., multiple comparisons), and data

were judged to be statistically significant when p < 0.05.

(1) Immunohistochemistry

We counted all TH and GFP immunopositive cells and the number of co-localized neurons on coronal sections at different anterior-

posterior positions. We then added together all the neurons counted in a given animal. The proportion of co-localized cells in each

animal was expressed as the total number of co-localized cells on all sections counted / the total number of TH positive cells on all

sections counted. Likewise, the proportion of non-specific labeling was reported as the total number of GFP+/TH� cells on all sec-

tions counted / the total number of GFP+ positive cells on all sections counted. Means and standard deviations were calculated

across animals, and all statistics were done across animals (n = 4 animals).

(2) Neuronal data

To evaluate light-evoked neuronal responses, we compared the number of spikes that occurred during the laser pulse train, and the

number of spikes in an equally-sized time window before the pulse train (Wilcoxon sign-rank test, p value threshold was 0.05). Signif-

icantly modulated neurons are indicated in blue in Figure 4C. To perform the response latency analysis, we isolated every light flash

and measured the time to subsequent spike. We used Hartigan’s dip test on the distribution of average latencies to determine

whether there was more than one population of dopamine neurons. This test was significant, indicating two distinct populations

of latencies. Therefore, we used K-means clustering with 2 clusters on the standard deviations of the individual neuron latencies.

The members of the cluster of neurons that displayed small latency variability are circled in Figure 4C, and are used to compute

the blue Peri-Stimulus Time Histogram (PSTH) in Figure 4D. PSTHs were computed using 10 ms bins, and smoothed with a

100 ms sliding window. For population PSTHs, a PSTH was computed for each neuron, and then averages were taken across indi-

vidual PSTHs.

(3) Behavior

Individual behavioral sessions were smoothed with a ten-step moving average filter for display (Figure 6B). For statistical analysis of

choice behavior, we binned choices into 10 trial blocks and computed the choice frequency for the stimulated options (Figure 6C,

mean ± SEM). We used ANOVA with Tukey-Kramer posthoc analysis to test for significance.

DATA AND SOFTWARE AVAILABILITY

Software
MATLAB was used for all data collection and analysis.
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Supplemental Figures

Figure S1. ChR2 Immunoreactivity followed the Irregular Outline of the TH-Positive Cell Bodies in the Monkey Midbrain, Related to Figure 2

Coronal sections through the midbrain show the spatial pattern of overlap between ChR2 immunoreactivity (green, left), TH immunoreactivity (red, middle) and

overlay (right). Although quantification of co-localization was done at higher magnification (Figure 2), white arrows indicate some of the colocalized neurons

identifiable at this magnification.



Figure S2. An Example Optrode, Related to Figure 3

Optrodes were constructed by attaching a bare optical fiber to a custommade electrode (STARMethods). The effective distance between the electrode and fiber

tips was between 200 and 500 mm.



Figure S3. Optical Stimulation Biased Choices in the Absence of Exogenous Reward, Related to Figure 6

The choice experiment illustrated in Figure 6Awas repeated inmonkey B in the absence of exogenous reward. That is, neither cue predicted delivery of reward (as

opposed to both cues predicting reward in the previous test). One cue predicted optical stimulation, the other did not.

(A) Blue line shows an example behavioral session with optical stimulation. Themonkey started choosing randomly, then slowly but completely became biased to

the cue that predicted optical stimulation. The red line shows an example control behavioral session with electrical stimulation (600 mA) in the same location. The

monkey quickly developed a preference for the option paired with electrical stimulation. Both lines were smoothedwith a 5 point moving average. Blue and red ‘x’

above and below indicate actual trial-by trial choices in the optical and electrical stimulation sessions, respectively.

(B) Optical stimulation test was repeated with 8 never before seen cue pairs. We compared the percentage of choices for the stimulated option in the first thirty

trials against the same percentage in the last 30 trials. * = p < 0.001, t test. Error bars are SEM. across cue pairs.
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