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Partial Adaptation of Obtained and Observed Value Signals
Preserves Information about Gains and Losses
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Given that the range of rewarding and punishing outcomes of actions is large but neural coding capacity is limited, efficient processing of
outcomes by the brain is necessary. One mechanism to increase efficiency is to rescale neural output to the range of outcomes expected in
the current context, and process only experienced deviations from this expectation. However, this mechanism comes at the cost of not
being able to discriminate between unexpectedly low losses when times are bad versus unexpectedly high gains when times are good.
Thus, too much adaptation would result in disregarding information about the nature and absolute magnitude of outcomes, preventing
learning about the longer-term value structure of the environment. Here we investigate the degree of adaptation in outcome coding brain
regions in humans, for directly experienced outcomes and observed outcomes. We scanned participants while they performed a social
learning task in gain and loss blocks. Multivariate pattern analysis showed two distinct networks of brain regions adapt to the most likely
outcomes within a block. Frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal
regions adapted to observed social outcomes. Critically, in both cases, adaptation was incomplete and information about whether the
outcomes arose in a gain block or a loss block was retained. Univariate analysis confirmed incomplete adaptive coding in these regions
but also detected nonadapting outcome signals. Thus, although neural areas rescale their responses to outcomes for efficient coding, they
adapt incompletely and keep track of the longer-term incentives available in the environment.
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Introduction
Complex environments coupled with broad behavioral reper-
toires and diets mean that huge quantities of value-related infor-

mation need to be processed to learn about the world and
generate adaptive behavior. A question of central interest in de-
cision neuroscience is how these values are represented in the
brain. Given that the firing range of neurons is finite, one idea is
that motivationally relevant information is encoded in a relative
fashion, adapting to the current value-context (Seymour and Mc-
Clure, 2008). This mechanism allows neurons to efficiently use
their full firing range by encoding the most likely outcomes with
highest sensitivity. For example, a foraging animal that finds itself
in a nutrition-rich environment without poisonous food may
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Significance Statement

Optimal value-based choice requires that the brain precisely and efficiently represents positive and negative outcomes. One way to
increase efficiency is to adapt responding to the most likely outcomes in a given context. However, too strong adaptation would
result in loss of precise representation (e.g., when the avoidance of a loss in a loss-context is coded the same as receipt of a gain in
a gain-context). We investigated an intermediate form of adaptation that is efficient while maintaining information about received
gains and avoided losses. We found that frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and
temporoparietal regions adapted to observed social outcomes. Importantly, adaptation was intermediate, in line with influential
models of reference dependence in behavioral economics.
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devote most of its value-processing neural machinery to moni-
toring the nutritional value of the food. By contrast, if the same
animal finds itself in an environment with less nutritious but
potentially poisonous food, it may rescale value processing and
maximize sensitivity for poison content. Such a context-based
rescaling of value is efficient because it uses a common neural
circuitry to assign motivational value in different contexts, and
has been documented in various outcome processing structures
of the brain (Tremblay and Schultz, 1999; Breiter et al., 2001;
Akitsuki et al., 2003; Tobler et al., 2005; Nieuwenhuis et al., 2005;
Elliott et al., 2008; Fujiwara et al., 2009; Kobayashi et al., 2010).

One critical issue facing any organism that engages in the
adaptive coding of outcomes concerns the extent of rescaling.
Consider an animal that fully rescales its neural representation of
outcomes to the new contexts. For such an animal, it would be
difficult to distinguish between tasty berries in a nutrition-rich
environment and the absence of poisonous berries in a nutrition-
sparse environment, as both of these good outcomes would be
represented in the same way and elicit the same level of activation
in value coding regions. However, the absence of a bad outcome
is clearly not the same thing as the presence of a good outcome,
and failure to distinguish between the two could lead to subopti-
mal behavior. For example, if contextually dependent learned
values are recalled in new contexts, it could be that animals re-
main indifferent between gaining a reward and avoiding a pun-
ishment (Pompilio and Kacelnik, 2010). On the other hand,
simply coding absolute values independent of context would be
inefficient because of reduced sensitivity to the most likely out-
comes in a given context, thereby reducing the discriminability of
fine-grained differences between food items.

Under partial neural adaptation, the neural response would
represent the worst and best outcomes available at the extremes
but efficiently rescale its responses to intermediate values accord-
ing to the current context. As such, the full range of neural activity
is used to represent outcomes, satisfying efficient coding con-
cerns while allowing for absence of bad outcomes in bad contexts
to be coded differently from the presence of good outcomes in
good contexts, allowing motivational drive to be maintained in
environments where punishments need to be avoided. Although
recent computational and neuroscientific work has highlighted
the importance of relative value coding when learning to avoid
negative outcomes to promote neural efficiency (Palminteri et
al., 2015), the extent of neural adaptation between gain and loss
contexts has not been investigated. Accordingly, we hypothesized
that partial neural adaptation to outcome values would be opti-
mal, allowing for both adaptive use of the current context while
nevertheless tracking the fundamental nature of outcome infor-
mation within the same neural architecture.

We assessed this prediction for outcomes received by the in-
dividual in the scanner. Moreover, we tested for the generality of
our findings by also investigating the neural coding of outcomes
received by somebody else in a social observational learning con-
text. Given that previous reports have identified substantial neu-
ral representations of social outcomes (e.g., Sul et al., 2015), we
hypothesized that social outcomes would also be coded in a par-
tially adaptive manner, in line with the notion that the tension
between efficiency and information is a general feature of neural
outcome representation.

Materials and Methods
Predictions. We used a social version of the 2-armed bandit task (Fig. 1A)
which alternated between gain and loss blocks (Burke et al., 2010). In
gain blocks, the available outcomes for both a confederate and the par-

ticipant were 10 points and 0 points, whereas in loss blocks the available
outcomes were 0 and �10 points. In this task, the extent of adaptive
coding can be assessed with multivariate methods for both observed and
actually received outcomes. For example, in fully adapting regions, activ-
ity patterns differentiating between 0 points in a loss block (i.e., a good
outcome) and 0 points in a gain block (i.e., a bad outcome) should be
identical to patterns differentiating between 10 points in a gain block
(i.e., a good outcome) and �10 points in a loss block (i.e., a bad out-
come), as the activity patterns adapt to simply code good and bad out-
comes across the blocks (Fig. 1B). Thus, significant decoding accuracy of
a classifier trained to discriminate 0 points in a loss block from 0 points in
a gain block and tested on its ability to predict the difference between 10
points in a gain block and �10 points in a loss block would reveal simi-
larities in the neural patterns and constitute evidence for full adaptation.

By contrast, under partial adaptation (Fig. 1C), significant decoding
would not be observed in this situation because the neural representation
of good and bad outcomes is no longer similar across the blocks (patterns
associated with L0 and G0 will be more similar than patterns associated
with G10 and L�10 yielding lower classification accuracies). However, the
relative difference between patterns associated with G10 and L0 should be
the same as those between G0 and L�10 (Fig. 1C). Finally, under an abso-
lute value coding scheme (Fig. 1D), three distinct patterns of neural
activity should be associated with G10, L�10, and (G0 � L0) outcomes.

Participants. Twenty-three participants were recruited from the grad-
uate and undergraduate student population of the University of Cam-
bridge. Two participants were excluded for excessive head motion in the
scanner. Of those scanned and retained, 11 were female and the mean age
of participants was 25.3 years (range 18 –38 years). All were fluent speak-
ers of English, right-handed, and had normal or corrected-to-normal
vision in the scanner. Participants were preassessed to exclude those with
a history of neurological or psychiatric illness. All participants gave in-
formed consent, and the Local Research Ethics Committee of the
Cambridgeshire Health Authority approved the study. To minimize the
number of missed trials during scanning, participants learned the tim-
ings and sequence of task events for 20 training trials no more than 7 d
before scanning. Data from this study were previously analyzed in a
model-based fashion to identify the neural correlates of prediction errors
during observational learning (Burke et al., 2010). The analysis in this
paper differs in both the methods (multivariate pattern analysis) and the
questions asked (the degree of adaptive coding of outcomes for self and
others).

Behavioral task. Participants performed a social 2-armed bandit task
while undergoing fMRI. During scanning, the participants observed the
behavior of a confederate performing the same task. Thus, participants
could learn from both the confederate’s outcomes, and their own out-
comes. During training, participants were instructed that they would be
taking part in a social experiment with two players. In particular, they
would be able to observe the behavior of another player, but the other
player would not be able to observe them. When participants arrived at
the scanner, an experimental confederate (previously unknown to the
participant) arrived a little later. The confederate was gender-matched to
the participant. Confederates and participants sat together in the waiting
area of the MR facility and went through the same procedures, filling in
forms, reading task instructions, and undergoing MR-safety screening.
After these preliminary procedures, one research team member led the
confederate into a separate room, where a computer was present. An-
other member of the research team led the to-be-scanned participant
into the scanner. After scanning, the exit of the confederate from the
facility was timed to coincide with the debriefing of the participant (who
was seated in the waiting area). The confederates never actually per-
formed the task (except to familiarize themselves with the experiment),
and the confederate behavior displayed to the participant was controlled
by a computer and kept constant across participants. Participants were
explicitly instructed that the task was not a competition, and outcomes
received by the confederate in no way affected the points received by the
participant.

In each trial, participants were required to choose one of two abstract
fractal stimuli. The better stimulus was associated with p � 0.8 of
delivering a good outcome and p � 0.2 of delivering a bad outcome. For
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the alternative stimulus, the contingencies were reversed. Participants
learned by trial and error which stimulus was better with 10 trials of
individual learning and 10 trials of observational learning per block. They
performed 6 blocks of the task: 3 gain blocks and 3 loss blocks. The gain
and loss blocks were interleaved, and participants were made aware of
what block would come next. In gain blocks, the potential outcomes were
10 points (good outcome) and 0 points (bad outcome). In loss blocks, the
potential outcomes were 0 points (good outcome) and �10 points (bad
outcome). All outcomes were displayed numerically on the screen during
the outcome phase. Total points accumulated over the course of the
experiment were not shown to the participant.

The task screen was split vertically, with one side of the screen assigned
to the confederate and the other assigned to the participant. Each trial
started with a variable intertrial interval (ITI) with the fixation cross
presented on the confederate’s side of the screen (Fig. 1A). The ITI varied
according to a truncated Poisson distribution between 2 and 11 s and
during this time the confederate’s photograph was displayed to indicate
to the scanned participant that it was the confederate’s turn. The fixation
cross was followed by the presentation of two fractal stimuli for 2 s. The
fixation cross was then circled for 1 s. Participants were instructed that

this was the “go” instruction for the confederate to make their choice, but
the participants were required to press the third finger button on the
response box to demonstrate they were attending to the choice of the
confederate. Failure to make an “attend” response at this stage was reg-
istered as an error; and in these cases, the trial was repeated. If an attend
response was made within the 1 s window, then the choice of the confed-
erate was indicated for 1 s by a white box surrounding the chosen stim-
ulus. Next, the outcome of the confederate was displayed below the
fixation cross. The participant’s turn then commenced with the display of
a fixation cross on their side of the screen. Additional conditions with
reduced information (where confederate outcomes and actions were not
shown to participants) did not feature in the present analysis but have
been described and analyzed in detail previously (Burke et al., 2010).

Following the observation of the confederate’s choice and outcome, at the
“go” signal the participant was required to choose between the same two
stimuli by pressing the first button on the response box for the stimulus on
the left and the second for the stimulus on the right. The left/right location of
the stimuli randomly varied between trials and player turns to prevent direc-
tion imitation. The side of the screen devoted to the participant and confed-
erate was counterbalanced across participants, removing side-bias and

Figure 1. Behavioral task and context-based coding schemes. A, After a variable ITI, participants were first given the opportunity to observe the confederate player making a choice and receiving
an outcome (observation stage). After another variable interval, participants were then presented with the same stimuli and the trial proceeded in the same manner (action stage). Reprinted with
permission from Burke et al. (2010). B, Under full adaptation (Model 3), the neural activity rescales completely so that good and bad outcomes share the same representation within their separate
contexts. C, Under partial adaptation (Model 4), the neural representation rescales to an intermediate degree, to reflect the best and worse alternatives within a context. For example, an absence
of a punishment in a loss block is represented as similar to a reward in a gain block; but because rescaling is not complete, it is still possible to discriminate between good outcomes or bad outcomes
received in different contexts. D, Under an absolute value coding scheme (Model 5), neural activity is associated with nominal numerical values regardless of the loss or gain context.
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laterality confounds. Participants were required to complete 40 error-free
trials per block and were instructed to maximize the number of points
earned (in gain blocks) and minimize the number of points deducted (in loss
blocks).

Participant payment. Participants were paid according to the total
points accumulated during all blocks of the task, which were converted to
GBP at a rate of 30 points to £1. Participants also received a £20 show-up
payment regardless of task performance. The average participant pay-
ment was £52. Participants were instructed that any losses outweighing
their gains would be subtracted from the £20 show-up payment.

Behavioral analysis. To test whether participants learned in a manner
consistent with adaptive coding of outcome information, we fitted two
model-free reinforcement learning algorithms to the behavioral choice
data. The two models were adapted from Palminteri et al. (2015). The
first model (absolute value learning) was identical to a standard
Q-learning algorithm, which updates the value (Q) of the chosen option
based on what the participant received. At trial t, the chosen (c) option
value in the current block context (b) is updated with the � rule as
follows:

Qt�1(b, c) � Qt(b, c) � ��C,t

And

�C,t � RC,t � Q(b, c)

Where R is the outcome received on trial t.
We contrasted this absolute model with the relative model of Palmin-

teri et al. (2015), where in addition to standard Q-learning, prediction
errors are adjusted according to the learned value (V) of the current block
as follows:

�C,t � RC,t � Vt(b) � Q(b, c)

and V is learned in a separate updating algorithm

Vt�1(b) � Vt(b) � �2�V

�V � Rt � Vt

In both models, decision making was modeled using the softmax func-
tion (where P is the probability of choice and x and y represent the
options):

Pt(b, x) � (1 � exp(�(Qt(b, y) � Qt(b, x))))�1

Model paramters (� and � for the absolute model, and �, �2, and � for
the relative model) were optimized by minimizing the negative log like-
lihood of the data given the parameters using MATLAB’s fmincon func-
tion (The MathWorks). To compare models, we computed the Bayesian
information criterion (BIC) for each model for each participant:

BIC � log(ntrials) � df � 2 � LLmax

In addition, we calculated the exceedance probabilities (XP) for each
model using the mbb-vb-toolbox (http://mbb-team.github.io/VBA-
toolbox/).

Data acquisition. Scanning took place at the Medical Research Council
Cognition and Brain Sciences Unit, Cambridge. The task was projected
on a display, which participants viewed through a mirror fitted on top of
the head coil. We acquired gradient echo T2*-weighted EPIs with BOLD
contrast on a Siemens Trio 3 tesla scanner (slices/volume, 33; repetition
time, 2 s). The experiment was split into six blocks, each lasting �10 min.
Depending on the performance of participants, 280 –350 volumes were
collected in each block of the experiment, together with five “dummy”
volumes at the start and end of each scanning run. Scan onset times
varied randomly relative to stimulus onset times. A T1-weighted MP-
RAGE structural image was also acquired for each participant. Signal
dropout in basal frontal and medial temporal structures resulting from
susceptibility artifact was reduced by using a tilted plane of acquisition
(30° to the anterior commissure-posterior commissure line, rostral �
caudal). Imaging parameters were the following: echo time, 50 ms; FOV,
192 mm. The in-plane resolution was 3 � 3 mm, with a slice thickness of

2 mm and an interslice gap of 1 mm. High-resolution T1-weighted struc-
tural scans were coregistered to mean EPIs and averaged together to
permit anatomical localization of the functional activations at the group
level.

Imaging analysis. Statistical Parametric Mapping (SPM8; Functional
Imaging Laboratory, UCL) served to spatially realign functional data. For
univariate analysis, the images were then normalized to a standard EPI
template and smoothed using an isometric Gaussian kernel with a
FWHM of 8 mm. We used a standard rapid event-related fMRI approach
in which evoked hemodynamic responses to each event type are esti-
mated separately by convolving a canonical hemodynamic response
function with the onsets for each event and regressing these against the
measured fMRI signal. For gain blocks we modeled 10 point outcomes
(G10) and 0 point outcomes (G0) for both observed and received out-
comes separately. Loss blocks were modeled in an analogous fashion for
observed and received 0 and �10 point outcomes (L0, L�10) separately.
Additional conditions with reduced information where no outcome was
shown to the participant (see Burke et al., 2010) were modeled as separate
regressors of no interest, along with participant-specific movement pa-
rameters. For random-effects analysis, first level contrast images of G10,
G0, L0, and L�10 events were entered into a 2 � 2 ANOVA with gain and
loss as factors and good (G10, L0) and bad (G0, L�10) as levels.

Multivariate analysis. We performed whole-brain searchlight decod-
ing (Kriegeskorte et al., 2006; Haynes et al., 2007) to assess the degree of
outcome adaptation (and evidence for absolute value coding) in local
fMRI patterns surrounding each voxel (radius 12 mm) for each partici-
pant using the realigned but not normalized or smoothed imaging data.
A GLM was constructed that modeled 10 point outcomes (G10) and 0
point outcomes (G0) for both observed and received outcomes sepa-
rately. Loss blocks were modeled in an analogous fashion for observed
and received 0 and �10 point outcomes (L0, L�10). Error trials were
modeled separately, along with participant-specific movement parame-
ters as regressors of no interest. G10 and G0 events (in gain blocks) and L0

and L�10 events (in loss blocks) served as inputs for the classifiers and
were labeled according to the model. Analysis was performed using the
Decoding Toolbox (Hebart et al., 2015) and SPM8. Data were then split
into different training and testing subsets depending on the model. We
trained a linear support vector classifier to separate fMRI patterns corre-
sponding to different outcomes. The support vector classifier was tested
by classifying fMRI patterns corresponding to outcomes in the indepen-
dent testing data subset. For this, we used the Library for Support Vector
Machines implementation (www.csie.ntu.edu.tw/~cjlin/libsvm/) with a
linear support vector classifier that had a cost function of 1. To account
for potential classifier biases across the partial and fully adaptive coding
models, we also computed area under the ROC curve (AUC) images and
compared these images at the whole brain level. AUC images account for
the specificity versus sensitivity of the classifier and remove any bias the
classifier has for decoding each specific class. Accuracy and AUC images
(corresponding to observed prediction accuracy minus chance predic-
tion for each voxel) for each analysis were normalized and smoothed
with an 8 mm kernel and entered into second level t tests for group-level
analysis on a voxel-by-voxel basis.

To identify value coding regions (whether nonadaptive, partially
adaptive, or fully adaptive), we first identified voxels that differentiated
between good and bad outcomes regardless of whether block type was
gain or loss (Model 1; for a description of the models, see Model 1:
decoding good versus bad outcomes). Depending on the decoding anal-
ysis, we trained classifiers to differentiate between outcomes on a subset
of the data (training subset). Classifier accuracy was then tested by as-
sessing how well the trained support vector machine could decode these
outcomes on the remaining data (testing subset). By using classifiers to
distinguish between different outcomes in the training and testing sub-
sets, it is possible to test the similarity in neural patterns across different
outcomes and thus the extent of adaptive coding.

Model 1: decoding good versus bad outcomes. The first decoding analysis
identified voxels that encoded outcome information, regardless of whe-
ther this information was adaptive or absolute. Under such a model,
there would be one pattern of activity for good outcomes and another for
bad outcomes. We trained a classifier to distinguish between good and
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bad outcomes in a subset of the data and tested whether it could decode
this difference in a different subset of the data. In regions coding outcome
information, the classifier should perform better than chance. Specifi-
cally, we trained the classifier on G10 and G0 outcomes in blocks 1, 3, and
5 (gain blocks) and then tested the accuracy of this classifier to decode L0

and L�10 outcomes in blocks 2, 4, and 6 (loss blocks) in three independent
decoding runs. We then performed the reverse analysis (training the
classifier to distinguish between L0 and L�10 outcomes in blocks 2, 4, and
6 and testing the accuracy of decoding G10 and G0 outcomes in blocks 1,
3, and 5 in three decoding runs). In this manner, training and test data
were kept independent during each decoding run and cross-validated in
a train 3, leave 1 run out procedure. For each decoding run, the average
accuracy (minus chance) within the searchlight cluster was then assigned
to the central voxel in the cluster, to create an accuracy-chance image,
and the six images were averaged to assess overall predictive power of the
classifier across gain and loss blocks. The goal of this classifier was to
identify regions where good outcomes elicit different neural patterns
than bad outcomes regardless of whether or not the regions exhibit
adaptive coding. Only voxels that surpassed the conservative thresh-
old of p � 0.05 whole-brain corrected (peak level) were then used as
an inclusive mask to test for partial and full adaptive coding and
absolute value coding.

Model 2: decoding block information. Because the models designed to
decode the degree of adaptive coding feature across-block designs, block-
specific effects (such as differences in physiological arousal or motivation
between gain and loss blocks) may be present in such analyses. For this
reason, we next removed any voxels encoding such information from the
outcome encoding mask from Model 1 at the threshold of p � 0.05
uncorrected. To do this, we trained a classifier to distinguish between any
gain block (e.g., G10 and G0 outcomes) from any loss block (L0 and L�10

outcomes) on blocks 1, 2, 3, and 4 and tested the classifier’s accuracy at
decoding gain from loss blocks in blocks 5 and 6. A further 2 decoding
runs were performed (first training on blocks 1, 2, 5, and 6, then testing
on 3 and 4; second training on 3, 4, 5, and 6 and testing on 1 and 2) in a
train 4-leave 2 blocks out-cross validation procedure (maintaining inde-
pendence of training and test data for each decoding run). Accuracy
minus chance images were averaged over the three decoding runs. Voxels
showing significant decoding in this model suggest that activity patterns
differ nonspecifically between gain and loss blocks rather than reflecting
outcome related information. Any voxels encoding block information
were therefore removed from the mask identified in Model 1, and the
resulting mask of outcome-related, but not block-related, voxels was
used for further investigation.

Model 3: full adaptive coding. Under full adaptation, patterns associ-
ated with good and bad outcomes should be identical in both gain and
loss blocks. In our task, this would mean the brain responds similarly
to both reward G10 and absence of punishment L0 on the one hand,
versus both punishment L�10 and absence of reward G0 on the other
hand. To identify patterns that displayed fully adaptive coding (Fig.
1B), we therefore trained a classifier to distinguish G10 and L�10 out-
comes and tested its accuracy at decoding L0 and G0 outcomes and vice
versa. We used a full cross validation design keeping training and
testing data independent. Six decoding runs were performed for all
combinations of training and testing data subsets. Significant decod-
ing accuracy of a classifier trained to distinguish between G10 and L�10

and tested on L0 vs G0 outcomes (and vice versa) reflects fully adaptive
multivariate patterns in the brain.

Model 4: partial adaptive coding (or absolute value coding). If activity
patterns are consistent with partially adaptive (Fig. 1C) or absolute value
coding, one would expect to see different patterns between the good
outcomes in gain and loss blocks, suggesting an ability to differentiate
between rewards received and punishments avoided as well as between
punishments received and rewards missed. Model 4 was designed to
detect regions consistent with this by identifying pattern differences be-
tween bad outcomes (e.g., G0 and L�10) that can be used to decode pattern
differences between good outcomes (e.g., G10 and L0), and vice versa. If
outcome patterns display full adaptation, then no difference in patterns
should be discernible between G10 and L0 outcomes (and equally between
G0 and L�10 outcomes, as in Fig. 1B) and the classifier should perform at

chance level. In contrast, for both partial adaptive coding and absolute
outcome coding, classification accuracy would be significantly higher
than chance because responses to good and bad outcomes across blocks
are not identical (Fig. 1D). Accordingly, we trained a classifier to distin-
guish G0 and L�10 outcomes and then test its accuracy at decoding G10 and
L0 outcomes, and vice versa, using a full cross validation design that
kept training and testing data independent. For example, this consisted
of training the classifier to distinguish between G10 and L0 outcomes in a
training subset, and testing how accurately it would decode G0 and L�10

outcomes in three decoding runs. We averaged the resulting decoding
accuracy with the accuracy of a classifier trained to distinguish G0 and
L�10 outcomes in all blocks and tested on G10 and L0 outcomes in three
decoding runs. This classifier should have no predictive power to localize
fully adaptive coding regions, as it specifies differences in patterns be-
tween G0 and L�10 outcomes (and G10 and L0 outcomes). Such differences
are excluded under a fully adaptive coding scheme where good outco-
mes (and bad outcomes) should be encoded in similar multivoxel
patterns regardless of the context. Because voxels that demonstrate sig-
nificant predictive power in this analysis would be consistent with both
partially adaptive and absolute value coding schemes, it is necessary to
test absolute value encoding (Model 5) and remove these voxels to iden-
tify partially adaptive regions.

Model 5: absolute value coding. If absolute coding is reflected in multi-
variate activity, then there should be differential patterns associated with
10, 0, and �10 outcomes regardless of the block in which they occur.
Crucially, the patterns for G0 and L0 outcomes should be similar. To test
for this, we used a searchlight multivariate support vector regression
(testing for unique pattern differences between G10, (G0 � L0) and L�10

outcomes) within the outcome-coding mask identified in Model 1, sub-
tracting unspecific voxels from Model 2. A leave one run out full cross
validation design was used in six decoding runs to keep training and test
data independent. Because of the use of a linear regression, this analysis
identifies patterns where L0 and G0 outcomes are similar, but different
from G10 and L�10 outcomes in a manner consistent with the absolute
coding of value in Figure 1D.

Univariate analysis. Value coding regardless of adaptation requires
stronger activation for good outcomes than bad outcomes (i.e., G10 � G0,
L0 � L�10, and G10 � L�10). Full adaptation corresponds to equivalent
activation for the good outcomes on the one hand and the bad outcomes
on the other hand, regardless of their absolute values. To test for full
adaptation of value coding regions, we performed a conjunction analysis
of G10 � G0 and L0 � L�10, exclusively masked by voxels where G10 and L0

and/or G0 and L�10 significantly differed from each other ( p � 0.05,
uncorrected). The first two contrasts fulfill the requirement of value
coding, whereas the exclusive masking ensures that full adaptation holds.
Partial value adaptation also requires stronger activation by good out-
comes than bad outcomes but allows for differences within good out-
comes and within bad outcomes. Crucially, adaptation requires for a
good outcome in a loss context to elicit significantly more activation than
a bad outcome of the same magnitude in a gain context. To test for partial
adaptation of value coding regions, we used G10 � L�10 (satisfying the
value requirement), which was inclusively masked by L0 � G0 (satisfying
the adaptation requirement). Finally, in addition to stronger activation
by good than bad outcomes, absolute value coding requires equivalent
activation by outcomes with the same magnitude, reflecting absence of
adaptation. To test for absolute value coding, a t test between G10 � G0 �
L0 �L�10 was performed (satisfying the value requirement), exclusively
masked by voxels where L0 and G0 significantly differed from each other
(ensuring absence of adaptation) and voxels that differed between gain
and loss blocks. Regions of interest were identified neuroanatomically
with the Pickatlas Toolbox (Maldjian et al., 2003). Reported voxels con-
form to MNI coordinate space, with the right side of the image corre-
sponding to the right side of the brain. Images were thresholded at p �
0.001 uncorrected or p � 0.05 peak-level whole brain corrected.

Results
Behavioral results
To test whether participants learned about outcomes in a
context-dependent fashion compatible with partial adaptive cod-
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ing, we fitted the behavioral choices in the nonsocial learning
conditions with a standard Q-learning model (consistent with
the learning of absolute values) and a relative model that assumed
that values are learned in a context-dependent fashion (for de-
tails, see Palminteri et al., 2015). The relative model specifies that
outcomes are evaluated in relation to the specific value context
that the decision maker finds themselves in (in our case, whether
outcomes are obtained in a gain or loss session). Decision making
in both models was implemented using a standard softmax rule.
Model parameters (learning rate and softmax temperature for
standard Q learning and an additional contextual learning
rate for the relative model) were optimized by minimizing the
negative log likelihood of the data given different parameter com-
binations using MATLAB’s fmincon function. Model perfor-
mance was compared using the Bayesian information criterion.
We found that the relative model best explained our data, even
when accounting for the number of free parameters (two-tailed t
test, T � 3.05, p � 0.01), suggesting that participants learned in a
manner consistent with partial adaptation coding. In an addi-
tional comparison, we calculated the exceedance probabilities
(XP) for each model based on an approximate posterior proba-
bility of the model, and found the relative model outperformed
the absolute model (XP � 1.0). For trials where outcomes were
shown and adaptation could occur, there were no significant
changes in reaction time across blocks (one-way ANOVA, F �
1.63, p � 0.15), the percentage of correct choices across blocks
(one-way ANOVA; F � 0.59, p � 0.70), or learning rates across
blocks (one-way ANOVA; F � 0.56, p � 0.71).

Context-dependent encoding of obtained outcomes
We first trained a classifier (Model 1) to distinguish between
good and bad outcomes in gain blocks and then tested its ability
to decode good and bad outcomes in loss blocks (and vice versa),
a requirement for processing outcomes that applies regardless of
the degree of adaptive coding: Figure 1B–D. We used voxels with
significant predictive power in this analysis as a conservative in-
clusive mask (at p � 0.05 whole-brain corrected) for further in-
terrogation of the degree of adaptive coding. We next identified
voxels that encoded block-specific changes that were not related
to outcome encoding by training a classifier to distinguish be-
tween gain and loss blocks regardless of the outcome received
(Model 2). Voxels that encoded block-specific effects were then
removed from the outcome-encoding mask at a lenient threshold
of p � 0.05 uncorrected, to ensure that the remaining voxels were
related to outcome encoding independent of unspecific differ-
ences between gain and loss blocks. Within the remaining areas,
we performed three additional decoding analyses (Models 3–5)
to distinguish between the three possible coding schemes de-
picted in Figure 1B–D.

We found significant support for partial adaptive coding
of outcomes in the putamen (Fig. 2A; peak at 24, 8, 14; p � 0.05
whole brain corrected) and ventromedial prefrontal cortex
(vmPFC) (Fig. 2B; peak at 4, 34, �22; p � 0.05 whole brain
corrected). Classifier accuracies were 85% and 75%, respectively
(AUC range � 0.48 – 0.95 for putamen; range � 0.66 – 0.95 for
vmPFC; Fig. 2C). This result is consistent with the hypothesis that
neural activity patterns in the brain show intermediate adapta-
tion to gain and loss contexts, ostensibly allowing it to differen-
tiate the overall reward structure of the environment. This would
permit flexible responses to new contexts (e.g., being able to dif-
ferentiate a true reward from an absence of a punishment) while
also satisfying the computational demands for efficient coding
and punishment-avoidance learning.

To test for evidence of fully adaptive coding (Fig. 1B), we
trained a classifier to distinguish between G10 and L�10 outcomes
and tested its accuracy at decoding L0 and G0 outcomes (and vice
versa). This model tests for equivalent neural patterns for the
good (G10 and L0) and bad (G0 and L�10) outcomes across both
gain and loss blocks, as specified by a system that adapts com-
pletely. There were no regions that showed full adaptation, even
at an uncorrected threshold of p � 0.001. We next aimed to
identify regions consistent with an absolute value encoding
scheme, by looking for multivariate patterns that were different
between 10 point (G10), 0 point (G0 and L0 together), and �10
point outcomes (L�10). This analysis revealed no evidence for
absolute value coding in multivariate activity patterns at the p �
0.05 peak-corrected threshold (Fig. 2D). To test whether decod-
ing accuracies were significantly higher for partial adaptation
than full adaptation or absolute value coding, we performed a
one-way ANOVA on the mean decoding accuracies in the puta-
men and vmPFC. There was a significant main effect of model in
both regions (F � 75.97, p � 0.001 for vmPFC; F � 72.41, p �
0.001 for putamen). Post hoc tests (Tukey’s HSD) confirmed that
the partial adaptation classifier had significantly better perfor-
mance than the full and absolute models (p � 0.001 for both
regions of interest). AUC values in the regions of interest, which
account for potential classifier bias, were significantly higher for
the partial adaptation model for the vmPFC (two-tailed t test; p �
0.001) and putamen (two-tailed t test; p � 0.001).

One possible interpretation of this data is that increasing levels
of adaptation as learning proceeds (from little or no adaptation at
the start of the experiment to full adaptation at the end) results
overall in partial adaptation. To address this possibility, we split
the data from each block in half and ran the identical decoding
analysis on the first half and second half separately. A repeated-
measures ANOVA confirmed that there was no main effect of
time (F � 0.343; p � 0.34 for putamen; F � 0.27; p � 0.45 for
vmPFC) and post hoc tests revealed that partial adaptation had
significantly better classification performance in both the first
and second half for both vmPFC (p � 0.001) and putamen (p �
0.001). Thus, patterns of brain activity do not appear to encode
outcome value in a manner consistent with the two most ex-
treme (fully adaptive and absolute) coding schemes shown in
Figure 1B, D.

Context-dependent encoding of observed outcomes
For observed outcomes, we performed the exact same stepwise de-
coding analysis in the same order as for obtained outcomes. Our
first-pass classifier to identify outcome-related information showed
that for activity patterns in the left inferior frontal gyrus (IFG), left
insula, and bilateral temporoparietal junction/posterior superior
temporal sulcus (TPJ/pSTS), we were able to decode L0 and L�10

outcomes from G10 and G0 training data (and vice versa). We then
removed voxels encoding block-specific information at the lenient
threshold of p � 0.05 uncorrected, leaving us with voxels related to
observed outcomes but not to blocks. We next performed the iden-
tical three additional decoding analyses to distinguish between the
three possible coding schemes depicted in Figure 1B–D for observed
outcomes.

The left TPJ/pSTS (peak at �54, �44, 6, p � 0.05 whole-brain
corrected) and left IFG (peak at �44, 20, 14, p � 0.05 whole-
brain corrected) showed partially adaptive activation patterns
coding observed outcome information (Fig. 3A), with classifica-
tion accuracies significantly above chance level (85%, AUC
range � 0.62– 0.93 for TPJ/pSTS; 84%, AUC range � 0.56 – 0.90
for IFG; Fig. 3B). In contrast, no regions within the outcome
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mask showed significant decoding accuracies consistent with
fully adaptive coding or absolute coding of reward levels at a
cluster corrected threshold of p � 0.05 (Fig. 3C). To test whether
decoding accuracies were significantly better for the partial adap-
tation model as opposed to full adaptation and absolute value
coding, we performed a one-way ANOVA on the mean decoding
accuracies for the TPJ and IFG. There was a significant main
effect of model for both the TPJ (F � 66.4, p � 0.001) and IFG
(F � 57.3, p � 0.001). Post hoc tests (Tukey’s HSD) revealed that
partial adaptation classifier performance was significantly better
than full adaptation or no adaptation cases (p � 0.001 for both
TPJ and IFG). AUC values in the regions of interest were signifi-
cantly higher for the partial adaptation model versus the full ad-
aptation model for the TPJ (two-tailed t test; p � 0.001) and IFG
(two-tailed t test; p � 0.001). A repeated-measures ANOVA on
the first and second half of each block confirmed that there was
no main effect of time (F � 1.68; p � 0.18 for IFG; F � 1.81; p �
0.17 for TPJ), and post hoc tests revealed that partial adaptation
decoding accuracy was significantly higher than full adaptation
and absolute value coding in both the first and second half of each
block in the TPJ (p � 0.001) and IFG (p � 0.001). These results
demonstrate that the coding of observed outcomes in brain ac-

tivity patterns is entirely consistent with the coding of outcomes
actually received, suggesting that partially adaptive outcome cod-
ing extends from the individual into the social domain.

Univariate analysis of obtained and observed outcome
adaptive coding
We also used univariate methods to assess the degree of adaptive
coding in outcome-sensitive regions. To test for partially adaptive
coding, we identified regions that showed increased activity to G10

outcomes relative to L�10 outcomes, in conjunction with voxels that
showed a significant increase in activation for L0 relative to G0 out-
comes (Fig. 1C). Activity in the ventral striatum revealed partial
adaptation to the local context in response to obtained outcomes
(Fig. 4A; peak at 12, 6, �9; p � 0.05 whole-brain corrected), with a
significant difference in the activation levels between G0 and L�10

outcomes (t test, p � 0.05; Fig. 4B). The identical analysis searching
for full and partial adaptive coding of outcomes received by the
confederate revealed partial adaptive responses in the IFG and STS
(Fig. 4C) for bad outcomes (i.e., G0 � G10 and L�10 � L0), with
significant differences observed between G0 and L�10 outcomes (p �
0.05, t test; Fig. 4D). There was no evidence for fully adaptive coding
in the response to the confederate’s outcomes at an uncorrected

Figure 2. Decoding accuracies for classifiers consistent with partial adaptation to obtained outcomes (Model 4) were significantly higher than for classifiers based on full adaptation (Model 3) or
absolute value coding (Model 5) in the bilateral putamen (A, B) and the vmPFC (B, C). Multivariate analysis of activity in the left TPJ (D, E) and IFG (E, F ) showed patterns consistent with partially
adaptive coding of observed outcomes (Model 4). Voxels with lower decoding accuracies are blue and voxels with higher accuracies are green. Error bars indicate standard error of the mean.
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threshold of p � 0.001, suggesting that also observed outcome cod-
ing does not fully adapt.

Next, we tested whether any regions displayed overall activity
levels that corresponded to absolute value encoding by looking at the
G10 � L�10 contrast and exclusively masking any voxels that showed
differential activity between G0 and L0 outcomes, and differences
between gain and loss blocks. In contrast with the lack of evidence for
multivariate encoding of absolute outcome value, we found that
more posterior regions of vmPFC (peak at 9, 30, �9, p � 0.05
cluster-level corrected, peak p � 0.001 at the voxel level; Fig. 4A,B)
showed absolute coding of outcome values actually received by the
participant. The equivalent test for observed outcomes revealed that
a more ventral region of the IFG and the TPJ encoded the absolute
outcome value (Fig. 4C,D,E), but in an inverse fashion (i.e., in-
creased activity for punishment rather than reward events; Fig. 4C).
Thus, for both received and observed outcomes, univariate analysis
of overall activity levels demonstrated the presence of both absolute
value coding and partial adaptive coding.

Finally, to test whether overall activity reflected fully adaptive
value coding (Fig. 1B), we conducted a conjunction analysis of
obtained good versus bad outcomes in gain and loss blocks, and
removed any voxels that showed differential activation between
G10 and L0 outcomes and between G0 and L�10 outcomes. There
were no regions that showed fully adaptive value coding at the
uncorrected threshold of p � 0.001. Thus, the univariate analysis
converged with the multivariate analysis in failing to find full
adaptive coding. The fact that no evidence for full adaptation was

found suggests that the brain at least partially keeps track of the
overall (absolute) reward structure across blocks through absolute
activity levels, which constrain the degree of adaptation in regions
involved with sensitively representing within-block outcomes.

Discussion
Our results identify two previously unexplored aspects in the
context-dependent processing of outcome information. First,
there were substantial differences in the degree of adaptation
and how each type was encoded in the brain; whereas outcome
information encoded in a multivariate manner displayed only
partial adaptive coding, univariate activity levels showed both
partial adaptive coding and absolute outcome encoding in
neighboring frontal areas (Figs. 2– 4). Perhaps surprisingly, we
found no evidence for full adaptive coding of outcomes, sug-
gesting that the brain keeps track of overall outcome values,
possibly to stabilize behavior and responses to rewards and
punishments. Second, our results extend previous research by
showing differential adaptive coding for received and ob-
served outcomes. While the striatum and vmPFC encoded
obtained outcomes, the IFG, TPJ, and STS showed preferential
sensitivity to observed outcomes.

By using a stepwise multivariate searchlight analysis, we were able
to test the degree of outcome adaptation for the first time. The use of
multivariate analysis methods was important because interspersed
value coding neurons in these regions show either increasing or de-
creasing activity with increasing value (Tremblay and Schultz, 1999),
potentially cancelling each other out in univariate analyses. Our data
build on previous studies that have demonstrated that the vmPFC
encodes values across categories in multivoxel patterns (McNamee
et al., 2013) by investigating the extent of adaptation in value coding.
Whether the neural encoding of outcome value completely rescales
to the range of outcomes available, or retains some context-
independent information about the nature of outcomes, has impor-
tant implications for theories that predict how value is represented in
the brain. Theories that predict fully adaptive coding have been ad-
vanced on the basis that this might be an efficient way to encode wide
ranges of values due to the limited firing range of neurons (Laughlin,
1981; Louie and Glimcher, 2012). These theories can explain when
economic decisions violate axioms of rational choice, and cause ap-
parent preference reversals depending on choice context.

Evidence for adaptive coding is pervasive, and investigations
have shown adaptive univariate activity reflecting outcome value
in the ventral striatum and vmPFC (Breiter et al., 2001; Nieuwen-
huis et al., 2005, Kim et al., 2006; Elliott et al., 2008; Park et al.,
2012). These studies have shown similar neural responses to the
best available outcome within a given context, regardless of the
objective outcome value. Evidence suggests that the vmPFC plays
a central part in the valuation of options and integrating various
sources of value information (Rangel and Hare, 2010; Rushworth
et al., 2011), and orbital parts of ventral prefrontal cortex have
been shown to adapt to the local reward environment by rescaling
neural responses to outcomes (Kobayashi et al., 2010). Subjective
value responses in the vmPFC in humans have been shown to
rescale depending on the range of available values (Cox and
Kable, 2014), with BOLD sensitivity to value increasing as the
range of potential rewards becomes narrower. Single-unit re-
cording studies have suggested that orbitofrontal neurons show
value-related responses that are independent of the availability of
other items in a behavioral context (Padoa-Schioppa and Assad,
2008). However, their sensitivity to incremental increases in
value is inversely proportional to the available value range

Figure 3. Univariate activity in response to received and observed outcomes reflecting par-
tially adaptive coding. A, Ventral striatum showed a positive increase in activity as received
outcome value increased, although the absence of punishment elicited higher activation than
the absence of reward, consistent with partial adaptive coding. B, The BOLD response in ventral
striatum reflects partial adaptation to received outcomes. C, Activity levels in the pSTS/TPJ and
IFG showed evidence for partial adaptive coding of observed outcomes. D, The BOLD response in
these regions decreased with increasing value of observed outcomes, with G0 outcomes show-
ing significantly higher activity than L0 outcomes. Images are displayed at the p � 0.001 un-
corrected threshold. Error bars indicate standard error of the mean.
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(Padoa-Schioppa, 2009), information
that can be provided by contexts.

Adaptation might be particularly use-
ful for punishment avoidance, which, ex-
actly because of adaptation, acquires
positive rather than neutral values (Kim et
al., 2006) and therefore would be facili-
tated in aversive contexts (Moutoussis et
al., 2008; Maia, 2010). Previous work has
posited that two separate neural mecha-
nisms govern reward approach and pun-
ishment avoidance (Bartra et al., 2013)
and that standard reinforcement learning
mechanisms struggle to explain punish-
ment avoidance because instrumental
avoidance responses are no longer explic-
itly reinforced (Gray, 1987). A recent in-
vestigation into adaptive value learning
solved this issue by modifying established
reinforcement learning models to account
for different contexts (Palminteri et al.,
2015). In this manner, under an adaptive
coding framework, successfully avoiding a
punishment becomes reinforcing in itself,
suggesting that the need for two neural
and computational systems for reward
and punishment may arise primarily in
mixed contexts. One possible interpreta-
tion of the fact that we found no evidence for fully adaptive
coding could relate to how neural adaptation develops over time
or throughout the course of a task. For example, one possibil-
ity is that, given enough time, the neural representations of
outcomes might be consistent with full adaptation (with no
adaptation at the start of the task). Although we found no
evidence for this effect in our data, the time-frame over which
adaptation occurs remains unknown and may be dependent
on a number of external factors. In our study, participants
received training on the task on a separate day before the
experiment, which could have facilitated steady-state levels of
(partial) adaptation.

Adaptive coding of outcomes is closely related to economic
theories of reference dependence, where the utilities of outcomes
are assessed relative to an internal reference point and not on an
absolute scale. Behavioral (and by extension neural) sensitivity is
thought to be highest around the reference point and to rescale as
reference points change. Reference dependence is a prominent
feature of prospect theory (Kahneman and Tversky, 1979) and
was developed to explain behavior seemingly at odds with the
standard economic theories based on absolute value (Bernoulli,
1954; Von Neumann and Morgenstern, 1947). However, recent
models of reference dependence have incorporated both absolute
and relative measures in the assessment of outcomes to explain
apparent discrepancies in both theories (Kőszegi and Rabin,
2006) by assuming a dynamic reference point. This allows for the
representations of gains and losses to change over time while still
remaining sensitive to extreme outcomes. The presence of par-
tially adaptive and absolute outcome coding schemes would pre-
vent confusion between good outcomes and bad outcomes, and
absolute outcome encoding would allow for scalar operations to
take place on outcome information. Our finding of both absolute
value coding and partial adaptive coding fits this view, allowing
much more flexible behavior in the environment than that pre-
dicted by fully adaptive or absolute value models.

Our observational learning paradigm allowed us to test
whether simultaneous partial adaptive and absolute value coding
arises also in the social domain. The STS, TPJ, and IFG showed
partial adaptation to observed bad outcomes, suggesting that this
dual value encoding scheme is a general feature of the brain,
consistent with previously reported parallels between social and
nonsocial learning and decision making processes (Burke et al.,
2010; Seid-Fatemi and Tobler, 2015; Sul et al., 2015). Both TPJ
and IFG have been implicated in social functions. The TPJ in
particular has been noted for its crucial role in processing self-
other distinctions and in tasks that require theory of mind (Saxe
and Kanwisher, 2003). The IFG forms part of the action observa-
tion/execution mirror network (Kilner et al., 2009; Centelles et
al., 2011), which has been closely associated with certain aspects
of observational learning (Burke et al., 2010; Gariépy et al., 2014).

The lateral temporoparietal and frontal regions responding to
observed outcomes displayed an inverse pattern to the more me-
dial frontostriatal areas responding to received outcomes, in that
partial adaptation took place for bad outcomes, and higher over-
all activity levels were associated with progressively worse out-
comes. One potential explanation for this difference is that
negative outcomes may be more important to attend to during
observational learning (Olsson et al., 2007). Accordingly, it has
been suggested that negative outcomes may be more fundamen-
tal in driving social learning than positive outcomes (Lindström
and Olsson, 2015). Indeed, previous fMRI research has demon-
strated that valuation regions show increased sensitivity when
participants observe bad outcomes being delivered to another
agent, suggesting preferential tuning for detecting negative out-
comes affecting others (Nicolle et al., 2012). Context-based ad-
aptation to these negative outcomes in the social domain could
increase the encoding efficiency and detection of potential pun-
ishments for an organism with observational learning becoming
a preferred strategy when learning is costly (Laland, 2004). An
alternative possibility is that social comparison effects influence

Figure 4. Univariate activity to received and observed outcomes showing evidence of absolute value coding. A, B, vmPFC activity
increased significantly in response to received rewards with no significant difference in activity levels between L0 and G0 outcomes, consis-
tentwithabsolutevaluecodingofreceivedoutcomes. C, D,pSTS/TPJandIFGshowedabsolutevaluecodingforobservedoutcomes.Activity
in both pSTS/TPJ (C) and IFG (E) decreased as observed outcomes increased, with no significant difference in the activity levels associated
with observed L0 and G0 outcomes. Images are displayed at the p � 0.001 uncorrected threshold.
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the way observed outcomes are processed by the brain, with neg-
ative outcomes delivered to a perceived competitor encoded as
positive reward value (Takahashi et al., 2009). Although our task
instructions explicitly stated that outcomes delivered to the ob-
served player would not affect the earnings of the scanned player,
we cannot rule out that observing punishments was rewarding to
participants.

In conclusion, we found two sets of regions that preferentially
processed outcomes actually received by participants or observed
outcomes received by a confederate. Within these areas, there was
local context-based adaptation of the coding of outcomes repre-
sented in both overall activity level changes, as well as spatial patterns
as analyzed using multivariate searchlight decoding. The finding of
concurrent absolute and partial adaptation in value encoding re-
gions supports ideas from behavioral economics that advocate flex-
ible reference dependence and illustrate how neural processing
reconciles efficiency with precision of information. By demonstrat-
ing that these mechanisms also extend into the processing of
observed outcomes, our results suggest common neural prin-
ciples for value representation during both nonsocial and so-
cial decision making.
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