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Abstract
Methods for inferring signatures of mutational contexts from large cancer
sequencing data sets are invaluable for biological research, but impractical for
clinical application where we require tools that decompose the context data for
an individual into signatures. One such method has recently been published
using an iterative linear modelling approach. A natural alternative places the
problem within a quadratic programming framework and is presented here,
where it is seen to offer advantages of speed and accuracy.
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Introduction
The existence of context-specific DNA mutational signatures as 
a response to carcinogens has been known for some time (see 
e.g. Pfeifer et al.1), but the last three years have seen progress to 
bioinformatic inference of mutational signatures from large scale 
cancer sequencing studies2–4 such as TCGA (http://cancergenome.
nih.gov/) and ICGC (icgc.org).

These methods of signature discovery, while important, do not 
translate to clinical application. First of all, they are reliant on a 
large corpus of samples for their efficacy, making them imprac-
tical to be run repeatedly for each new patient. Secondly, even 
with a large corpus, the results for one individual can theoretically 
change depending on the identities of the other patients in the 
corpus, which is undesirable in practice. Therefore there is great 
value in methods such as those recently presented by Rosenthal  
et al.5 that can, for a single sample, break a vector of observed 
mutation counts into constituent signature components.

In the Cancer Research UK funded oesophageal adenocarcinoma 
ICGC project we have taken a similar view to Rosenthal et al.5 for 
the decomposition of a single sample, but rather than decomposing 
mutational contexts into signatures by fitting iterative linear mod-
els (ILM), we have viewed the question as lying within the frame-
work of quadratic programming (QP). By mutational contexts, we 
commonly mean the 96 trinucleotide contexts consisting of the 
6 distinguishable mutations and the 16 combinations of immedi-
ately preceding and following bases. More general definitions are 
possible3 and can be accommodated in both the QP and ILM 
approaches, but we assume the standard 96 in what follows.

Methods
In brief, we want to minimize the difference between the normal-
ized observed vector of mutation contexts m (a 96 × 1 vector) and 
Sw (where S is a 96 × k matrix, each column of which represents 
the contributions of mutational contexts to one signature, k is the 
number of known mutational signatures, and w is a k × 1 matrix of 
weights to be estimated). Our problem, then, is to:
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which is the classical quadratic programming problem that can 
be solved quickly (given the form of STS) and easily using the 

core linear algebra functionality of R (version 3.2.4)6 and the  
quadprog package (version 1.5-5)7, which implements the dual 
method of Goldfarb and Idnani8,9 to find the solution. Practi-
cal details of the implementation can be found in the ‘Data and  
Software Availability’ section of this note.

Results

Dataset 1. An R Markdown document that when compiled will 
reproduce all the results presented

http://dx.doi.org/10.5256/f1000research.8918.d124181

In most circumstances, both the ILM and QP approaches work  
well. Illustrating them on an example from the OCCAMS consorti-
um’s whole-genome sequencing of oesophageal adenocarcinoma10, 
we see that the ILM and QP approaches are highly concordant  
(See Figure 1). The ILM approach has the advantages of famili-
arity of interpretation, and enforcement of parsimony should  
this be desired (while parsimony is generally desirable if building a 
predictor, if we are trying to model an underlying truth then it rep-
resents a strong assumption). More importantly, taking advantage 
of the linear modelling framework, it would be easy to generalize  
this approach to use other error models or to include additional 
structure should one e.g. wish to simultaneously investigate  
several related samples.

The disadvantage of the ILM approach comes from its having to 
define a subset of signatures to include in the model. While the sig-
nature matrix is of full rank, with noise in the system it is sometimes 
possible to approximate an observed vector with several different 
linear combinations of signatures, and an ILM approach is not 
guaranteed to give consideration to the correct combination of sig-
natures. Even if the correct solution is reached, it can be a substan-
tially slower approach. It is not difficult to simulate a combination 
of signatures that takes thousands of iterations and thousands of 
times longer to run than the QP approach.

If one simulates a flat combination of all available signatures, then 
the ILM approach performs worse than the QP approach. A fairer 
comparison would be to consider all equal combinations of just  
two signatures (with noise added). Of 351 possible such combi-
nations using the Nature 2013 signature set2,5, the majority are 
well inferred using both the ILM and QP approaches, while one  
(the combination of signatures 1B and 3) performs poorly for both 
methods. Aside from these, there is a definite set of combinations 
for which the ILM approach performs markedly worse than the QP 
approach (See Figure 2). Pairs involving signature 1B, or signature 5,  
appear to cause the most problems. It is not the case that the prob-
lematic pairs are themselves highly correlated, but the 1B and 
U2 signatures are, possibly explaining the outlying nature of the  
U2-R2 pair. This exercise took approximately 5 seconds using 
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Figure 2. Performance of ILM signature deconstruction methods with simulated data. A. 351 simulated datasets were constructed, one 
for each possible pair of the 27 Nature 2003 signatures, with equal weighting given to both of the signatures and independent uniform errors 
applied to each mutational context count (ranging from –5% to +5%). The contributions for the two signatures that should be detected are 
illustrated, with a line linking the estimates from the ILM and QP methods. Perfect performance would see contributions of 0.5 estimated for 
both signatures in all cases. The identities of outlying signature-pairs are indicated. B. The contributions estimated from the combination of 
signatures 13 and 5. C. The contributions estimated from the combination of signatures 2 and 5. D. The contributions estimated from the 
combination of signatures 1B and R2. E. The contributions estimated from the combination of signatures R2 and U2. In all four cases, both 
methods underestimate the contribution of one signature, but the ILM method more drastically. The ILM method is also more prone to the 
erroneous detection of other signatures.

Figure 1. Performance of ILM and QP methods on oesophageal adenocarcinoma whole-genome sequencing data. 18, 916 SNVs from 
sequencing library SS6003314 (tumour) compared to library SS6003313 (matched normal tissue)10 are considered. Using the two signature 
sets included with the deconstructSigs package (Top: the original Nature 2013 signatures2. Bottom: the COSMIC11 signatures) both methods 
identify the same signatures as being active and produce estimates of contribution weight that are remarkably similar. Note that we are  
not adjusting for frequencies of contexts in the genome in these analyses.
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Supplementary material
The R Markdown document (Dataset 1) compiled into a PDF file.

Click here to access the data.

the QP approach, and approximately 15 minutes using the ILM 
approach (on a well-specified desktop).

Conclusion
Since it makes use of well-established and core R code in a  
classical mathematical context, no new software is required to 
use the QP approach (see Data and software availability and  
Supplementary material for details of implementation). The 
speed and improved performance of the QP approach makes it an  
attractive alternative to the ILM method and complements the  
additional functionality of the deconstructSigs package5.

Data and Software Availability
F1000Research. Dataset 1: An R Markdown document that 
when compiled will reproduce all the results presented, 10.5256/
f1000research.8918.d12418113.

The raw oesophageal adenocarcinoma data for library SS6003314, 
from which some of these counts are derived, are available from 
the European Genome-phenome Archive (EGA; accession 
EGAD00001000704).

Competing interests
No competing interests were declared.

Grant information
AGL was supported in this work by a Cancer Research UK pro-
gramme grant [C14303/A20406] to Simon Tavaré.

AGL acknowledges the support of the University of Cambridge, 
Cancer Research UK and Hutchison Whampoa Limited. Whole-
genome sequencing of oesophageal adenocarcinoma was part 
of the oesophageal International Cancer Genome Consortium  
(ICGC) project. The oesophageal ICGC project was funded  
through a programme and infrastructure grant to Rebecca  
Fitzgerald as part of the OCCAMS collaboration.

The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

Acknowledgements
WGS sequencing pipelines for the oesophageal ICGC project are 
managed by Lawrence Bower.

References

1. Pfeifer GP, Denissenko MF, Olivier M, et al.: Tobacco smoke carcinogens, DNA 
damage and p53 mutations in smoking-associated cancers. Oncogene. 2002; 
21(48): 7435–7451. 
PubMed Abstract | Publisher Full Text 

2. Alexandrov LB, Nik-Zainal S, Wedge DC, et al.: Signatures of mutational 
processes in human cancer. Nature. 2013; 500(7463): 415–21. 
PubMed Abstract | Publisher Full Text | Free Full Text 

3. Shiraishi Y, Tremmel G, Miyano S, et al.: A Simple Model-Based Approach to 
Inferring and Visualizing Cancer Mutation Signatures. PLoS Genet. 2015; 
11(12): e1005657. 
PubMed Abstract | Publisher Full Text | Free Full Text 

4. Gehring JS, Fischer B, Lawrence M, et al.: SomaticSignatures: Inferring 
mutational signatures from single-nucleotide variants. Bioinformatics. 2015; 
31(22): 3673–3675. 
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Rosenthal R, McGranahan N, Herrero J, et al.: DeconstructSigs: delineating 
mutational processes in single tumors distinguishes DNA repair deficiencies 
and patterns of carcinoma evolution. Genome Biol. 2016; 17(1): 31. 
PubMed Abstract | Publisher Full Text | Free Full Text 

6. R Core Team: R: A Language and Environment for Statistical Computing.  
R Foundation for Statistical Computing, Vienna, Austria. 
Reference Source

7. S original by Berwin A. Turlach R port by Andreas Weingessel: quadprog: 

Functions to solve Quadratic Programming Problems. R package version 1.5-5. 
2013. 
Reference Source

8. Goldfarb D, Idnani A: Dual and Primal-Dual Methods for Solving Strictly Convex 
Quadratic Programs. Lect Notes Math. Springer-Verlag, 1982; 909(i): 226–239. 
Publisher Full Text 

9. Goldfarb D, Idnani A: A numerically stable dual method for solving strictly 
convex quadratic programs. Math Program. 1983; 27(1): 1–33. 
Publisher Full Text 

10. Weaver JM, Ross-Innes CS, Shannon N, et al.: Ordering of mutations in 
preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014; 
46(8): 837–43. 
PubMed Abstract | Publisher Full Text | Free Full Text 

11. Bamford S, Dawson E, Forbes S, et al.: The COSMIC (Catalogue of Somatic 
Mutations in Cancer) database and website. Br J Cancer. 2004; 91(2): 355–358. 
PubMed Abstract | Publisher Full Text | Free Full Text 

12. Putnam NH, O'Connell BL, Stites JC, et al.: Chromosome-scale shotgun 
assembly using an in vitro method for long-range linkage. arXiv: 1502 . 
05331v1 [ q-bio . GN ] 18 Feb 2015. Genome Res. 2016; 26(3): 342–50. 
PubMed Abstract | Publisher Full Text | Free Full Text 

13. Lynch A: Dataset 1 in: Decomposition of mutational context signatures using 
quadratic programming methods. F1000Research. 2016. 
Data Source

Page 4 of 4

F1000Research 2016, 5:1253 Last updated: 29 JUL 2016

https://f1000researchdata.s3.amazonaws.com/supplementary/8918/0d25c07c-16ba-4b14-91e7-71749dcbbdd5.pdf
http://dx.doi.org/10.5256/f1000research.8918.d124181
http://dx.doi.org/10.5256/f1000research.8918.d124181
http://www.ncbi.nlm.nih.gov/pubmed/12379884
http://dx.doi.org/10.1038/sj.onc.1205803
http://www.ncbi.nlm.nih.gov/pubmed/23945592
http://dx.doi.org/10.1038/nature12477
http://www.ncbi.nlm.nih.gov/pmc/articles/3776390
http://www.ncbi.nlm.nih.gov/pubmed/26630308
http://dx.doi.org/10.1371/journal.pgen.1005657
http://www.ncbi.nlm.nih.gov/pmc/articles/4667891
http://www.ncbi.nlm.nih.gov/pubmed/26163694
http://dx.doi.org/10.1093/bioinformatics/btv408
http://www.ncbi.nlm.nih.gov/pmc/articles/4817139
http://www.ncbi.nlm.nih.gov/pubmed/26899170
http://dx.doi.org/10.1186/s13059-016-0893-4
http://www.ncbi.nlm.nih.gov/pmc/articles/4762164
http://spatial-analyst.net/book/node/330
https://cran.r-project.org/web/packages/quadprog/quadprog.pdf
http://dx.doi.org/10.1007/BFb0092976
http://dx.doi.org/10.1007/BF02591962
http://www.ncbi.nlm.nih.gov/pubmed/24952744
http://dx.doi.org/10.1038/ng.3013
http://www.ncbi.nlm.nih.gov/pmc/articles/4116294
http://www.ncbi.nlm.nih.gov/pubmed/15188009
http://dx.doi.org/10.1038/sj.bjc.6601894
http://www.ncbi.nlm.nih.gov/pmc/articles/2409828
http://www.ncbi.nlm.nih.gov/pubmed/26848124
http://dx.doi.org/10.1101/gr.193474.115
http://www.ncbi.nlm.nih.gov/pmc/articles/4772016
http://dx.doi.org/10.5256/f1000research.8918.d124181

