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Abstract: There are a great variety of joint types used in nature which can inspire engineering joints.
In order to design such biomimetic joints, it is at first important to understand how biological joints
work. A comprehensive literature review, considering natural joints from a mechanical point of view,
was undertaken. This was used to develop a taxonomy based on the different methods/functions
that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses
to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was
used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several
glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition
zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element
model was used to identify the optimum variation in material stiffness that minimises potential
failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to
the standard joints.
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1. Introduction

In recent years, the use of composite materials in automotive and aerospace industries has shown
an upward trend due to their good stiffness-to-weight (E/ρ) and strength-to-weight (σ/ρ) ratios.
However, joining is a key issue in the mechanical design of composite parts due to the structural
discontinuity that joints cause. This can be a source of unreliability, a factor critical in the aerospace
and automotive sectors. Adhesive bonding is a popular method for joining dissimilar materials
because this can produce joints with higher structural efficiency, excellent fatigue life, a particularly
small weight penalty and more uniform stress fields than alternatives such as fastening or riveting.
Additionally, corrosion between the dissimilar materials is prevented [1–5]. One of the main difficulties
with joining dissimilar materials, such as composite with metals, is related to the large difference in
stiffness properties between the adherends. The stiffness mismatch leads to high stress concentrations,
and thus weak joints.

Nowadays, many of the modern turboprop engines in operation are equipped with carbon fibre
reinforced plastic (CFRP) propeller blades. World-leading manufacturers of integrated propeller
systems use CFRP-to-steel joints to attach the CFRP blade to the steel hub. Applications range from
regional airliners (e.g., Bombardier’s twin-engine Q400 Dash 8) and military airlifters (e.g., Lockheed
Martin’s four-engine C-130J) to marine hovercraft (Textron Systems’ Landing Craft Air Cushion (LCAC)
hovercraft). Additionally, composite structures are used in piping systems with applications in a wide
range of industries (e.g., aerospace, marine, chemical), where composite materials are an attractive
alternative to metals considering the extreme environments that the piping systems are exposed in
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for onshore or offshore applications [6]. Since joining of dissimilar materials is widely used in high
performance structures, an innovative approach is needed to meet this challenge.

Biomimetics uses ideas from nature to inspire engineering solutions. In the context of joining,
nature has developed a wide range of solutions for joining of many different materials and geometries,
which have the potential to inspire more robust and efficient joints in engineering applications.
This paper expands the conference proceedings published in [7], including and expanding the literature
review in that paper and drawing on the conclusions of that review to develop a novel biomimetic
solution to joining of composites to metals.

The biomimetic design approach cannot consist of just copying the designs of nature because
of the significant differences between natural and engineering materials. Thus, several biomimetic
design reviews exist, focusing on a variety of engineering challenges where nature has provided
inspiration [8–20]. Vertechy and Parenti-Castelli [21] proposed the following steps when using
a bio-inspired approach for the design of man-made joints:

1. comprehend and analyse the functions and the structure of biological joints;
2. identify the features that may be transferred from biological to engineering joints;
3. devise the most favourable joint configuration that will highlight the identified features by

considering the available technology and materials;
4. use the available technology, materials and the devised joint configuration to design optimised

mechanisms for the specific engineering application.

To understand how to optimise biomimetic engineering joints, first it is important to understand
how biological joints “work”. Thus, Section 2 of this paper contains an extensive literature survey and
discussion with a special focus on natural joint systems and their classifications. This section draws
on the conference publication of Avgoulas and Sutcliffe [7]. Emphasis was given to understanding
natural joints from a mechanical point of view, so as to inspire engineers to find innovative methods of
joining man-made structures. The idea of a transitional zone of stiffness used by natural joint designs
is then taken up in Section 3 and adapted to different types of glass fibre reinforced plastic (GFRP) to
steel engineering joints. A numerical analysis methodology is developed to improve the predicted
joint strength. The paper finishes with some brief conclusions.

2. Natural Joint Systems

This section contains a review of natural joints. Both effectively rigid joints and joints which
provide relative motion between parts are considered. The findings from the review are discussed
in Section 2.2, particular as they relate to biomimetic applications in engineering, and a comparison
between natural and engineering joints is made in Section 2.3.

2.1. Literature Review of Natural Joints

Joining methods found in nature have been classified into five different groups depending on the
different joining method used: Network structures, transitional zones of stiffness, bridging connections,
hooks and adhesive joints. Examples for each of these types of joint are described below.

2.1.1. Network Structures

Network structures use complex geometric arrangements in order to join materials. Two examples
are described here: root structures where the soil and plant components have very different mechanical
properties and tree joints where the elements being attached have the same material properties.

Root Networks

Roots are the first structure that develops in a growing plant. Root networks provide an ingenious
anchorage and stability system [22,23], and provide for storage of nutrients and water. However,
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their structural complexity is often underestimated as they lack visibility and they are difficult to
sample [24,25]. There are two main types of root system, taproot and fibrous [26]. The taproot
system is characterised by having one long, thick main root that penetrates deeply into the soil
(e.g., radishes, dandelions, turnips, carrots, and cacti), which makes it hard to uproot. From the main
root (the taproot), smaller and thinner roots emerge. The fibrous root system is characterised by having
several similarly-sized main roots that branch numerous times and form a tangled mass of roots and
soil (e.g., corn, grass and most trees). Fibrous roots do not penetrate as deeply into the soil as taproots.

Tree Branches

The idea of a continuous fibre flow pattern from one part of the joint to the other can be found in
abundance in tree joints. The non-articulated joints that exist in trees have to withstand a combination
of static and dynamic loads, including self-weight, snow and wind loading. Burns et al. [27] tested
branch-trunk connections under bending from the tree species pinus radiata. They concluded that,
despite the brittleness of the cellulose constituent of the natural wood composite, the failure mode
of the tree joints was ductile. From an X-ray tomography study conducted on the branch-trunk
joint [27], three key design features were identified that contribute to the mechanical properties of
branch-trunk joints. These are embedded design, three dimensional (3D) fibre lay-up and variable
density, as illustrated in Figure 1.
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Figure 1. (a) Internal cone-shaped branch structure embedded in the tree centre; (b) 3D fibre lay-up;
and (c) fibre density variation across the joint [27].

The embedded design consists of a cone-shaped branch end that is embedded and enclosed in
the main trunk. This type of joint has the advantage of increasing the effective joint load transfer
area and thus reducing the stress acting on the joint interface. Moreover, any interfacial cracks are
forced to grow in mode II (shear) rather than in mode I (tension) and thus the toughness is increased.
The 3D fibre lay-up is made from trunk fibres that extend forward and laterally to the joint and
thus they fully enclose the branch, leading to a “ball and socket” joint configuration. Finally, fibre
density variation leads to the creation of an iso-strain condition in the joint by reducing the elastic
modulus mismatch between the fibres aligned with the branch and trunk directions. Figure 2 (modified
from [28]) illustrates a simple example of the forces and stress distribution acting on a branch-trunk
joint. Müller et al. [28] used the 3D Electronic Speckle Pattern Interferometry (ESPI) technique to
directly measure strains in a mechanically loaded branch–trunk joint. The authors concluded that the
branch–trunk joint in a Norway spruce tree is characterised by a homogeneous distribution of strain
(iso-strain condition) achieved by a combination of naturally optimised shape, material properties and
fibre orientation. This example demonstrates how nature achieves high structural efficiency using
its hierarchical design, a typical finding in biological structures. Here, the nano-, micro-, meso- and
macro-length scales synergistically interact in order to achieve the axiom of uniform strain [29].
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Burns et al. [27] used their study of tree joints to inspire a biomimetic composite T-joint,
following the embedded design concept. The biomimetic joints that they made had increased ductility
and damage tolerance. However, the joints sustained lower damage initiation loads because the
embedded design caused higher interlaminar stresses in the radius bend. Burns et al. [30] showed
that, by optimising the stacking sequence of the plies of the composite laminate in the radius bend,
the interlaminar tension and shear stresses can be reduced. This improved the onset of the damage
initiation load as well as the strength and the failure displacement of the composite T-joint.

2.1.2. Transitional Zones of Stiffness

The attachment of dissimilar materials is a major challenge due to the high levels of stress
concentration that arise at their interface. As an alternative to geometric complexity, microstructural
changes within the joint can give changes in stiffness across the interface to alleviate this stress
concentration. Such transitional zones of stiffness are typified by the tendon-to-bone attachment and
the mussel anchoring system described below. Another example is the hard jaws of marine polychaete
worms, which anchor to soft cuticles and the ligaments at their base [31]. The jaws exhibit distinct
mechanical gradients, contain molecular transition and proteins with histidine-rich domains [32].

Tendon-to-Bone Attachment

The tensile modulus of tendon in the direction of the muscle force is 200 MPa while it buckles in
compression. By contrast, bone has a tensile modulus of 20 GPa in both tension and compression [33].
To avoid stress concentrations associated with this large change in stiffness, the tendon-to-bone
insertion site is a functionally graded material with regard to its mechanical properties, extracellular
matrix composition (EMC), structural organization, and mineral content [34,35]. The tendon-to-bone
insertion site is additionally secured by the complex interdigitation of the calcified fibrocartilage layer
with the adjacent bone [36].

Four discrete types of tissue can be recognized in the tendon-to-bone insertion site under an optical
microscope [37]. These are tendon, fibrocartilage, mineralized fibrocartilage, and bone (Figure 3) [38].
The first zone consists of tendon proper, with properties similar to those found at the mid-substance of
the tendon. It consists of well aligned collagen type I fibres with small amounts of the proteoglycan
decorin [39]. The beginning of the transition from tendinous to bony material is marked by the second
zone, which consists of fibrocartilage. It consists of collagen types II and III, with small amounts of
collagen types I, IX, and X, and small amounts of the proteoglycans aggrecan and decorin [40–42].
The third zone consists of mineralized fibrocartilage that indicates the transition towards bony tissue.
In this zone, collagen type II is predominant. Collagen type X and aggrecan also exist in significant
amounts [40–42]. The fourth zone consists of bone. It is mainly made up of collagen type I with
a relatively high mineral content.
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Figure 3. Morphology of the supraspinatus tendon-to-bone insertion site [38].

Two major factors contribute to the tissue stiffness increase from the tendon to bone material.
Firstly, the linear increase in mineral concentration in collagen fibres stiffens the partially mineralized
collagen fibres [35,43]. Secondly, a reduction of the orientation distribution of the collagen fibres in the
transition from tendon to bone leads to tissue stiffening. The combination of these two factors leads to
stiffness variation across the insertion site, providing a way that nature attaches two dissimilar
materials through a functionally graded material composition. This gradual transition region
eliminates stress singularities, provides a smooth stress distribution, and thus reduces the stress
concentrations, improving the bond strength and decreasing the risk of fracture [44].

Mussel Anchoring System

One of the main defence mechanisms of mussels is their anchoring system, which is achieved by
byssus threads [45]. Byssus threads are produced in a byssus gland located in the base of the mussel’s
foot. While the thread is still liquid the tip of the foot presses onto the substratum and forms an adhesive
disc. The adhesive disc attaches the thread to the substrate. To provide greater adhesion, the shape of
the disc of a mytilus edulis mussel thread depends on the nature of the substratum [46]. The adhesive
disc can be flat and expansive on coarse and rock sediments, or have a more three-dimensional form
on fine sediments. Stress failures such as tearing within the pad, loss of adhesion or peeling can occur
at the attachment disc [47].

The byssus thread consists of two mechanically district regions; the proximal region, which is
highly extensible and wrinkled, and the less extensible and smooth distal region [48]. Each region
contains a different collagen type, with typical collagen amino-acid compositions [49]. The ends of the
chains of the stiffer distal part of the thread are comprised of silk-like domains. On the other hand,
the ends of the chains of the less stiff proximal part are comprised of elastin domains. In the cells
between the distal and proximal parts, there is a gradation of collagens with silk or elastin blocks.
Biomechanical and scanning electron microscopy (SEM) studies [50] have shown that the byssus
thread is a mechanically graded fibre with significant difference in stiffness throughout its length.
The structural differentiation between the elastic proximal end and the stronger and stiffer distal
end provides wave and water movement energy absorption and strong anchoring, even in the most
wave-exposed coastal areas.

2.1.3. Bridging Connections

While the above examples have been concerned with more-or-less rigid joints, there are many
situations in anatomy where relative movement between components is needed, particularly but
not always associated with locomotion. These joints typically use bridging connections, for example
ligaments, to provide the joining mechanism. But as well as movable joints, there are immovable
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joints which also use bridging connections to form the joint. The following examples from the human
anatomy illustrate the range of solutions that nature provides in these situations. There are three
primary types of joints in the human body, fibrous (immoveable or partially moveable), cartilaginous
(partially moveable) and synovial (freely moveable) [51].

Fixed Joints

Fibrous joints have collagen fibres that span the space between the parts. A gomphosis is an
immovable fibrous joint attaching tooth roots to the alveolar sockets in the jaw bones. The fibrous
periodontal ligaments bridging the gap consist of connective tissue of collagen fibres [52].

Sutures are another form of immovable fibrous joint that connect two stiff skeletal components to
each other via a thin layer of a dense fibrous connective tissue (compliant interfacial seam), and thus
provide flexibility to accommodate growth, respiration and/or locomotion [51,53–57]. Suture joints
have been investigated both experimentally [53,54] and numerically [55,58], showing the correlations
between the mechanical properties and the degree of interdigitation, commonly measured with the
suture complexity index (SCI) [54,59]. Understanding the underlying mechanisms influencing the
mechanical behaviour of suture joints is of significant interest for a wide variety of fields [56] such as
mechanics [60–63], materials [64], biophysics [65], mechanical design [66], evolutionary biology [67]
and biomimetics [68].

The nail is an opalescent window through to the vascular nail bed [69]. Anchoring of nails is
achieved by nail matrix (nail root), which can be divided into three main parts [70,71]; the dorsal
matrix, the intermediate matrix and the ventral matrix (nail bed). The strongest site of attachment of
the nail plate to the nail apparatus is the nail bed [72]. The vertical arrangement of the collagen fibres
of the nail bed creates a ligament-like connection between the epidermal basement membrane and the
phalangeal periosteum [73,74].

Partially Moveable Joints

A syndesmosis is a partially movable type of fibrous joint connecting two bones together by an
interosseus membrane (ligament that holds two bones together) [51]. Syndesmoses can be found
between the radius and ulna and between the tibia and fibula. The joint allows the tibia and fibula to
work together as a unit in the lower leg, while still permitting some motion of the joint.

Cartilaginous joints are partly moveable joints, where the bones are connected to each other by
pads of either fibro cartilage or hyaline cartilage [51]. There are two main types of cartilaginous
joints; synchondroses and sympheses, which are temporary and permanent joints, respectively.
Synchondroses joints exist at the ends of long bones. The articulating surfaces of the bones are bound
by hyaline cartilage. In long bones, the diaphysis and the epiphysis are separated by the cartilaginous
plate. Examples of sympheses are the joint between pubic bones [75,76] or the attachment between
vertebrae in the vertebral column by a band of fibrocartilage ring. These joints are characterised by
being able to maintain stability, because only minimal motion can occur. The vertebral column is able
to extend and flex due to the combination of these small movements.

Highly Moveable

Synovial joints are highly movable joints and they are the most common classification of joints
within the human body [77]. They all have a synovial capsule (collagenous structure) surrounding
the entire joint, a synovial membrane (the inner layer of the capsule) which secretes synovial fluid
(a lubricating liquid) and cartilage known as hyaline cartilage which pads the ends of the bones.
Synovial joints can be classified into three categories, depending on the degree of freedom of movement
that they permit (i.e., uniaxial, biaxial and triaxial). Depending on the joint shape, they are further
classified into six types. These are hinge [78–82], pivot, ball and socket [83–86], saddle [87–89],
ellipsoidal [90] and gliding [91,92].
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2.1.4. Hooks

The most well-known biomimetic example inspired by nature itself is the invention of Velcro
fasteners [93]. It was invented by George de Mestral in 1948 who was inspired by how a burr, with
its series of tiny hooks, stuck so tenaciously to his dog’s fur. It can be seen under the microscope
that the joint is based on the attachment between the tiny burr’s hooks caught by the hair of the
animal’s fur. In nature, the hook-like structures in plants serve two main functions [94]. These are to
support stems in a densely occupied environment [95] and to interlock with animal fur and feathers
for fruit and seed dispersal [96]. The structure of the burrs’ hooks and the interlocking attachment and
separation forces that they produce when they attach to the fur of animals has been studied by various
researchers [96–99].

2.1.5. Adhesives

In legged insects/animals the main way to obtain reaction forces, and thus locomotion, on various
substrates is by the attachment organs. This plays a more significant role when animals move on
steep, vertical or even inverted substrates, where adhesive forces are needed to prevent them from
falling down [100]. Gecko Tape [101] was inspired by the ability of gecko lizards [102–104] and some
spiders (e.g., evarcha arcuate [105]) to adhere to surfaces (independently of the orientation of the surface)
because of their millions of microscopic hairs existing on their toes. Van der Waals forces are exerted
from these flexible, tiny hairs and as a result they provide a powerful adhesive effect [106,107].

These attachment organs can be classified into claws, hairy pads and soft smooth pads [108,109].
Claws have been studied both experimentally and mathematically, focusing on the relationship
between the attachment forces of claws, their geometry, and substrate roughness [110]. Claws may
attach reliably only when the mean radii of the protrusions of the substrate are larger than the diameter
of the claw tips. By contrast, such attachment is unreliable on smooth substrates [110–113]. Thus,
to attach reliably on various inclined rough surfaces, many insects have evolved both claws and
adhesive pads on their feet [100]. Adhesive attachment organs such as hairy pads were developed by
flies [114], beetles [115] and geckos to generate adhesion by van der Waals or capillary forces [116],
while tree frogs [117–119], ants [120–123] and crickets [124] use soft smooth pads to generate adhesive
forces through capillary interactions. Song et al. [100] found that the synergy effect between the claws
and adhesive pads leads to much stronger attachment forces, as compared to the action of claw or
adhesive pads or even to the sum of both.

2.1.6. Insect Wing Joints

Insect wings have to withstand a combination of bending and torsional deformations during flight.
Wing deformability is of significant importance for the flight performance of insects and can define their
flight capabilities [125,126]. Wootton [127] and Newman [128] were among the first researchers who
described the influence of the wing design on the aerodynamic performance of insects. These authors
showed how members of the Odonata order (i.e., dragonflies and damselflies) use both active and
passive mechanisms with complex structures to control their deformations in flight. Passive mechanisms
play a most important role in the flight capabilities because of the wing architecture [128] and its material
properties/composition [129,130]. According to Rajabi et al. [129], the morphological adaptations that
are currently known and allow passive control of wings deformations are the venation pattern [131],
venational fractures [127], vein joints [128], thickened areas [127], fold and flexion lines [132–134],
material gradients [135–137], and spikes located in the vicinity of joints [128,135].

According to Fauziyah et al. [138,139], dragonfly wings are structurally stable due to their venous
framework, which form joints at vein-to-vein cross-over points. These cross joints can contribute to
arrest cracks that might occur at the thin membranous films, typically along the longitudinal axis
of the wing [140]. The veins are layered composite structures [141] mainly made from chitin (stiff)
and resilin (soft rubber-like protein) [142]. Resilin is highly elastic [143] and dominates in mobile
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joints. Thus the joint has the ability to return undamaged to its original state after flight-induced
deformation [137]. The main purpose of resilin is to absorb and store mechanical energy, providing
elasticity to the system [144]. From species-to-species, venous patterns are varied and from joint-to
joint-the resilin is distributed in different geometrical arrangements and volumes and across the span
of the wing [138].

2.2. Discussion of Natural Joints

The literature survey above has described a range of different natural joints, divided into different
joining methods. A theme common to a wide range of systems is how nature uses structural and
material complexity to ensure effective anchorage and stress dissipation in the joint site. Parallels
between different natural joints can be found related to this theme.

2.2.1. Structural Complexity

There are many examples where nature uses complex architecture, taking advantage of the way
that it can build in complexity from the bottom-up generation of structures. Such complexity can serve
to increase the structural efficiency of the joint and reduce the material investment, since this comes
with a biological cost. The majority of the material serves other functions apart from the load-carrying
requirement [145]. Thus, in both plant and tendon systems, a relatively small proportion of the
plant/tendon participates in the anchorage system. The corresponding imperative in engineering
systems is to increase joint efficiency so as to minimise the extra weight, or perhaps cost, associated
with the joint.

The root and tree network structures typify an obvious structural complexity, with the root
structure serving both a joining function and providing a mechanism to draw water and nutrients
from the soil. Looking at the gecko lizard, it relies on a complex hierarchical structure for the adhesive
properties of its feet. Structural complexity is similarly found in the tendon-to-bone attachment with
bony spicules radiating in all directions to facilitate load transfer. Even on a larger scale, tendons and
ligaments take advantage of structural complexity by not forming an isolated attachment onto a bone,
but instead blending several overlapping attachment sites to produce more stable anchorage [146].
In Achilles and patellar tendon attachments there is a substantial anisotropy of superficial trabeculae
that can be likened to a taproot of a tree. And, despite the fact that the trabecular network is usually
disregarded when tendon-to-bone attachment is considered, its structural geometry plays an essential
role in tendon-ligament anchorage and stress dissipation [34].

An additional strategy is to introduce geometric complexity in the form of scalloping at the
interface to increase the bonding between tissues. This approach is used for both the dentino-enamel
junction and the tendon-to-bone attachment [147].

2.2.2. Material Complexity

A closely related way of increasing joint efficiency in nature is to use microstructural or material
complexity, again using the sophisticated generation routes available for natural materials.

The tree trunk branch offers a botanical example of such an approach, using variations in fibre
density to give an iso-strain condition in the joint. Moreover, the transition zone solutions used in
tendon-to-bone and mussel attachments take this material complexity further by using significant
changes in local material composition and microarchitecture to ensure a smooth load transition and
shock-loading capability. Similarly the dentino-enamel junction uses a mineral content gradient to
increase the interfacial strength [147].

2.2.3. Taxonomy Chart of Natural Joints

Figure 4 shows a taxonomy chart covering the range of joints discussed above. The aim of this
chart is to categorise joints in nature between dissimilar materials taking account of the different
methods/functions used. The columns in the chart separate the joining methods, the joining elements
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of each method, and the motion permitted in each joint. The methods column defines an association
of each of the five joining methods listed with corresponding colours. Shades associated with the
subdivisions of the transition zone and miscellaneous joining methods are given in the right-hand
side of the methods column. Across each row individual examples of natural joint systems are linked
with different joining elements and permitted motions. The colours of these examples correspond to
the colours defined by the methods column. Because some of the joints use more than one joining
method, the joint box can be equally divided into parts with different colours. For example the mussel
anchoring system uses mechanical properties and EMC in a transition zone, and so is coloured in the
mechanical properties and EMC shades of blue. Similarly, the tendon-to-bone box consists of all the
four different blue shades, as it uses all these transition zone methods. The chart illustrates how there
are solution methods common to a range of situations, but also that there is a diversity of methods
with the details adapted to the individual case.
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2.3. Comparison between Natural and Engineering Joints

Both natural and man-made structures require joining of materials with severe property
mismatches. There are two options in engineering to avoid interfacial failure in these circumstances.
Firstly, the interaction energy can be increased across the interface. This is achieved by surface
treatment (primers and coupling) of the metal adherends prior to bonding [148] or through bio-inspired
surface texturing [149–152]. Secondly, sharp boundaries between the dissimilar materials can be
avoided by manufacturing functional gradients [44]. This is a new method that creates materials with
graded mechanical properties that are able to resist damage more effectively than their homogeneous
counterparts. Using gradients in man-made structures has several advantages, such as reducing stress
concentrations by eliminating stress singularities and developing smooth stress distributions, so as
to increase fracture toughness and improve bonding strength. Nature has evolved similar strategies
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to join tissues with dissimilar bulk material properties. Adopting the first manufacturing strategy
of increasing the interaction energy, the byssus thread of mussels contain specially modified amino
acids that form charge-transfer chelate complexes with surface oxides of the rocks and metals that they
are attached to [153,154]. The second manufacturing strategy of functional grading, exactly parallels
the tendon-to-bone attachment, where the two zones of fibrocartilage between tendon/ligament
and bone contribute to the stress dissipation at the attachment site by ensuring a gradual change
in the mechanical properties from a soft tendon or ligament to a hard bone tissue, as detailed in
Section 2.1.2 [155].

In summary, a biomimetic solution using a transitional zone of stiffness offers the potential to
provide a robust and efficient joint for engineering situations where there is a large material stiffness
mismatch. The challenge is to take these ideas from nature and to adapt them to practical engineering
joints. This is what the next section aims to do.

3. Bio-Inspired GFRP to Steel Joints

The idea of a transitional zone of stiffness between dissimilar materials used by natural joint
designs is applied in this section to adhesively bonded single-lap, double-lap and hybrid joints.
The aim is to evaluate the hypothesis that using the bio-inspired design strategy of a transitional zone
of stiffness across the overlap length of GFRP to steel joints can increase the strength of the joints.

The present study was triggered by the positive results obtained in previous work by the authors,
where a numerical investigation of carbon fibre reinforced plastic (CFRP) to steel single lap joints
(SLJ), using materials with linear elastic properties in the numerical models, was carried out [156].
The proposed SLJs considered a transitional zone of stiffness in the joint site to reduce the material
stiffness mismatch. All the proposed biomimetic solutions reduced the asymmetry of the stress
distribution along the bondline. By increasing the stiffness reduction in the metal part of the joint,
the stress reduction at the end of the bondline was increased with a maximum shear stress reduction
of 59%.

One way to achieve the stiffness variation in the overlap region of engineering joints is to gradually
decrease the stiffness of the metal part of the joint by perforating it. The concept of reducing the stiffness
of a steel plate using perforations was firstly proposed and patented by Unden and Ridder [157].
Related studies have been conducted by Melogranaa and Grenestedt [158], where perforated stainless
steel to glass fibre reinforced vinyl ester composite joints with different surface preparations, adhesives
and primers were experimentally investigated. Cao and Grenestedt [159] experimentally tested a
co-infused sandwich structure with composite (glass fibre) skins joined to a perforated steel hybrid
structure. The perforated concept was applied to co-infused perforated steel to CFRP hybrid joints
by Avgoulas and Sutcliffe [160]. The hybrid joints were numerically and experimentally investigated
under static mechanical testing. Compared to non-perforated joints, the CFRP-to-perforated joints
showed a 175% increase of joint strength [160]. Similar studies that remove material from the adherend
with the larger stiffness to increase the joint strength have been carried out by Hart-Smith [161],
who was the pioneer of the development of adhesively-bonded scarf and stepped-lap joints with
dissimilar adherends. Sato and Ikegami [162] analytically and experimentally investigated the strength
of single-lap and scarf joints between CFRP and steel adherends. They found that for equal adherend
thickness and a lap length to adherend thickness ratio (l/t) less than 5, the scarf joints showed a 65% to
150% increase of joint strength compared to the single-lap joints. However, when l/t was around 10,
the failure strength of the single-lap joints exceeded that of scarf joints.

The novelty of the present study is that a numerical finite element model is used to identify the
optimum variation in material stiffness which maximises the strength of the joint. The assumption
is that such an approach can be realised in practice using a steel perforation pattern (Figure 5a) or a
non-linear steel taper (non-linear scarf joint; Figure 5b) that follows the optimum material stiffness
variation, leading to an engineering joint design with an increased strength.
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Figure 5. Example of: (a) a composite to perforated steel joint; and (b) composite to non-linear taper
steel scarf joint.

Figure 6 illustrates the three joint configurations considered for the present study: single lap joints
(SLJ), double lap joints (DLJ) and hybrid joints. The composite part of the joints was modelled as
a unidirectional GFRP material with a Young modulus in the loading direction E1GFRP = 20 GPa.
The Young modulus of the steel material was taken as 200 GPa and the Poisson ratio as 0.28.
The proposed solutions offered a transitional zone of stiffness in the overlap region (OL) of the
metal part to reduce the material stiffness mismatch at the joint site. Different sets of variable stiffness
functions were investigated to optimise the material stiffness variation, identifying the stiffness
function which minimises potential failure of the joint. The stiffness E(x) of the metal part was varied
as a function of the position x along the OL of the joint, from a minimum value of ESmin at the left
end, to a maximum value of ESmax at the right end of the joint. The value of ESmax was held fixed at
200 GPa, while ESmin was chosen to take values of 10, 20, 40, 70 or 100 GPa. The variation within the
overlap between these extreme stiffnesses at the two ends was described using parabolic and s-shaped
functions, with parameters a and b defining their shape as described in detail in the Materials and
Methods Section below. It is believed that, in practice, non-linear scarf joints can be more reliable than
the perforated steel configuration when the minimum stiffness of the steel (ESmin) has to reach very
low values (ESmin/ESmax less than 10%).
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3.1. Materials and Methods

3.1.1. Finite Element Model Implementation

The composite part of the joints was modelled as a unidirectional GFRP material with material
properties given in Table 1. To calculate accurately the load carrying capacity of the adhesive joints,
cohesive elements were used for the simulation [163,164]. The adhesive was modelled with a single
layer of four-node, two-dimensional cohesive elements (COH2D4) of thickness 0.1 mm, compatible
with the CPE4I elements used for the GFRP and steel parts [165]. A triangular cohesive zone
degradation formulation was chosen because of its simplicity, widespread use for investigation
purposes, especially for brittle adhesives [166], and availability in Abaqus. The material properties
used to define the cohesive law are summarised in Table 2 [166,167], using the properties for the
adhesive Araldite AV138 (Huntsman Advanced Materials Ltd, Cambridge, UK). A quadratic nominal
stress criterion was used to define damage initiation and an energy power-law (quadratic) mixed-mode
criterion was used to define damage evolution. A geometrically non-linear static general analysis was
performed in Abaqus/Standard (Dassault Systèmes, Paris, France). Fixed boundary conditions were
applied to the GFRP end of the joint. A displacement ux was applied to the steel end of the model
together with a lateral restraint.

Table 1. Material properties of the GFRP adherends.

E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 G12 (GPa) G13 (GPa) G23 (GPa)

20 5 5 0.3 0.28 0.28 2 1.5 1.5

Table 2. Properties of the adhesive Araldite AV138.

Property Value

Young’s modulus, E (GPa) 15.9
Shear modulus, G (GPa) 6.0

Poisson’s ratio, ν 0.35
Tensile ultimate strength, σf (MPa) 46
Shear ultimate strength, τf (MPa) 63

Mode I strain energy release, GIC (J/m2) 180
Mode II strain energy release, GIIC (J/m2) 380

3.1.2. Stiffness Variation in Overlap

The stiffness variation as a function of position x within the overlap region between the extreme
stiffnesses at the two ends was described using parabolic and s-shaped functions as defined by
Equations (1) and (2), respectively.

Epxq “ ESmin ` pESmax ´ ESminq

ˆ

x
xc

˙b
(1)

Epxq “ ESmin `
ESmax ´ ESmin

1` e´a px´ xc{2q
(2)

where xc is the overlap length equal to 75 mm. The locations with x = 0 and xc = 0.075 correspond to
the left and right end of the overlap length, respectively. The parameters a and b defining the shape
of the curves were spaced logarithmically. These stiffness variations were chosen for their simplicity
to investigate the effect of the transitional zone of stiffness on the joint strength. Future research
should include approaches such as topology optimisation to identify the best stiffness variation
case. Figure 7 illustrates the resulting stiffness variations within the overlap length for the chosen
values of a and b. The user subroutine “USDFLD“ in Abaqus was used to implement this stiffness
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variation. For comparison, reference joints were modelled with the same configurations but without
any stiffness variation.
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3.2. Results

Figure 8 summarises the results for the three joint configurations of the predicted failure strength,
for a parabolic distribution of stiffness in the overlap region. Results for different values of the
minimum stiffness ESmin and b shape parameter are plotted and compared with the reference
configuration without stiffness variation in the OL. The horizontal axes are separated into three
parts, each section describing one of the joint configurations. The horizontal axes show the minimum
stiffness (ESmin) as a percentage of the maximum stiffness (ESmax) in the steel part of the joint within
the reduced-stiffness overlap length, corresponding to the different values of ESmin considered. Thus a
value of ESmin/ESmax equal to 50% corresponds to ESmin equal to 100 GPa, while a 10% value relates
to calculations where the steel was reduced down to the stiffness of the GFRP adherend (20 GPa) at
the end of the overlap region. A set of curves giving the variation of strength with stiffness reduction
are given for the chosen range of values of the parameter b defining the shape of the variation in
stiffness through the OL. For comparison with the proposed bio-inspired joints, the maximum loads
of the “REF” reference joints (i.e., with no stiffness variation in the OL) are included on Figure 8.
Corresponding results for the s-shaped variation in stiffness reduction are given in Figure 9 for a range
of values of a defining the stiffness variation.

From Figures 8 and 9, it can be seen that the joint strength increases as the reduced stiffness of
the steel adherend approaches the stiffness of the GFRP adherend. There is a significant effect of the
form of the stiffness variation on the strength, and the potential for increased strength is greater in the
double lap and hybrid joints, compared with the single lap joint. Finally, for all the cases, s-shaped
stiffness variation functions give higher (or similar) joint strengths compared to parabolic stiffness
variation functions with the same stiffness range. SLJs with the stiffness in the overlap varying from
10 to 200 GPa (ESmin/ESmax equal to 5%) and following the s-shaped function with a = 1 show a 32%
increase of the maximum load compared to the reference joints. On the other hand, there is a 118% and
100% strength increase for DLJs and hybrid joints comparing to the reference joints, respectively, for
the optimum stiffness variation. These increases in strength for the GFRP-to-steel joints are comparable
with measured increases of 175% for perforated CFRP-to-steel joints [160] and between 65% and 150%
for some CFRP-to-steel scarf joint configurations [162]. Similar qualitative improvements were noted
by Hart-Smith [161], although no direct comparison figures were provided.
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Figure 8. Comparison of the numerical maximum load between reference (REF) and bio-inspired joints
with parabolic stiffness variations.

Figure 10 shows the load versus displacement results for DLJs with the stiffness in the overlap
varying from 20 to 200 GPa (i.e., ESmin/ESmax equal to 10%; E1GFRP = ESmin) and following the parabolic
stiffness distribution for different values of the b shape parameter. Both the reference and bio-inspired
joints show a linear response until the maximum load is obtained. As the b shape parameter increases,
the joints fail at a higher load (see Figures 8 and 10), but become less stiff and failure occurs in a more
catastrophic way (Figure 10). According to the simulations, failure initiated at the left edge of the
overlap length of the DLJs, in the cohesive zone elements region, just after the peak load was obtained.
The damage progression in the cohesive elements was evaluated using the stiffness degradation in
shear (SDEG) output variable.
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4. Conclusions

An overview of natural joint systems has been presented. This literature survey identified a range
of different methods that nature uses to create joints between materials. The different natural joining
methods were summarised in a taxonomy chart. When joining dissimilar materials, a common solution
found in nature is to use a transitional zone of stiffness in the insertion site of the joint, which offers
less material mismatch. This biomimetic-inspired solution offers the prospect of reducing stress
concentrations and can lead to new engineering joining designs.

A numerical investigation of bio-inspired joints with a transitional zone of stiffness between
GFRP and steel adherends has been undertaken to show the potential of such joints in engineering.
An optimisation procedure was carried out to identify the material stiffness variation within the steel
overlap region which gives the joint with the highest strength. According to the results, the follow
conclusions can be drawn:

‚ An increase in the joint strength was observed as the reduced stiffness of the steel adherend
approached the stiffness of the GFRP adherend.

‚ Compared to reference joints (with no transitional zone of stiffness between the adherends),
bio-inspired joints showed a 118% increase of joint strength for the best case.

‚ The strength increase depends significantly on the form of stiffness variation within the
overlap region.

‚ The potential for increased strength is greater in the double lap and hybrid joints, compared to
the single lap joint.

Supplementary Materials: Additional data associated with the analyses are available online at Cambridge
University’s repository: http://dx.doi.org/10.17863/CAM.564.
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