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It is a classical theorem of Liouville that Hamiltonian systems preserve volume in phase 
space. Any symplectic Runge–Kutta method will respect this property for such systems, but 
it has been shown by Iserles, Quispel and Tse and independently by Chartier and Murua 
that no B-Series method can be volume preserving for all volume preserving vector fields. 
In this paper, we show that despite this result, symplectic Runge–Kutta methods can be 
volume preserving for a much larger class of vector fields than Hamiltonian systems, and 
discuss how some Runge–Kutta methods can preserve a modified measure exactly.

© 2016 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The construction of numerical schemes for solving ordinary differential equations (ODEs) such that some qualitative 
geometrical property of the analytical solution is preserved exactly by the numerical solution is an area of great interest 
and active research today as part of the field of Geometric Integration. The most developed topic in this context is that of 
integrating Hamiltonian systems while preserving the symplecticity of the flow, and it was found that a class of Runge–Kutta 
(RK) methods, now called symplectic Runge–Kutta (SRK) methods, provides a convenient way to achieve this [6, §VI.4].

It is a classical theorem due to Liouville that Hamiltonian systems are also volume preserving: for all bounded open 
sets � of phase space, the flow map ϕt satisfies vol(ϕt(�)) = vol(�) for all t . Equivalently, the Jacobian determinant, 
det(ϕ′

t(x)), is 1 for all x and t [6, VI.9]. Any symplectic mapping of phase space has this property, and therefore SRK methods 
are volume preserving for Hamiltonian systems. Beyond Hamiltonian systems, an ODE ẋ = f (x) is volume preserving if 
and only if f is divergence free (sometimes called source free). General volume preservation like this can be found in 
applications involving incompressible fluid flows and vorticities, ergodic theory and statistical mechanics, and problems in 
electromagnetism [5,7,12].

One can ask if any SRK methods are volume preserving for all divergence free vector fields f , and it has been known for 
20 years that the answer is no. Feng and Shang showed that no RK method can be volume preserving even for the class 
of linear divergence free vector fields [5]. It was later shown by Iserles, Quispel and Tse and independently by Chartier and 
Murua that no B-Series method can be volume preserving for all divergence free vector fields [3,7]. However, Hairer, Lubich 
and Wanner have considered separable divergence free vector fields of the form

f (x, y) = (u(y), v(x))�, (HLW)
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for functions u : Rn → R
m , v : Rm → R

n [6, Thm. 9.4]. There the authors prove that any SRK method with at most two 
stages (and any composition of such methods) is volume preserving for these systems, giving a hint at the fact that SRK 
methods can be volume preserving for a much larger class of vector fields than just Hamiltonian systems.

As we will show in the introduction, vector fields f in that class must satisfy the determinant condition

det

(
I + h

2
f ′(x)

)
= det

(
I − h

2
f ′(x)

)
for all h > 0, x ∈R

n, (det)

where I denotes the n × n identity matrix. In order to substantiate this claim and in anticipation of some of the results to 
be discussed later, we consider the following three Runge–Kutta methods x �→ φh(x) which have been shown to preserve 
certain measures μ(x)dx for quadratic Hamiltonian vector fields [2]:

1. The implicit midpoint rule

φh(x) − x

h
= f

(
φh(x) + x

2

)
, with μ(x) = 1,

for which the condition (det) was already studied in [11],
2. the trapezoidal rule

φh(x) − x

h
= 1

2

(
f (x) + f (φh(x))

)
, with μ(x) = det

(
1 − h

2 f ′(x)
)

, (1.1)

3. and Kahan’s method (restricted to quadratic vector fields)

φh(x) − x

h
= 2 f

(
x + φh(x)

2

)
− 1

2 f (x) − 1
2 f (φh(x)), with μ(x) = det

(
1 − h

2 f ′(x)
)−1

. (1.2)

These quadratic Hamiltonian vector fields satisfy the determinant condition (det) and we will establish in section 5 that 
this condition is essential for these measure preservation properties. Indeed, using the chain rule, we compute the Jacobian 
matrix of the midpoint rule as

φ′
h(x) = I + h

2
f ′

(
x + φh(x)

2

)(
I + φ′

h(x)
)
,

which in turn gives the condition for volume preservation

det(φ′
h(x)) = det(I + h

2 f ′((x + φh(x))/2)
)

det(I − h
2 f ′((x + φh(x))/2)

) = 1.

Note that in agreement with [5], it is clear that for the implicit midpoint rule we cannot consider a class of vector fields 
any larger than this and realistically expect volume preservation. Hence we restrict our discussion to vector fields satisfying 
this determinant condition (det). These functions, as we show later, are divergence free and include Hamiltonian systems 
and HLW separable systems described above.

The contributions of this paper are to highlight the relevance of the determinant condition (det) for volume preservation 
by Runge–Kutta methods, and to introduce and prove results regarding volume preservation for some classes of vector fields 
lying between Hamiltonian vector fields and those satisfying the determinant condition (det). Not only does this further the 
understanding of Runge–Kutta methods and volume preservation of numerical methods in general, but it gives examples of 
where in applications one could in principle use Runge–Kutta methods and preserve volume for a non-Hamiltonian system. 
Furthermore, we discuss how Runge–Kutta methods can also preserve a modified measure exactly. The importance of such 
methods is that the dynamics of the numerical solution lie in the class of measure preserving systems, giving a qualitative 
advantage over methods lacking this property [9]. It should be noted that there are general approaches to constructing 
volume preserving splitting methods for a general divergence free vector field [5,6,12], but Runge–Kutta methods offer 
practical and theoretical simplicity and familiarity.

2. Properties of Runge–Kutta methods

This section is fairly technical, but it provides us with the necessary tools for the discussion in sections 3 and 4. We use 
the following notation to describe a Runge–Kutta method for the autonomous system ẋ = f (x). We assume f is continuously 
differentiable throughout the paper. For each step-size h, a s-stage Runge–Kutta method provides a map φh : Rn → R

n , 
defined by

φh(x) = x + h
s∑

bi f (ki),
i=1
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where the stages ki satisfy

ki = x + h
s∑

j=1

aij f (k j), for i = 1, . . . , s.

As usual, we consolidate the bi ’s and aij ’s into the Butcher tableau consisting of the vector b and the matrix A. We make 
use of the Kronecker product throughout, which for A ∈R

n×n and B ∈R
m×m is defined to be

A ⊗ B =
⎛
⎜⎝

a11 B · · · a1n B
...

. . .
...

an1 B · · · ann B

⎞
⎟⎠ ∈R

nm×nm.

Lemma 2.1. The Jacobian matrix of a RK method can be written as

φ′
h(x) = I + h(b� ⊗ I)F (Is ⊗ I − h(A ⊗ I)F )−1(1 ⊗ I), (2.1)

with determinant

det(φ′
h(x)) = det(Is ⊗ I − h((A − 1b�) ⊗ I)F )

det(Is ⊗ I − h(A ⊗ I)F )
, (2.2)

where F = diag( f ′(k1), . . . , f ′(ks)), 1 is an s × 1 vector of 1’s and Is is the s × s identity matrix.

Proof. Computing directly, we find

φ′
h(x) = I + h

s∑
i=1

bi f ′(ki)k
′
i(x) = I + h(b� ⊗ I)F (k′

1(x), . . . ,k′
s(x))�. (2.3)

By definition of the stages ki , the derivatives k′
i(x) satisfy⎛

⎜⎜⎜⎝
I − ha11 f ′(k1) −ha12 f ′(k2) · · · −ha1s f ′(ks)

−ha21 f ′(k1) I − ha22 f ′(k2) · · · −ha2s f ′(ks)
...

...
. . .

...

−has1 f ′(k1) −has2 f ′(k2) · · · I − hass f ′(ks)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

k′
1(x)

k′
2(x)
...

k′
s(x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

I
I
...

I

⎞
⎟⎟⎟⎠ .

Written more compactly using Kronecker products, this is

(Is ⊗ I − h(A ⊗ I)F )(k′
1(x), . . . ,k′

s(x))� = 1 ⊗ I. (2.4)

The form of the Jacobian matrix can now be found by substituting (2.4) into (2.3).
For the determinant, use the block determinant identity

det(U )det(X − W U−1 V ) = det

(
U V
W X

)
= det(X)det(U − V X−1W ) (2.5)

on the expression (2.1) with U = Is ⊗ I − h(A ⊗ I)F , V = (1 ⊗ I), W = −h(b� ⊗ I)F and X = I . �
We wish to understand for which vector fields f and which Runge–Kutta methods defined by A and b, the determinant 

(2.2) is unity. As one might expect, this turns out to be simpler for symplectic Runge–Kutta methods. Now, for the purpose 
of exposition, we restrict to methods described in the following definition and instruct the reader in how certain results can 
be proven for general SRK methods at the end of the section.

Definition 2.2. A SRK method is said to be a special symplectic Runge–Kutta method (SSRK) if b j 	= 0 for all j, so that the 
Butcher tableau may be written A = 1

2 (� + 11�)B , where B = diag(b) and � is a skew-symmetric matrix.

This definition is reasonable because if b j 	= 0 for all j, then the matrix M = B A + A�B − bb� is zero (which implies 
the method is symplectic) if and only if � is skew-symmetric. The expression 1

2 (� + 11�)B therefore constitutes a normal 
form for most SRK methods of interest [6].

Lemma 2.3. An s-stage SSRK method is volume preserving for ẋ = f (x) if and only if

det(Is ⊗ I − h(A ⊗ I)F ) = det(Is ⊗ I + h(A� ⊗ I)F ), (2.6)

where F = diag( f ′(k1), . . . , f ′(ks)).
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Proof. The equation M = 0 can be written −A� = B(A − 1b�)B−1. Hence

det(Is ⊗ I + h(A� ⊗ I)F ) = det(Is ⊗ I − h(B(A − 1b�)B−1 ⊗ I)F )

= det(Is ⊗ I − h(B ⊗ I)(A − 1b�) ⊗ I)F (B ⊗ I)−1)

= det(Is ⊗ I − h((A − 1b�) ⊗ I)F )

The result now follows from Lemma 2.1. �
When s = 1, the only SSRK method is the implicit midpoint rule. In this case, Lemma 2.3 gives the determinant condition 

(det) from the introduction.
When s = 2, we have a three-parameter family of SSRK methods, which reduces to two-parameter if we impose the 

consistency condition b1 + b2 = 1. Now Lemma 2.3 gives the condition

det

(
I − ha11 f ′(k1) −ha12 f ′(k2)

−ha21 f ′(k1) I − ha22 f ′(k2)

)
= det

(
I + ha11 f ′(k1) ha21 f ′(k2)

ha12 f ′(k1) I + ha22 f ′(k2)

)
. (2.7)

Applying the block determinant identity (2.5), this boils down to

det(I − ha11 f ′(k1) − ha22 f ′(k2) + h2 det(A) f ′(k1) f ′(k2))

= det(I + ha11 f ′(k1) + ha22 f ′(k2) + h2 det(A) f ′(k1) f ′(k2)). (2.8)

We were able here to simplify the identity (2.5) because the top-left block (I − ha11 f ′(k1)) and the bottom-left block 
(−ha21 f ′(k1)) commute. This cannot be done for s ≥ 3.

These next three lemmata give some basic operations that can be performed on the vector field which send volume 
preserving ODEs to volume preserving ODEs, and effect a simple change in the Jacobian determinant of some RK methods 
for general vector fields.

Lemma 2.4. Let f : Rn → R
n and define a linear change of variables f̃ (x) = P f (P−1x) for some invertible matrix P . Then the RK map 

φ̃h for solving ẋ = f̃ (x) satisfies

φ̃h(x) = Pφh(P−1x), φ̃′
h(x) = Pφ′

h(P−1x)P−1. (2.9)

Lemma 2.5. Let u :Rm →R
m, v :Rn+m →R

n and define f :Rm+n → R
m+n by

f (x, y) =
(

u(x)
v(x, y)

)
. (2.10)

Now let φh : Rn+m → R
n+m be a one-stage RK map for solving (ẋ, ẏ)� = f (x, y), ψh : Rm → R

m that for solving ẋ = u(x), and 
χh : Rn+m →R

n that for solving ẏ = v(x, y) where x is treated as a parameter. Then

φh(x, y) =
(

ψh(x)
χh(k1(x), y)

)
, (2.11)

and consequently

det(φ′
h(x, y)) = det(ψ ′

h(x))det(∂yχh(k1(x), y)),

where k1(x) = x + ha11u(k1(x)) is the internal stage of the RK method ψh(x) and ∂y denotes the derivative with respect to the y
coordinate.

Proof. The full method is

φh(x, y) =
(

x
y

)
+ hb1

(
u(k1(x))

v(k1(x), l1(k1(x), y))

)
, (2.12)

with the internal stages(
k1(x)

l1(k1(x), y)

)
=

(
x
y

)
+ ha11

(
u(k1(x))

v(k1(x), l1(k1(x), y))

)
.

The methods applied to each component of the Rn+m dimensional system are given by(
ψh(x)

χh(x, y)

)
=

(
x
y

)
+ hb1

(
u(k1(x))

v(x, l1(x, y))

)
. (2.13)
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Comparing (2.12) with (2.13) yields the result (2.11). To prove the last part, note that the Jacobian matrix has block struc-
ture

φ′
h(x, y) =

(
ψ ′

h(x) 0
∂x(χh(k1(x), y)) ∂y(χh(k1(x), y))

)

and so the determinant det(φ′
h(x, y)) is the product of the determinants of the diagonal blocks. �

For some simple vector fields, this can be generalised to certain s-stage methods. Note that the notation for χh is 
different to that for Lemma 2.5.

Lemma 2.6. Let u :Rm →R
m, v :Rn → R

n, w :Rm → R
n and define f : Rm+n →R

m+n by

f (x, y) =
(

u(x)
w(x) + v(y)

)
. (2.14)

Now let φh(x, y) be the RK map for solving (ẋ, ẏ)� = f (x, y), ψh(x) that for solving ẋ = u(x), and χh(c, y) that for solving ẏ =
c + v(y). Define ci = ∑

j ai j . If the Butcher tableau is such that

δ j(i,k) = aij − akj

ci − ck
1 ≤ i, j,k ≤ s, (2.15)

is finite and independent of distinct i and k for each j then there exist functions dh, eh, ch : Rm → R
n such that

φh(x, y) =
(

ψh(x)
χh(dh(x), y + heh(x)) + hch(x)

)
for all y. (2.16)

Consequently,

det(φ′
h(x, y)) = det(ψ ′

h(x))det(∂yχh(dh(x), y + heh(x))). (2.17)

Proof. Write φh(x, y) = (ψh(x), σh(x, y)). Note that σh(x, y) 	= χh(w(x), y), but they are related as follows.

σh(x, y) = y + h
s∑

i=1

bi w(ki) + h
s∑

i=1

bi v(li(w(k1), . . . , w(ks), y)), (2.18)

χh(c, y) = y + h
s∑

i=1

bic + h
s∑

i=1

bi v(li(c, . . . , c, y)),

with stage values

li(ζ1, . . . , ζs, y) = y + h
s∑

j=1

aijζ j + h
s∑

j=1

aij v(l j(ζ1, . . . , ζs, y)).

Now let d be an arbitrary number. Then we have for each i,

li(w(k1), . . . , w(ks), y) = y + hei + h
s∑

j=1

aijd + h
s∑

j=1

aij v(l j(w(k1), . . . , w(ks), y)),

where ei = ∑s
j=1 aij(w(k j) − d). Hence

li(w(k1), . . . , w(ks), y) = li(d, . . . ,d, y + hei). (2.19)

We want to choose d such that ei = ek∀i, k. Equivalently,

s∑
j=1

aij(w(k j) − d) =
s∑

j=1

akj(w(k j) − d) for all i 	= k.

Solving for d we find

d =
s∑

w(k j)

(
aij − akj

ci − ck

)
for all i 	= k.
j=1
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This will only give us a unique finite value of d no matter what values w(ki) take if the value of δ j(i, k) is finite and 
independent of distinct i and k for every j, which is given by assumption. Hence we can set dh(x) = d, eh(x) = e1 and by 
(2.19), we write (2.18) as

σh(x, y) = y + h
s∑

i=1

bi w(ki) + h
s∑

i=1

bi v(li(dh, . . . ,dh, y + heh))

= (y + heh) + h
s∑

i=1

bidh + h
s∑

i=1

bi v(li(dh, . . . ,dh, y + heh)) + h

(
s∑

i=1

bi(w(ki) − dh) − eh

)

= χh(dh(x), y + heh(x)) + hch(x),

where ch(x) = (∑s
i=1 bi(w(ki) − dh) − eh

)
. The factorisation of the determinant is evident from the block structure of the 

Jacobian matrix

φ′
h(x, y) =

(
ψ ′

h(x) 0
� ∂y(χh(dh(x), y + heh(x)) + hch(x))

)
. �

Remark 2.7. Let us shed some light on the meaning of (2.15) being finite and independent of distinct i and k for each j. 
The finiteness implies that the method has ci 	= ck for all i 	= k, which is known as nonconfluency [6]. For two-stage SSRK 
methods, condition (2.15) is satisfied if the method is consistent and � 	= 0. There is a one-parameter family of self-adjoint 
three-stage SSRK methods of order four that satisfy the condition. The three-stage Gauss–Legendre method, however, does 
not belong to this class.

Definition 2.8. A vector field f : Rn+m → R
n+m possesses a linear foliation if there exists a linear change of variables as in 

Lemma 2.4 such that f is as in (2.10) from Lemma 2.5 for some functions u and v . Such vector fields are called linearly 
foliate. See [8] for general Lie group foliations in the context of Geometric Integration.

Remark 2.9. For general SRK methods, the condition in Lemma 2.3 along with the condition with A replaced by A − 1b�
is sufficient for volume preservation. This result can be obtained along the lines of [6, Thm. 9.4] regarding separa-
ble systems (HLW), as follows. Consider the foliation ẋ = f (x), ẏ = − f ′(x)� y, which is Hamiltonian with respect to 
H(x, y) = y� f (x). Then, using the notation of Lemma 2.6, the Jacobian matrix of the Runge–Kutta map has block struc-

ture 
(

φ′
h(x) 0
� ∂yσh(x, y)

)
. As in [6, Thm. 9.4], since the vector field is Hamiltonian, a SRK method will produce a sym-

plectic map, which implies det(φ′
h(x)) det(∂yσh(x, y)) = 1. Hence to show that det(φ′

h(x)) = 1 it suffices to show that 
det(φ′

h(x)) = det(∂yσh(x, y)). Computing these two sides as in Lemma 2.1, using the block determinant relation and equating 
numerators and denominators, gives the 2 conditions mentioned above.

3. Classification of volume preserving vector fields

Definition 3.1. We define the following classes of vector fields on Euclidean space using vector fields f (x, y) =
(u(x), v(x, y))� possessing linear foliations as in Definition 2.8. The classes F (∞) and F (2) are defined recursively – for 
complete rigour, an inductive construction, beginning from the trivial base class containing only zero vector fields, can be 
easily performed.

H =
{

f such that there exists P such that for all x, P f ′(x)P−1 = − f ′(x)�
}

,

S =
{

f such that there exists P such that for all x, P f ′(x)P−1 = − f ′(x)
}

,

F (∞) =
{

f (x, y) = (u(x), v(x, y))� where u ∈ H ∪F (∞) and there exists P such that for all x, y

P∂y v(x, y)P−1 = −∂y v(x, y)�
}

,

F (2) =
{

f (x, y) = (u(x), v(x, y))� where u ∈ S ∪H∪F (2) and there exists P such that for all x, y

either P∂y v(x, y)P−1 = −∂y v(x, y)� or P∂y v(x, y)P−1 = −∂y v(x, y)
}

,

D =
{

vector fields satisfying det(I + h

2
f ′(x)) = det(I − h

2
f ′(x)) for all h > 0 and all x

}
.

Lemma 3.2. The set H contains all vector fields of the form f (x) = J−1∇H(x) where J is constant and skew-symmetric. All SRK 
methods are volume preserving for vector fields in H.
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Proof. For the first part, note that if f (x) = J−1∇H(x), then J f ′(x) J−1 = ∇2 H(x) J−1 = − f ′(x)� . For the second part, let 
A ∈R

s×s and P be such that for all x, P f ′(x)P−1 = − f ′(x)� . Then using the notation of Lemma 2.3,

det(Is ⊗ I − h(A ⊗ I)F ) = det(Is ⊗ I − h(Is ⊗ P )(A ⊗ I)(Is ⊗ P−1)(Is ⊗ P )F (Is ⊗ P−1)) (3.1)

= det(Is ⊗ I + h(A ⊗ I)F �) (3.2)

= det(Is ⊗ I + hF (A� ⊗ I) (transpose) (3.3)

= det(Is ⊗ I + h(A� ⊗ I)F ) (Sylvester’s law). (3.4)

By Lemma 2.3 and Remark 2.9, all SRK methods are volume preserving. �
Lemma 3.3. The set S contains all separable HLW systems i.e. f (x, y) = (u(y), v(x))� . All SRK methods with at most 2 stages, and 
compositions thereof, are volume preserving for vector fields in S .

Proof. For the first part, note that if f (x, y) = (u(y), v(x))� , then D f ′(x, y)D−1 = − f ′(x, y) where D = diag(Im, −In). For 
the second part, let A ∈ R

2×2 and P be such that for all x P f ′(x)P−1 = − f ′(x). Then for the two stages k1, k2 of the SRK 
method,

det(I − ha11 f ′(k1) − ha22 f ′(k2) + h2 det(A) f ′(k1) f ′(k2))

= det(I − ha11 P f ′(k1)P−1 − ha22 P f ′(k2)P−1 + h2 det(A)P f ′(k1)P−1 P f ′(k2)P−1)

= det(I + ha11 f ′(k1) + ha22 f ′(k2) + h2 det(A) f ′(k1) f ′(k2)).

By (2.8) and Remark 2.9, all 2-stage SRK methods are volume preserving. To complete the proof, note that a 1-stage SRK 
method is equivalent to a 2-stage SRK method with two equal stages, and compositions of volume preserving maps are also 
volume preserving. �
Lemma 3.4. The inclusions H⊂F (∞) ⊂F (2) ⊂D and S ⊂F (2) ⊂D hold.

Proof. H ⊂ F (∞) ⊂ F (2) and S ⊂ F (2) are clear by considering trivial foliations in which n + m = m. We will show that 
S ⊂D, H ⊂D and that D is closed under the employed recursive process leading to linearly foliate systems.

For f ∈ S , det(I + h
2 f ′(x)) = det(I + h

2 P f ′(x)P−1) = det(I − h
2 f ′(x)).

For f ∈H, det(I + h
2 f ′(x)) = det(I + h

2 P f ′(x)P−1) = det(I − h
2 f ′(x)�) = det(I − h

2 f ′(x)).

Let f ∈ D and define f̃ (x) = P f (P−1x) for an invertible matrix P . Then det(I + h
2 f̃ ′(x)) = det(I + h

2 P f ′(P−1x)P−1) =
det(I + h

2 f ′(P−1x). Doing the same with a − instead of a + shows that f̃ ∈D.
Let f (x, y) = (u(x), v(x, y))� where u ∈D and y �→ v(x, y) ∈D for all x. Then

det(I + h

2
f ′(x, y)) = det

(
I + h

2 u′(x) 0
h
2 ∂x v(x, y) I + h

2 ∂y v(x, y)

)
(3.5)

= det(I + h

2
u′(x))det(I + h

2
∂y v(x, y)). (3.6)

Doing the same with a − instead of a + shows that f ∈D. �
Theorem 3.5. The following are equivalent.

(i) f ∈D
(ii) det(I + zf ′(x)) = det(I − zf ′(x)) for all z ∈C and all x

(iii) The non-zero eigenvalues of f ′(x), counting multiplicities, come in positive-negative pairs
(iv) tr( f ′(x)2k+1) = 0 for all x and k = 0, 1, 2, . . .

Proof. (i) ⇐⇒ (ii): Assuming (i), for every x, p(z) = det(I + zf ′(x)) − det(I − zf ′(x)) is a polynomial in z that is zero for 
infinitely many values of z = h/2 ∈R+ . By the Fundamental Theorem of Algebra, p(z) = 0 for all z ∈ C. The converse follows 
from setting h = 2z ∈R+ ⊂C.

(ii) =⇒ (iii): By triangularisation we can see that for every x, the polynomial q(z) = det(I − zf ′(x)) is equal to (1 −
zλ1) · · · (1 − zλr) where λ1, . . . , λr are the non-zero eigenvalues of f ′(x). If (i) holds, then q(z) = q(−z), and the roots 1/λi
of q come in positive-negative pairs. Hence the eigenvalues λi do too.

(iii) =⇒ (iv): For all x, tr( f ′(x)2k+1) = λ2k+1
1 + · · · + λ2k+1

r where λ1, . . . , λr are the non-zero eigenvalues of f ′(x). Hence 
if the non-zero eigenvalues come in positive-negative pairs then tr( f ′(x)2k+1) = 0 for k = 0, 1, 2, . . . .
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(iv) =⇒ (ii): Newton’s identity gives

e2k+1(λ1, . . . , λn) = 1

2k + 1

2k+1∑
i=1

(−1)i−1e2k+1−i(λ1, . . . , λn)tr( f ′(x)i), (3.7)

where e j(λ1, . . . , λn) is the elementary symmetric polynomial in λ1, . . . , λn and, incidentally, the coefficient of z j in q(z) =
det(I − zf ′(x)). Since for any k and i, either 2k + 1 − i is odd or i is odd, we can use an induction argument to show that 
all the coefficients of z2k+1 in q(z) are zero. Hence q(z) = q(−z). �
Corollary 3.6. All elements of D are divergence free. Restricted to 2 dimensional vector fields, D, H and S are all equal to divergence 
free vector fields.

Theorem 3.7. The set F (∞) contains all

(i) Affine vector fields f (x) = Lx + d such that det(I + h
2 L) = det(I − h

2 L) for all h > 0
(ii) Vector fields such that f ′(x) = J S(x) where J is skew-symmetric and S(x) is symmetric

Proof. (i) Let L satisfy the determinant condition (det). By the Jordan normal form, and the fact that the eigenvalues must 
come in positive-negative pairs by Theorem 3.5, we can find an invertible matrix P such that

P L P−1 = diag(λ1 I + N1,−λ1 I + N−1, λ2 I + N2,−λ2 I + N−2, . . . , λr I + Nr,−λr I + N−r, N0),

where the Nk are matrices that are zero everywhere except for possible 1’s on the first subdiagonal (Nk)i+1,i . Hence f is a 
tower of linear foliations of affine functions with Jacobian matrices either N0 or diag(λI + N1, −λI + N−1). If f (x) = N0x +d
then this is clearly a tower of foliations of zero systems i.e. u(x) = 0, v(x, y) = x. Now consider the case f (x) = diag(λI + N1,

−λI + N−1)x + d. There is a simple permutation of variables so that the Jacobian matrix becomes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 0 0 0 0
0 −λ 0 0 0 0 0
� 0 λ 0 0 0 0
0 � 0 −λ 0 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 · · · � 0 λ 0
0 0 · · · 0 � 0 −λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the �’s are possible 1’s (0 otherwise). Hence f is a tower of linear foliations of harmonic oscillators, u(x1, x2) =
(λx1, −λx2), v(x1, x2, y1, y2) = (�x1 + λy1, �x2 − λy2).

(ii) By a linear orthogonal change of variables, we can assume J = diag(0, K −1), where K is skew-symmetric. In this case 
there is symmetric T (x) and V (x) such that

f ′(x) =
(

0 0
0 K −1

)(
T (x) U (x)

U (x)� V (x)

)
=

(
0 0

K −1U (x)� K −1 V (x)

)
. (3.8)

This shows that f possesses a linear foliation with a zero system u ∈ H and a system v with ∂y v(x, y) = K −1 V (x) so that 
y �→ v(x, y) ∈H with the same P = K for all x, y. �
Theorem 3.8. Consider an s-stage SRK method that is volume preserving for the vector field u :Rm →R

m, and let v :Rm+n → R
m+n

be such that there exists an invertible matrix P such that for all x, y,

P∂y v(x, y)P−1 = −∂y v(x, y)�.

Then the SRK method is volume preserving for the vector field

f (x, y) = (u(x), v(x, y))�. (3.9)

Proof. Let A ∈ R
s×s and take P from the assumption. By Lemma 2.3 and Remark 2.9, a SRK method is volume preserving 

if

det(Is ⊗ I − h(A ⊗ I)F ) = det(Is ⊗ I + h(A� ⊗ I)F ), (2.6)

where F = diag( f ′(k1), . . . , f ′(ks)). For (3.9), the Jacobian matrix becomes

f ′(x, y) =
(

u′(x) 0
� ∂ v(x, y)

)

y
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and using a similarity transformation, we can bring det(I ⊗ I − h(A ⊗ I)F ) to the form

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I − a11u′
1 · · · −a1su′

s 0 · · · 0
...

. . .
...

...
. . .

...

−as1u′
1 · · · I − assu′

s 0 · · · 0
� . . . � I − a11 v ′

1 · · · a1s v ′
s

...
. . .

...
...

. . .
...

� . . . � I − as1 v ′
1 · · · ass v ′

s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.10)

where u′
i, v

′
i are shorthand for ∂xu(ki) and ∂y v(ki), respectively. Thus, the condition (2.6) factorises to

det(Is ⊗ I − h(A ⊗ I)U )det(Is ⊗ I − h(A ⊗ I)V ) = det(Is ⊗ I + h(A� ⊗ I)U )det(Is ⊗ I + h(A� ⊗ I)V ),

with U = diag(u′
1, . . . , u

′
s), V = diag(v ′

1, . . . , v
′
s). We compute

det(Is ⊗ I − h(A ⊗ I)V ) = det(Is ⊗ I − h(Is ⊗ P )(A ⊗ I)V (Is ⊗ P )−1)

= det(Is ⊗ I − h(A ⊗ I)(Is ⊗ P )V (Is ⊗ P−1))

= det(Is ⊗ I + h(A ⊗ I)V �)

= det(Is ⊗ I + hV (A� ⊗ I))

= det(Is ⊗ I + h(A� ⊗ I)V ).

The last line comes from Sylvester’s determinant identity. The proof is completed noticing that det(Is ⊗ I − h(A ⊗ I)U ) =
det(Is ⊗ I + h(A� ⊗ I)U ) is satisfied by the assumption that the method is volume preserving for u. �
Corollary 3.9. All SRK methods are volume preserving for vector fields in F (∞).

Proof. SRK methods are volume preserving for vector fields in H by Lemma 3.2 and volume preservation for the recursive 
constructions of F (∞) is assured by Theorem 3.8. �
Theorem 3.10. Consider a SRK method with at most two stages (or a composition of such methods) that is volume preserving for the 
vector field u :Rm → R

m, and let v :Rm+n → R
m+n be such that there exists an invertible matrix P such that for all x, y,

P∂y v(x, y)P−1 = −∂y v(x, y).

Then the SRK method is volume preserving for the vector field

f (x, y) = (u(x), v(x, y))�.

Proof. Let A ∈R
2×2 and take P from assumption. As in Theorem 3.8, the Jacobian matrix is block triangular

f ′(x, y) =
(

u′(x) 0
∂x v(x, y) ∂y v(x, y)

)
.

For 2-stage methods, the condition for volume preservation from equation (2.8) is

det(I − ha11 f ′(k1) − ha22 f ′(k2) + h2 det(A) f ′(k1) f ′(k2))

= det(I + ha11 f ′(k1) + ha22 f ′(k2) + h2 det(A) f ′(k1) f ′(k2)).

Now, because of the block-triangular structure of f ′(ki) and

f ′(k1) f ′(k2) =
(

u′(k1)u′(k2) 0
� ∂y v(k1)∂y v(k2)

)
, f ′(k1) + f ′(k2) =

(
u′(k1) + u′(k2) 0

� ∂y v(k1) + ∂y v(k2)

)
,

where we have used the convention that u(ki) has used the x component of ki . The condition (2.8) then factorises into

det(I − h(a11 f ′(k1) + a22 f ′(k2)) + h2 det(A) f ′(k1) f ′(k2))

= det(I − h(a11u′(k1) + a22u′(k2)) + h2 det(A)u′(k1)u′(k2))

· det(I − h(a11∂y v(k1) + a22∂y v(k2)) + h2 det(A)∂y v(k1)∂y v(k2)).
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Fig. 1. Venn diagram illustrating the relationships established by Lemma 3.4.

A similarity transformation with P leads to

det(I − h(a11∂y v(k1) + a22∂y v(k2)) + h2 det(A)∂y v(k1)∂y v(k2))

= det(I − h(a11 P∂y v(k1)P−1 + a22 P∂y v(k2)P−1) + h2 det(A)P∂y v(k1)P−1 P∂y v(k2)P−1)

= det(I + h(a11∂y v(k1) + a22∂y v(k2)) + h2 det(A)∂y v(k1)∂y v(k2)).
(3.11)

Condition (2.8) for f is now satisfied by considering (2.8) for the vector field u (which holds because we assume the SRK 
method is volume preserving) and (3.11). This proves the result for 2-stage SRK methods. To complete the proof, note that 
a 1-stage SRK method is equivalent to a 2-stage SRK method with two equal stages, and compositions of volume preserving 
maps are also volume preserving. �
Corollary 3.11. All SRK methods with at most two stages (and compositions thereof) are volume preserving for vector fields in F (2).

Proof. All SRK methods with at most two stages (and compositions thereof) are volume preserving for vector fields in H
by Lemma 3.2 and S by Lemma 3.3. Volume preservation for the recursive construction of F (2) is assured by Theorems 3.8
and 3.10. �

We already saw in the introduction that the implicit midpoint rule (which is the only 1-stage SRK method) is volume 
preserving for all f ∈ D, and that all such vector fields must lie in D. However, does the set F (2) contain all vector fields 
such that all 2-stage SRK methods are volume preserving? And does the set F (∞) contain all vector fields such that all SRK 
methods are volume preserving? We do not yet know the answers to these questions, but will illustrate applications that 
lie within these sets of vector fields and relevant counterexamples in the following sections.

4. Examples and counterexamples

In this section, we present vector fields from different intersections of the Venn diagram in Fig. 1. The first counterex-
ample shows that Corollary 3.11 is not true for three-stage methods. In the second example, we show that D \F (2) 	= ∅ and 
that only the midpoint rule can be volume preserving for all methods in D. This counterexample is of the lowest possible 
dimension (3) but one might argue that volume preservation is hindered in this example because the vector field is not 
completely smooth at x = 0. The third example clarifies the matter: we give a way to construct a class of (smooth) vector 
fields in D for which two-stage methods cannot be expected to preserve volume.

Counterexample 4.1. Hairer, Lubich and Wanner [6, VI.9] used the vector field

ẋ = sin z, ẏ = cos z, ż = sin y + cos x,

to show that the three-stage Gauss–Legendre method is not volume preserving, despite the vector field lying in S . What 
could be interesting is to find some class of functions F (3) – if it exists – such that all three-stage SRK methods are volume 
preserving, but not all four-stage SRK methods.

Counterexample 4.2. Consider the continuously differentiable vector field

f (x, y, z) =
{

( 1
3 x3 − c,−x2 y,0) if x ≥ 0

( 1
3 x3 − c,0,−x2z) if x < 0

,

f ′(x, y, z) =
⎛
⎝ x2 0 0

−2xy −x2 0
0 0 0

⎞
⎠ if x ≥ 0,

⎛
⎝ x2 0 0

0 0 0
−2xz 0 −x2

⎞
⎠ if x < 0.

Then f ∈ D, but not all 2-stage SRK methods are volume preserving. The principle here is that if k1 and k2 have 
x-components with different signs, then f ′(k1) and f ′(k2) will violate the condition in (2.8). For instance, the two-stage 
Gauss–Legendre method with initial value (1/2, 0, 0), drift c = 1 and step size h = 1/2 has stage values with different signs 
in the x-coordinate and hence, does not preserve volume.
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Counterexample 4.3. The following example illustrates that SRK methods cannot preserve simple systems in D that do not 
belong to the classes F (∞) or F (2) . Let g ∈ D and let A(x) be skew-symmetric (and invertible) and S(y) be symmetric 
matrices. Then, any vector field with Jacobian matrix

f ′(x, y) =
(

g′(x) 0
� A(x)S(y)

)

will satisfy the determinant condition, however, the similarity transform P to yield P∂y f (x, y)P−1 = −∂y f (x, y)� is now 
P = A(x)−1 and this dependence on x hinders a crucial step in the above proof. For volume preservation of SRK methods, 
it is thus essential to have a constant transform P for all values of x, y or at least in a region of interest for the numerical 
integration. We give the following concrete example,

A(x) =
⎛
⎝ 0 x1 x1

−x1 0 x1x2
−x1 −x1x2 0

⎞
⎠ , S(y) =

⎛
⎝ y2

1 0 0
0 y2

2 0
0 0 y3

⎞
⎠ ,

which is combined with the harmonic oscillator g(x1, x2) = (x2, −x1)
� and could originate from f (x, y) = (

g(x), A(x)( 1
3 y3

1,

1
3 y3

2, 
1
2 y2

1)
�)�

. Integrating with step size h = 1/2 from (x0, y0) = (1, 1/2, 1/3, 1/4, 1/5) leads to a change of volume for the 
two-stage Gauss–Legendre method. The implicit midpoint rule preserves volume as expected.

The following examples come from applications and show the richness of the sets F (2) and F (∞) in comparison with the 
previously known Hamiltonian or separable case. Furthermore, foliations give rise to new splitting integrators that preserve 
volume.

Example 4.4 (Volume preserving splitting using Runge–Kutta methods). Consider the ODE in Rm+n with

ẋ = F (x) + G(y), ẏ = H(x, y), (4.1)

with Jacobian

f ′(x, y) =
(

F ′(x) G ′(y)

∂x H(x, y) ∂y H(x, y)

)
.

Then, a splitting into the vector fields

(A) : ẋ = F (x),
ẏ = H(x, y),

and (B) : ẋ = G(y),

ẏ = 0,

with corresponding flows ϕ(A)

h , ϕ(B)

h , yields a block-tridiagonal Jacobian for system (A). If f and h lie in F (2) (or F (∞)), so 
will system (A). Part (B) corresponds to a trivial shift and substituting ϕ(A)

h with a symplectic two-stage method φ(A) + h

(any stage for F (∞)) gives a volume preserving splitting integrator 
∏

i φ
(A)

aih
◦ ϕ

(B)

bih
. An example of such a system (4.1) is the 

generalised Arnold–Beltrami–Childress (ABC) flow,

ẋ = A(y, z), ẏ = B(x, z), ż = C(x, y),

in the case where A and B do not depend on z.

Example 4.5 (ABC flow). The following realisation of the ABC flow [4]

ẋ = A sin(z) + C cos(y), ẏ = B sin(x) + A cos(z), ż = C sin(y) + B cos(x)

with C = 0 lies in F (2) and is of type (4.1).

Example 4.6 (Lotka–Volterra). Another well-known example is the Lotka–Volterra systems in biology and economics [13] in 
the general form

ẋi = xi

⎛
⎝λi +

n∑
j=1

aijx j

⎞
⎠ ,

which can be written in new coordinates ui = log xi for positive values xi > 0 and in matrix form as

u̇ = λ + Aeu .

If λ ∈ range(A), then McLachlan et al. [10] showed that we can rewrite the system in gradient form
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u̇ = A∇V (u), V (u) =
∑

i

eui + λici,

with 
∑

j ai jc j = λi . If A is skew-symmetric, this corresponds to the Hamiltonian case H, however, if A is of block-triangular 
form,

A =
(

J1 0
� J2

)

for any skew-symmetric invertible matrices J1, J2 and an arbitrary block �, the system belongs to F (∞) .

Example 4.7 (Skew-persymmetric flow). Consider the following class of divergence free ODEs,

ẋ = F (x − z) − Ay
ẏ = Az − Bx
ż = F (x − z) + B y

f ′(x, y, z) =
⎛
⎝ F ′(x − z) −A −F ′(x − z)

−B 0 A
F ′(x − z) B −F ′(x − z)

⎞
⎠ .

The Jacobian satisfies P f ′(x, y, z)P−1 = − f ′(x, y, z)� for the invertible matrix

P =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ . (4.2)

Hence any symplectic Runge–Kutta method will be volume preserving for such ODEs, which may not be obvious at first 
sight.

Example 4.8 (Skew-centrosymmetric flow). Consider the following class of divergence free ODEs,

ẋ = F (x − z) + G(y)

ẏ = H(z − x)
ż = F (x − z) − G(y)

f ′(x, y, z) =
⎛
⎝ F ′(x − z) G ′(y) −F ′(x − z)

−H ′(z − x) 0 H ′(z − x)
F ′(x − z) −G ′(y) −F ′(x − z)

⎞
⎠

The Jacobian satisfies P f ′(x, y, z)P−1 = − f ′(x, y, z) for the invertible matrix

P =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ . (4.3)

Hence any symplectic Runge–Kutta method with 2 or fewer stages (and compositions thereof) will be volume preserving 
for such ODEs, which may not be obvious at first sight.

5. Measure-preservation of Runge–Kutta methods

In the introduction, we have pointed out that the trapezoidal method is not necessarily volume preserving but instead 
preserves the measure det

(
I − h

2 f ′(x)
)

dx for quadratic Hamiltonian vector fields [2]. Recall that a map φ preserves a 
measure μ(x)dx if

det(φ′(x)) = μ(x)

μ(φ(x))

This result is generalised in the following lemma.

Lemma 5.1. The trapezoidal rule (1.1) preserves the measure μ(x)dx with

μ(x) = det
(

I ± h
2 f ′(x)

)
for vector fields f that satisfy the determinant condition (det).

Proof. We compute the Jacobian matrix φ′
h of the trapezoidal rule,

φ′
h(x) = I + h

2
f ′(x) + h

2
f ′(φh(x))φ′

h(x),

and see that

det(φ′
h(x)) = det(I + h

2 f ′(x))

det(I − h
2 f ′(φh(x)))

= μ(x)

μ(φh(x))
. �
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This means that volume is conserved to order O(h2) globally (by Theorem 3.5), but more importantly that the dynamics 
of the numerical solution lie in the class of measure preserving systems, giving a qualitative advantage over methods lacking 
this property [9]. The trapezoidal method is conjugate to the implicit midpoint rule [6, VI.8], which goes some way towards 
explaining this behaviour. However, the next method we consider has similar measure preserving properties, but doesn’t 
appear likewise to be “conjugate to volume preserving”.

There has been recent interest in the properties of the Kahan method [1,2]. For a quadratic vector field f (x) = Q (x) +
L(x) + d where Q is quadratically homogeneous, L is linear and d is constant, the symmetric bilinear form q(x, y) is formed 
by polarisation,

q(x, y) = 1

2

(
Q (x + y) − Q (x) − Q (y)

)
, (5.1)

and Kahan’s unconventional numerical method is then given by

φh(x) − x

h
= q(x, φh(x)) + 1

2
L
(

x + φh(x)
)

+ d. (5.2)

In [2], it was shown that Kahan’s method is equivalent to a three-stage Runge–Kutta method restricted to quadratic vector 
fields. We give the following generalisation.

Lemma 5.2. Restricted to quadratic vector fields, Kahan’s method is equivalent to the s-stage Runge–Kutta method

φh(x) = x + h
s∑

i=1

bi f (x + ci(φh(x) − x)), (5.3)

for any b and c satisfying 
∑s

i=1 bi = 1, 
∑s

i=1 bici = 1
2 , 

∑s
i=1 bic2

i = 0. This implies that the Butcher tableau satisfies A = cb� , but the 
converse is not true.

Proof. Let x′ = φh(x) and write the vector field as f (x) = q(x, x) + Lx +d with the symmetric bilinear form q, then, expanding 
out and setting equal to Kahan’s method (5.2)

x′ − x

h
=

∑
i=1

biq
(

x + ci(x′ − x), x + ci(x′ − x)
)

+ L(x + ci(x′ − x)) + d

= q(x′, x) + 1
2 L(x + x′) + d

yields the above conditions. �
In [2, Prop. 5], it was shown that for quadratic Hamiltonian vector fields, Kahan’s method preserves the measure with 

density μ(x) = det(I − h
2 f ′(x))−1. The proof is easily extended to all quadratic vector fields satisfying the determinant 

condition (det).

Lemma 5.3. Kahan’s method preserves the measure μ(x)dx with

μ(x) = det
(

I ± h
2 f ′(x)

)−1
(5.4)

for quadratic vector fields f that satisfy the determinant condition (det).

Proof. We compute the Jacobian matrix φ′
h of Kahan’s method in the form (1.2),

φ′
h(x) =

I − h
2 f ′(x) + h

2 f ′
(

x+φh(x)
2

)
I + h

2 f ′(φh(x)) − h
2 f ′

(
x+φh(x)

2

) .

Since f is quadratic, f ′ is affine and thus

det(φ′
h(x)) = det(I + h

2 f ′(φh(x)))

det(I − h
2 f ′(x))

= μ(x)

μ(φh(x))
. �

Due to the similarity of this measure to that preserved by the trapezoidal method, one might at first glance suggest that 
the Kahan method is conjugate to some volume preserving method too, but this does not appear to be the case. At least, 
Kahan’s method is not conjugate by B-series to any symplectic method [2]. It may be interesting to investigate how these 
measure preserving properties of the trapezoidal rule and Kahan’s method can be generalised.

From Lemmata 2.4, 2.5 and 2.6 on linear foliations follow similar measure preservation properties generalising the vol-
ume preservation properties discussed in the previous section.
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Theorem 5.4. Suppose that a given Runge–Kutta method preserves the measure μ on Rn when solving the ODE ẋ = f (x). Then when 
solving the ODE ẋ = f̃ (x), where f̃ (x) = P f (P−1x) for some invertible matrix P , the method preserves the measure with density 
μ̃(x) = μ(P−1x).

Proof. By assumption, det(φ′
h(y))μ(φh(y)) = μ(y) for all y ∈ R

n . Using the notation and results of Lemma 2.4, 
det(φ̃′

h(x))μ̃(φ̃h(x)) = det(φ′
h(P−1x))μ(φh(P−1x)) = μ(P−1x) = μ̃(x). �

Theorem 5.5. Suppose that a given 1-stage Runge–Kutta method preserves the measure ρdx on Rm when solving the ODE ẋ = u(x), 
and it preserves the measure ν(y)dy on Rn when solving the ODE ẏ = v(x, y) for all x ∈ R

m. Then when solving the ODE (ẋ, ẏ) =
(u(x), v(x, y)), the method preserves the product measure μ(x, y)dxdy = ρ(x)ν(y)dxdy on Rn+m.

Proof. By Lemma 2.5, φh(x, y) = (ψh(x), χh(k1(x), y))� , where k1(x) is the internal stage of the 1-stage method. Hence by 
the definition of μ,

μ(φh(x, y)) = ρ(ψh(x))ν(χh(k1(x), y)).

By assumption, we have for all x and y,

det(ψ ′
h(x))ρ(ψh(x)) = ρ(x), det(∂yχh(x, y))ν(χh(x, y)) = ν(y). (5.5)

Finally, Lemma 2.5 gives us det(φ′
h(k1(x), y)) = det(ψ ′

h(x)) det(∂yχh(x, y)). Combining all of these results,

det(φ′
h(x, y))μ(φh(x, y)) = det(ψ ′

h(x))ρ(φh(x))det(∂yχh(k1(x), y))ν(χh(k1(x), y))

= ρ(x)ν(y)

= μ(x, y).

Hence the measure with density μ on Rn+m is conserved. �
From the results of Lemma 2.6 and using its notation, we deduce that a generalisation for measure preserving RK 

methods with more stages even for sums f (x, y) = (u(x), w(x) + v(y))� is not trivial since then,

det(φ′
h(x, y)) = det(ψ ′

h(x))det(∂yχh(d(x), y + he(x))),

and a product measure μ(x, y)dxdy = ρ(x)ν(y)dxdy transforms according to

det(φ′
h(x, y))μ(φh(x, y)) = det(φ′

h(x, y))ρ(ψh(x)) ν(χh(d(x), y + he(x)) + hc(x))

= det(ψ ′
h(x))ρ(ψh(x)) · det

(
∂yχh(d(x), y + he(x))

)
ν
(
χh(d(x), y + he(x)) + hc(x)

)
.

Assume that ψh, χh preserve the measures with densities ρ(x) and ν(y), respectively, then, if ch = eh = 0, the product 
measure is preserved. This additional condition holds, e.g., for the trapezoidal rule for which we get that dh(x) = (w(k1) +
w(k2))/2. Further methods satisfying ch = eh = 0 can be constructed easily1 but they might preserve measures for trivial 
vector fields only. Kahan’s method derived from Lemma 5.2 does not simplify in this way, however, we can give the following 
result:

Theorem 5.6. Generalised Kahan’s methods from Lemma 5.2 preserve the measure μ(x, y)dxdy with μ(x, y) = det(I + h
2 f ′(x, y))−1

for linearly foliate vector fields of the form f (x, y) = (u(x), v(y) + w(x))� where w is arbitrary, and u, v ∈D are quadratic.

Proof. Let z = (x, y), and write φh(z) = (ψh(x), σh(x, y))� . We compute the Jacobian determinant of (5.3)

det(φ′
h(z)) = det(I + h

∑N
i=1 bi(1 − ci) f ′(z + ci(φh(z) − z)))

det(I − h
∑N

i=1 bici f ′(z + ci(φh(z) − z))))

using that f ′ is block-diagonal, we arrive at

= det(I + h
∑N

i=1 bi(1 − ci)u′(x + ci(ψh(x) − x)))

det(I − h
∑N

i=1 biciu′(x + ci(ψh(x) − x)))

det(I + h
∑N

i=1 bi(1 − ci)v ′(y + ci(σh(x, y) − y)))

det(I − h
∑N

i=1 bici v ′(y + ci(σh(x, y) − y)))

and since u′, v ′ are affine, we can simplify using the assumptions on the coefficients from Lemma 5.2 to

= det(I + h
2 u′(ψh(x)))

det(I − h
2 u′(x))

det(I + h
2 v ′(σh(x, y)))

det(I − h
2 v ′(y))

= det(I + h
2 f ′(φh(x, y)))

det(I − h
2 f ′(x, y))

= μ(z)

μ(φh(z))
. �

1 Let, e.g., a1 j = 0 and aij = b j for some i and all j.
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Remark 5.7. The theorem is not true for more general foliate vector fields within the class F (∞) , e.g., f (x, y) =
(u(x), J−1∇y H(x, y))� where u(x) is a simple harmonic oscillator and with the Hamiltonian H(x, y) = (pxqx)p yqy using 
the usual notation for the momentum and position coordinates x = (qx, px), y = (qy, p y). Note that the Hamiltonian is still 
quadratic in y!
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