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Network motifs have been studied extensively over the past decade, and

certain motifs, such as the feed-forward loop, play an important role in regu-

latory networks. Recent studies have used Boolean network motifs to explore

the link between form and function in gene regulatory networks and have

found that the structure of a motif does not strongly determine its function,

if this is defined in terms of the gene expression patterns the motif can produce.

Here, we offer a different, higher-level definition of the ‘function’ of a motif, in

terms of two fundamental properties of its dynamical state space as a Boolean

network. One is the basin entropy, which is a complexity measure of the

dynamics of Boolean networks. The other is the diversity of cyclic attractor

lengths that a given motif can produce. Using these two measures, we examine

all 104 topologically distinct three-node motifs and show that the structural

properties of a motif, such as the presence of feedback loops and feed-forward

loops, predict fundamental characteristics of its dynamical state space, which

in turn determine aspects of its functional versatility. We also show that these

higher-level properties have a direct bearing on real regulatory networks, as

both basin entropy and cycle length diversity show a close correspondence

with the prevalence, in neural and genetic regulatory networks, of the 13 con-

nected motifs without self-interactions that have been studied extensively in

the literature.

provided
1. Introduction
Network motifs, which are small subgraphs of directed networks, have been

the subject of much research over the past decade [1,2], and certain motifs,

such as the feed-forward loop, are known to play an important role in gene

regulatory networks [3]. It has been shown that some motifs appear much

more frequently than others in real-world networks, and that the signatures

of their relative enrichments with respect to a null model are similar for wide

classes of networks. Motifs can thus be used to classify networks into ‘super-

families’ [2]. In a parallel development, Boolean networks, which were

originally studied in the context of large random networks [4,5], have emerged

as models of specific gene regulatory networks, particularly in the context of

plant development [6,7] and the cell cycle [8,9]. While the relative prevalences

of network motifs can be understood as a topological, static property of a net-

work, Boolean networks offer a way to measure the dynamical capability of a

network. In this work, we study the Boolean dynamics of network motifs in

order to explore the relationship between structure and dynamics, and, more

broadly, between form and function. In biology, the form of the phenotype is

often strongly determined by its function. This is true at the level of organisms,

which exhibit a remarkable degree of specialization according to the
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characteristics of their environment, such as their predators

(e.g. in the form of camouflage) and prey (e.g. the anteater’s

snout). It also holds true down to the molecular level, at

which proteins evolve in order to form protein complexes

of very specific structures [10,11]. It seems reasonable that a

link between form and function should also hold in biological

networks, which is why the existence of such links has been

investigated in the recent literature [12–14], including

through Boolean networks of network motifs [15]. The results

of this work have suggested that the form and function of

network motifs are not closely linked because: (i) the struc-

ture of network motifs does not strongly determine its

functional versatility, if this is defined in terms of initial

and final states and (ii) a given functional task (again defined

in terms of initial and final states) can be performed by more

than one structure. Earlier work in this direction, employing

other models, has similarly found that the structure of a motif

does not determine its function, if ‘function’ is defined in

terms of the variety of gene expression patterns that can be

produced by the motif [12–14].

In this work, we examine the link between the form and

function of network motifs differently, by defining their func-

tional versatility in terms of two structural properties of their

dynamical attraction basins. The first property is basin

entropy, which serves as a measure of dynamical complexity

in Boolean networks [16,17]. The second is the number of

different attractor cycle lengths that can be realized in state

space for a given network motif. We show that both of

these measures strongly depend on the presence of feedback

loops and feed-forward loops in the motif. These two loops

are the simplest triangle motifs and have been shown to

play an important role in biological regulatory networks

[2,3,18]. In particular, we demonstrate that motifs containing

a three-node feedback loop have increased basin entropy and

a larger diversity of attractor cycle lengths. By contrast,

motifs that contain a feed-forward loop and no three-node

feedback loop have particularly low basin entropy and low

cycle length diversity. Finally, we connect these results to

the frequencies of motifs in real-world gene regulatory net-

works and signal-transduction networks [2]. We show that

both basin entropy and cycle length diversity are inversely

correlated with the relative enrichment of network motifs,

meaning that motifs containing feedback loops are suppressed

in real-world regulatory networks. In summary, the structu-

ral properties of network motifs strongly determine their

functional versatility as regulatory circuits, if we define this

functional versatility in terms of attractor properties.
total number of distinct cycle lengths: Ct = 1 
average basin entropy: Sav = 0

total number of distinct cycle lengths: Ct = 4
average basin entropy: Sav = 0.364

7 topologies 5 topologies

Figure 1. Illustration of motifs as Boolean networks. (a) The fully connected
three-node motif, showing all nine possible connections. (b) Two example
motifs, the feed-forward loop (left) and the feedback loop (right). (c) Examples
of Boolean functions that could be placed on these example motifs. The binary
node states are updated simultaneously according to the table of update rules
for each node, and the inputs to that node. (d ) The dynamical graphs for these
example Boolean functions, showing the resulting transitions (shown as broad
arrows) between the eight possible states of these three-node motifs. (e) All of
the different topologies of dynamical graphs that can occur for these two motifs,
with the example topologies of step (d ) highlighted, and two measurements of
these dynamical graph topologies: the average basin entropy Sav and the total
number of different cycle lengths Ct.
2. Boolean dynamics of network motifs
The fully connected three-node network motif with all nine

possible edges is depicted in figure 1a, while figure 1b shows

examples of two simpler three-node network motifs with just

three edges: a feed-forward loop and a three-node feedback

loop. Similar to Payne & Wagner [15], we study the dynamics

of such three-node network motifs using Boolean dynamics.

A Boolean network is a directed network in which each node

has a binary state (0 or 1), and each node with k inputs is associ-

ated with a string of 2k bits. This string, a so-called Boolean

function, is an update rule. In each time step, all nodes are

updated according to their Boolean function, which specifies

the state of the node for any of the 2k possible combinations

http://rsif.royalsocietypublishing.org/
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of the k inputs from other node states (figure 1c). In a Boolean

network of N nodes, the dynamics determined by the Boolean

functions gives rise to a directed transition graph of 2N nodes,

representing all the 2N possible states of the network. We will

refer to such graphs as a dynamical graph, and each motif can

have several of these, corresponding to different Boolean func-

tions. If we ignore the specific combinations of states that the

nodes in the dynamical graph correspond to, and only focus

on their connectivity, then many dynamical graphs become

isomorphic, meaning that they share the same dynamical
graph topology.
1-node

highest-order FBL

no FFL

FFL

2-node 3-node
no

FBL

Figure 2. All 104 topologically distinct motifs, colour-coded according to the four
categories described in the text. These are motifs containing (i) no feed-forward
loops, and no two-node or three-node feedback loops (pink), (ii) no feed-
forward loops, and two-node or three-node feedback loops (red), (iii) feed-forward
loops and no three-node feedback loops (blue), and (iv) feed-forward loops and
three-node feedback loops (purple).

J.R.Soc.Interface
13:20160179
2.1. Characterizing the state space of network motifs
The nine possible edges of the three-node motif (shown in

figure 1a) give rise to 29 ¼ 512 possible ways of connecting

three nodes. Many of these however are equivalent (such as

three rotated versions of the feed-forward loop shown in

figure 1b, left). If one takes into account all such equivalencies,

104 topologically distinct three-node motifs remain. By calculat-

ing all dynamical transition graphs (such as those shown in

figure 1d) and comparing their unlabelled topologies one

arrives at 951 distinct dynamical graph topologies (such as

those shown in figure 1e). In contrast with previous work [15],

which used pairs of specific initial and final network states to

measure the functionality of motifs, our approach is to use dyna-

mical graph topologies. The two dynamical graphs that arise

from the two motifs in figure 1b with the Boolean functions

shown in figure 1c are shown in figure 1d. Because the three

nodes of the feed-forward loop have two, one and zero

inputs, respectively, there are 2ð2
2þ21þ20Þ ¼ 27 ¼ 128 possible

configurations of Boolean functions in this motif, one of

which is shown in figure 1c (left). The 128 configurations

for the feed-forward loop can lead to seven different dynamical

graph topologies (figure 1e, left). For the feedback loop (in which

each node has one input), there are 2ð2
1þ21þ21Þ ¼ 26 ¼ 64

possible configurations, one of which is shown in figure 1c
(right). These 64 configurations give rise to altogether five differ-

ent dynamical graph topologies (figure 1e, right). We can

characterize each dynamical graph topology in terms of two

properties. The first is the basin entropy, which was introduced

as a complexity measure for Boolean networks in [16,17]. It is

defined as

S ¼ �
X

i

si ln si,

where si is the size of the ith attraction basin as a fraction

of the total state space. For the feed-forward loop with the

example of Boolean functions in figure 1c (left), the dynamical

graph (shown in figure 1d, left) only has one attraction basin,

so s1 ¼ 1 and S ¼ 0. For the three-node feedback loop example

(figure 1d, right), we have two basins of size 1 and two

of size 3, so that s1 ¼ 1/8, s2 ¼ 1/8, s3 ¼ 3/8 and s4 ¼ 3/8,

giving a basin entropy of S ¼ 1/4 ln (1/8) þ 3/4 ln (3/8) ¼

ln 8 2 (3/4) ln 3 � 1.26. The basin entropy is minimal when

all states lie in one attraction basin and maximal when all

states form separate attractors.

The second measure we can use to characterize a dynami-

cal graph topology is the number of distinct cycle lengths C
in the dynamical graph. In the feed-forward dynamical

graph example of figure 1d (left), we only have one cycle of

length 1, i.e. C ¼ 1, because we reach a fixed point when all

three nodes have state 0. The feedback example (figure 1d,
right) on the other hand has two cycles of length 1 and two

cycles of length 3, and therefore two distinct cycle lengths,

or C ¼ 2.

For both of these measures, S and C, we can now define

aggregated versions for each motif: the average basin entropy

Sav is calculated across all distinct dynamical graph topolo-

gies for a given motif, which are found by considering all

possible Boolean functions for that motif. Similarly, the

total number of distinct cycle lengths Ct is also determined

across all of these topologies. The value of Sav for the seven

topologies of the feed-forward loop is zero, as all have a

single attraction basin that fills the entire state space, and

Ct ¼ 1, as all of these basins have a 1-cycle as their attractor.

For the feedback loop, on the other hand, two of the five

topologies consist of more than one basin, resulting in a

value of Sav ¼ 0.364. We have Ct ¼ 4 for the feedback loop,

http://rsif.royalsocietypublishing.org/
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Figure 3. (a – d) The total number of different cycle lengths Ct that can be realized with motifs of a given number of edges. All four panels show the values for all
104 motifs, but with different categories highlighted. These are the four structural classes of motifs defined in the text. The colour code is given below the four
panels. Motifs with feed-forward loops and without three-node feedback loops (blue) exhibit few cycle lengths for a given number of edges, while those motifs
without feed-forward loops and with two-node and three-node feedback loops (red) show high numbers of different cycle lengths. Motifs with only 1-node feed-
back loops or no loops at all show few cycles (pink), while those with feed-forward and three-node feedback loops can accommodate many cycle lengths (purple).
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as we find four different cycle lengths (1, 2, 3 and 6) across the

five dynamical graph topologies.
2.2. Characterizing the structure of network motifs
Our overall aim is to establish whether the structure of a

motif determines its dynamical behaviour, and thus its func-

tion as a regulatory unit. So far, we have introduced two

quantities, Sav and Ct, which allow us to characterize the

dynamical state space of a motif. For an effective comparison

of structure and dynamics, we also need to characterize the

structure of the motifs. We do this by describing the 104 dis-

tinct motifs in terms of feed-forward loops and feedback

loops. We already used both the feed-forward loop and the
three-node feedback loop as examples in figure 1. These

two motifs are the two simplest triangle motifs, and can

therefore be viewed as basic units of any three-node triangle

motif, which is also why other network measures have

been defined using them as a basis [19,20]. The feed-forward

loop is known to play an important role in biological regu-

latory networks [2,3], and feedback loops occur for example

in the context of negative self-regulatory circuits [18].

For our classification of motif structure, we also consider

two-node and one-node feedback loops (also referred to

as self-loops or self-interactions). We partition the 104

motifs into four classes of roughly equal size: (i) motifs that

contain no feed-forward loops and no two-node or three-

node feedback loops, (ii) motifs that contain no feed-forward

http://rsif.royalsocietypublishing.org/
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a given number of edges. Note that the three values for Sav ¼ 0 and 0, 1 and 2 edges correspond to motifs without any loops at all. Motifs with feed-forward and
three-node feedback loops (purple) have intermediate values of Sav.
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loops, but do contain two-node or three-node feedback

loops, (iii) motifs that contain feed-forward loops, but no

three-node feedback loops, and (iv) motifs that contain

feed-forward loops and three-node feedback loops. These

four categories represent the four possible combinations of

the presence or absence of the two basic loops in network

motifs, the feedback loop and the feed-forward loop.

Figure 2 shows all 104 motifs colour-coded according to

this classification.

Figure 3 shows the total number of distinct cycle lengths

Ct for the 104 motifs as a function of the number of edges in

the motifs and broken down into the four structural cat-

egories described above. As the number of edges in a
Boolean network is closely related to the total length of

the Boolean functions, it represents a proxy for the potential

processing power of the network. Accordingly, the values

of Ct for all 104 motifs show a broad positive correlation

with the number of edges. For a given number of edges,

however, there are clear differences in the values of Ct for

the motifs in our four categories. Motifs with a feed-forward

loop but without a three-node feedback loop show the

least cycle diversity of Ct for a given number of edges

(shown in figure 3c in blue). Motifs with no feed-forward

loop and two-node or three-node feedback loops on the

other hand exhibit high values of Ct for a given number

of edges (figure 3b, red), meaning that they are capable of

http://rsif.royalsocietypublishing.org/
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Figure 5. This figure compares the average basin entropy Sav and the total
number of distinct cycles Ct with the enrichments, in four real-world regu-
latory and neural networks, of the 13 connected three-node motifs
without self-interactions. The four networks are two developmental transcrip-
tion networks in fruit fly and sea urchin, a signal-transduction network of
mammalian cells, and the neural network of Caenorhabditis elegans. These
data are adapted directly from the seminal study of these 13 motifs in [2]
and were kindly made available by the authors of this work. (a) The enrich-
ment profiles for these networks are shown relative to a null model, in the
form of a z-score. Note that the motifs without any feedback loops (7, 9 and
10) are the most prevalent. (b) The values of the basin entropy Sav are shown
for the same motifs on an inverted scale, and exhibit a striking similarity to
the motif z-scores. On this inverted scale, the former shows a slight down-
wards trend with increasing edge number in the motifs, whereas the latter
shows a slight upwards trend. The successive gradients of these two profiles
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producing many different cycle lengths in their dynamical

behaviours. Motifs with no feed-forward loops and no two-

node or three-node feedback loops have universally low Ct

values (figure 3a, pink), while motifs with feed-forward loops

and three-node feedback loops have universally high Ct

values (figure 3d, purple). Note that there are motifs with

four and five edges in both of these extreme categories, which

shows how much the dynamical complexity of a motif depends

on the arrangement, rather than the number, of its edges.

Similarly, figure 4 shows the average basin entropy Sav of

the 104 motifs as a function of the number of edges, for the

four structural categories. The largest values of the basin

entropy are displayed by motifs with 1-node feedback

loops (figure 4a, in pink). Note that the five motifs that

have no loops of any kind have average basin entropy

Sav ¼ 0. These are in the same structural category as the

1-node feedback loops, and are represented in figure 4 by

the three points at Sav ¼ 0 and 0, 1 and 2 edges. For a given

number of edges, motifs that contain a feed-forward loop

and no three-node feedback loops tend to display lower Sav

values (figure 4c, in blue), and motifs that contain two-

node and three-node feedback loops and no feed-forward

loop display higher Sav values (figure 4b, red). Motifs that

contain both feed-forward loops and three-node feedback

loops exhibit relatively low basin entropy for a given

number of edges, but the total range of Sav values narrows

considerably with increasing numbers of edges (figure 4d,

purple). These results show that the average basin entropy

offers a complementary definition of dynamical complexity

to Ct. Between them these two measures reveal that there is

indeed a strong connection between certain structural charac-

teristics of a motif and aspects of its dynamical behaviour.

The values of Sav and Ct for all 104 motifs can be found in

the electronic supplementary material.
however match almost perfectly. To separate the effects of edge number from
other characteristics of motif structure, we compare the successive differences
in z-score between motifs DZ with the differences in average basin entropy
DSav and find that these show a strong correlation with a Pearson coefficient
of 20.7862. (c) The values of Ct, the total number of distinct cycle lengths,
for these motifs, which follow a similar pattern to the z-scores and Sav. The
correlation of the successive differences DZ and DCt is similarly high
(20.8166). Note that Ct, like Sav, is shown on an inverted scale.
2.3. Real-world regulatory networks
We now consider a subset of the 104 motifs, namely the

13 connected motifs without self-interactions. This important

subclass is of interest as it has been studied extensively in the

literature, and was the basis for the seminal work on network

motifs, by Alon and co-workers [1,2]. The frequencies of

these 13 motifs, relative to a null model, were used to

define ‘superfamilies’ of networks that exhibit similar motif

frequency distributions. One such superfamily included

signal-transduction networks in mammalian cells, neural

networks and transcription networks. The enrichment signa-

ture across the 13 motifs, expressed in the form of a z-score to

show the deviation from the null model, is adapted directly

from [2] in figure 5a. In figure 5b,c, we show the values of

Sav and Ct, respectively, for the same motifs, plotted on an

inverted scale. The enrichment profiles show a striking simi-

larity to those of Sav and Ct, which becomes even clearer if we

compare the gradients of the series rather than the absolute

values. The Pearson correlation between the successive

changes in basin entropy and those in the motif enrichments

for real-world networks is 20.7862 ( p-value: 3.54 � 10211),

and the equivalent correlation for the number of cycle lengths

is 20.8166 ( p-value: 1.50 � 10212). If we compare the profiles

with the structural classification of the motifs, shown under-

neath them in figure 5, we see that the lower values of the

motif enrichment (and, correspondingly, the higher values

of the basin entropy and cycle length number, plotted on
an inverted scale) occur when the motif contains a three-

node feedback loop (motifs 8, 11, 12 and 13 in figure 5) and

to a lesser extent when it contains a two-node feedback

loop (motifs 4, 5, 6). This indicates that feedback loops are

suppressed in these networks relative to the feed-forward

loop. The close correlation with the dynamical complexity

of Boolean network motifs as measured by the basin entropy

suggests that the fragmentation of state space may be a

reason why the feedback loop motif appears to be less desir-

able in real-world regulatory networks. Only those triangle

motifs (7, 9 and 10) which do not contain any feedback

loops are highly enriched. These results also underline the

importance of the feed-forward loop, which has been estab-

lished as an important building block of biological

networks [3]. Note that while Sav and Ct are strongly corre-

lated (Pearson: 0.8705) for the 13 connected motifs without

self-interactions, they are only weakly correlated (Pearson:

0.4092) across all 104 motifs.

http://rsif.royalsocietypublishing.org/
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3. Discussion
In our structural classification of the 104 networks into four

categories, we chose to group networks with two-node and

three-node feedback loops together if they did not contain

feed-forward loops. The reasons for this were that this classifi-

cation produced roughly equal-sized categories, and that the

dynamical behaviours of these networks were sufficiently

similar. This did not hold for networks with two-node and

three-node feedback loops that did contain feed-forward

loops. In these, the networks with only a two-node feedback

loop exhibited very different dynamics from those containing

a three-node feedback loop, and had more in common with

networks that had only a one-node feedback loop or none at all.

Feedback loops have been shown to occur in some regulatory

networks, but only in small numbers in transcriptional networks

[2,21]. The likely reasons are that feedback loops tend to consist of

a transcriptional regulation and a protein–protein interaction,

such as the much studied p53-MDM2 loop [18]. One of these

regulations is typically a negative one, to enable self-regulation,

as purely positive feedback loops would probably lead to an irre-

versible—and therefore highly undesirable—cellular state [22].

The danger of such runaway states may be another reason

why feedback loops are uncommon. Perhaps the most promi-

nent example of a transcriptional feedback loop is an artificial

one, the repressilator [23], which exhibits noisy performance,

offering another reason why purely transcriptional feedback

loops are suppressed.

The values of Sav and Ct both show a slight downwards

trend (on the inverted scale) with increasing edge number in

the motifs, whereas the motif z-scores show a slight upwards

trend. A likely reason for this relative divergence could be

that a larger number of edges in a motif is likely to result in

more complex partitions of state spaces, which in turn mean

higher basin entropy and greater cycle length diversity. One

would therefore expect an underlying trend towards higher

basin entropy and cycle length number with increasing edge
number. As we show above, we can control for this underlying

effect by considering the gradients of the profiles, for which

we observe strong correlations between the gradients of the

z-scores and the gradients of Sav and Ct.
4. Conclusion
A number of publications have addressed the link between the

structure and dynamics or, more broadly speaking, form and

function of network motifs [12–15]. In this literature, ‘function’

has been defined in terms of gene expression patterns, which

has led to the conclusion that a single structure can lead to a

wide variety of functional behaviours in this sense. Form there-

fore does not dictate function on this level. If we however

define function on a higher level, in terms of topological prop-

erties of the state space, a clear relationship between structure

and function emerges. That this relationship is likely to be

meaningful is indicated by the close correspondence between

the topological properties—basin entropy and cycle length

number—and the enrichments of motifs in regulatory

networks and neural networks. The presence of feedback

loops in a motif results in a profoundly different organiza-

tion of state space, even if the feedback loops are among

feed-forward loops. This is also why the highly stable, unfrag-

mented attraction basins of simpler feed-forward loops

provide a reliable template for the implementation of a variety

of gene expression patterns (which, in other contexts such as

[12–15], would be described as different ‘functions’ of the

circuit). It is highly unlikely that these fundamental topological

properties of the state space do not influence the biological

evolution of regulatory networks.
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