
Thermal conductivity of Tripoli sand 
(Case study) 

Abstract 

The thermal properties of soils are of great importance in many thermo-active ground 

structures such as energy piles and borehole heat exchangers. In this paper the effect 

of the porosity and degree of saturation on the thermal conductivity of a sandy soil that 

has not been previously thermally tested is investigated using steady state 

experimental tests. The steady state apparatus used in these tests was designed to 

provide high performance in controlling all boundary conditions. Twenty thermal 

conductivity experimental tests have been carried out at different porosity and 

saturation values. The performance of selected prediction methods have been 

validated against the experimental results. The validation shows that none of the 

selected models can be used effectively in predicting the thermal conductivity of Tripoli 

sand at all porosity and saturation values. However, some can provide good 

agreement at dry or nearly dry condition while others perform well at high saturations. 

The performance of most of the selected models also increases as the soil approaches 

a two phase state where conduction plays the dominant role in controlling heat 

transfer. An empirical equation of thermal conductivity expressed as a function of 

water content and porosity has been developed based on the experimental results 

obtained.   
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1- Introduction 

Many engineering projects such as energy piles, borehole heat exchangers and 

underground oil/gas storage require heat transfer through soils to be considered in 

design. As shown in Fig. 1 by Johansen (1975), heat transfer in soils occurs due to 

several mechanisms. The relative importance of these mechanisms depends upon the 

volume fraction and thermal properties of the soil constituents, soil particles, water and 

air. Heat transfer in soils is normally dominated by conduction, with convection playing 

a significant role only in highly permeable soils, heat transfer due to vapour movement 

only being significant for soils with very low saturation and radiation being negligible. 

It is important to mention that the symbol 𝑘𝑘 used in this work refers to the effective 

thermal conductivity which incorporates all forms of heat transfer that occur in the soil 

bulk. This is especially useful when dealing with porous material where different 

volumetric constituents of different materials are exist and different mechanisms of 

heat transfer occur. The major thermal properties that are of interest are thus the 

thermal conductivity and the thermal capacity. While it is possible to determine the 

heat capacity per unit volume of soil with fairly good accuracy using either analytical 

methods or experimentally using the calorimetric method, numerous problems are 

encountered in the determination of thermal conductivity (Kersten, 1975; Tarnawski et 

al., 2000b; Nusier and Abu-Hamdeh, 2003). Soils are either two or three phase 

materials that consist of mineral particles, organic matter, and pores containing water, 

air or both. It is known that the thermal conductivity of the soil solids is higher than that 

of water and air. The thermal conductivity of soils has been found to be a function of 

several parameters including dry density, water content, mineralogy, temperature, 

particle size, particle shape and the volumetric proportions of the soil constituents 

(Nusier and Abu-Hamdeh, 2003). The thermal conductivity of soils can be determined 

either in the laboratory or in the field by transient or steady state methods. Steady 

state methods are considered more accurate than transient state methods, Farouki 

(1986). It should be noted that inconsistent results have been obtained using the two 

methods. In some studies, the deviation reached as high as 50%, though, the average 

discrepancy between them is in the range of 10-20% (Midttomme and Roaldset, 1999; 

Abuel-Naga et al., 2009; Tong et al. 2008; Low et al., 2014). More concerns have 

been raised about the accuracy of transient methods related to the small variation in 

the current supplied during the test along with the effect of contact resistance which 



may lead to significant errors (Mitchell and Kao, 1978). In addition, the large diameter 

of the probe can be another source of error as the departure from the assumption of 

an infinitely thin probe may potentially cause significant differences in estimation of the 

thermal conductivity due to the non-negligible heat storage and transmission in the 

needle probe itself (ASTM D 5334 – 2008). 

Steady state methods are time independent and measure the thermal conductivity 

when the heat flux through the soil reaches a constant level and the temperature of 

the soil specimen at any point remains constant with time. Steady state methods 

involve the production of a temperature difference between the sides of the soil 

specimen. Only the temperature drop across the specimen and the heat flux are 

needed to determine the thermal conductivity (Farouki (1986). The main weakness of 

steady state methods is the long time required to reach the steady state condition, 

which allows moisture migration to take place from hot to cold regions. Various 

configurations of equipment have been established using steady state methods 

(Abuel-Naga et al., 2009; Tan et al., 2006; Clarke et al., 2008). The efficiency of each 

apparatus is entirely dependent on the accurate estimation of the heat flux passing 

through the specimen cross-section which is mainly limited by the amount of the radial 

heat losses caused by the ambient temperature interference (ATI) along the specimen 

length. 

In this paper, thermal conductivity measurements of Tripoli sand using a unidirectional 

heat flow steady state method will be presented. These experimental results will be 

used to evaluate common prediction models for the estimation of thermal conductivity. 

2- Prediction methods 

A range of equations exist in the literature for the prediction of thermal conductivity of 

sandy soils with varying saturation and dry density. Most of these equations were 



developed from empirical curve-fits to datasets. Therefore, they are likely to fit the data 

for which they were derived very well. Most of these datasets also comprise data solely 

from transient needle-probe measurements of soil’s thermal conductivity where the 

thermal conductivity is determined by the theoretical solution of conductive heat flow 

from a line heat source method. Haigh (2012) and Dong et al. (2015) describe several 

of these models and assess their ability to predict the thermal conductivity of a wide 

range of soils whose thermal properties are available in the literature. They conclude 

that these models can either work only at a limited degree of saturation values or only 

applicable to certain soil types.  

2.1 De Vries (1963) model  

De Vries (1963) proposed a method that uses the weighted average of thermal 

conductivity value of each soil constituent. The De Vries’ equation is based on the 

assumption of no contact between the soil particles and the values of the shape factor 

(𝙜𝙜) assume that the soil particles have ellipsoidal shapes.  The thermal conductivity 

according to De Vries is expressed as: 

𝑘𝑘 = 𝑘𝑘𝑤𝑤 𝑥𝑥𝑤𝑤+𝐹𝐹𝑎𝑎 𝑘𝑘𝑎𝑎 𝑥𝑥𝑎𝑎+𝐹𝐹𝑠𝑠 𝑘𝑘𝑠𝑠 𝑥𝑥𝑠𝑠
𝑥𝑥𝑤𝑤+𝐹𝐹𝑎𝑎 𝑥𝑥𝑎𝑎+𝐹𝐹𝑠𝑠 𝑥𝑥𝑠𝑠
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 𝑘𝑘𝑤𝑤 ,𝑘𝑘𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑠𝑠  are the thermal conductivity of water, air and soil particles, respectively, 

𝑥𝑥𝑤𝑤 , 𝑥𝑥𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥𝑠𝑠  are the volume fraction of water, air and soil particles, respectively, 

and  𝐹𝐹𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑎𝑎 are weighting factors depending on the shape and orientation of soil 

particles and air-pores respectively and equal to: 

𝐹𝐹𝑠𝑠 = 1
3
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Where 𝘨𝘨𝑎𝑎 and 𝘨𝘨𝑐𝑐 are called shape factors and expressed as: 

𝘨𝘨𝑎𝑎 = 0.333− 𝑥𝑥𝑎𝑎
𝑛𝑛

(0.333− 0.035)            For    0.09 ≤ 𝑥𝑥𝑤𝑤 ≤ 𝑎𝑎                    4  

𝘨𝘨𝑎𝑎 = 0.013 + 0.944𝑥𝑥𝑤𝑤                         For    0 ≤ 𝑥𝑥𝑤𝑤 ≤ 0.09                     4 

𝘨𝘨𝑐𝑐 = 1 − 2𝘨𝘨𝑎𝑎                                                                                                           5 

where 𝑎𝑎 is the porosity. 

Another assumption assumed by De Vries (1963) is that the effective thermal 

conductivity of the air phase varies linearly with 𝑘𝑘𝑓𝑓 due to humidity: 

𝑘𝑘𝑎𝑎 = 0.0615 + 1.9𝑥𝑥𝑤𝑤                                                                                6 

2.2 Johansen (1975) model  

Johansen (1975) developed a method for determining the thermal conductivity of 

partially saturated soils based on the dry and saturated thermal conductivities when 

evaluated at same dry density. For natural dry soils, Johansen proposed the following 

empirical equation: 

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 =  0.135𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑+64.7
2700−0.94𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑

    ±20                                                                               7 

Where the dry density in kg/m3, and the solid density is taken as 2700 kg/m3.  

For saturated soils, Johansen proposed a geometric mean equation based on the 

relative fraction of soil components and their thermal conductivities. 

𝑘𝑘𝑠𝑠𝑎𝑎𝑠𝑠 = 𝑘𝑘𝑠𝑠1−𝑛𝑛 𝑘𝑘𝑤𝑤𝑛𝑛                                                                                                   8 



Where 𝑎𝑎 is the porosity, 𝑘𝑘𝑠𝑠 is the solid thermal conductivity, and 𝑘𝑘𝑤𝑤 is the water thermal 

conductivity. 

In order to evaluate the unsaturated thermal conductivity in terms of 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑, 𝑘𝑘𝑠𝑠𝑎𝑎𝑠𝑠 and 

degree of saturation 𝑆𝑆𝑑𝑑 Johansen proposed the following correlation: 

𝐾𝐾 = �𝑘𝑘𝑠𝑠𝑎𝑎𝑠𝑠 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�𝐾𝐾𝑒𝑒 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑                                                                    9 

Where 𝑘𝑘𝑒𝑒 is a function representing the influence of 𝑆𝑆𝑑𝑑 on the thermal conductivity and 

expressed as:  

𝐾𝐾𝑒𝑒 = 0.7𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑑𝑑 + 1        𝑆𝑆𝑑𝑑 > 0.05          For coarse unfrozen soils          10 

𝐾𝐾𝑒𝑒 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑑𝑑 + 1             𝑆𝑆𝑑𝑑 > 0.1           For fine unfrozen soil                  10  

2.3 Côté and Konrad (2005) model   

Côté and Konrad (2005) modified the Johansen model to eliminate the logarithmic 

reliance on saturation ratio that distorted predictions of the thermal conductivity at low 

degrees of saturations. The developed thermal conductivity model is based on the 

concept of normalized thermal conductivity with respect to dry and saturated states. 

They offered a modified relationship of the form: 

𝑘𝑘 = (𝑘𝑘𝑤𝑤𝑛𝑛  𝑘𝑘𝑠𝑠1−𝑛𝑛 − 𝑥𝑥10−𝜂𝜂𝑛𝑛) � 𝑎𝑎𝑆𝑆𝑑𝑑
1+(𝑎𝑎−1)𝑆𝑆𝑑𝑑

� + 𝑥𝑥10−𝜂𝜂𝑛𝑛                                          11 

Where 𝑥𝑥 and 𝜂𝜂 account for particle shape effects, and 𝑎𝑎 accounts for soil texture effect. 

For fine sand, they suggested 𝑥𝑥 = 3.55, 𝜂𝜂 = 1.8  and  𝑎𝑎 = 1.7 W/mK. 

2.4 Lu et al. (2007), model  

Lu et al. (2007) also proposed a modification of Johansen’s model. They proposed the 

following equation for the estimation of the thermal conductivity of sandy soils: 



𝑘𝑘 = [𝑘𝑘𝑤𝑤 
𝑛𝑛 𝑘𝑘𝑠𝑠1−𝑛𝑛 − (𝑏𝑏 − 𝑎𝑎𝑎𝑎)]𝑒𝑒𝑥𝑥𝑒𝑒[𝛼𝛼(1 − 𝑆𝑆𝑑𝑑𝛼𝛼−1.33)] + (b − an)                             12 

where a, b and α are empirical parameters. The values suggested for sandy soils are 

0.56, 0.51 and 0.96, respectively.   

2.5 Chen (2008) model  

Based on a laboratory investigation of sandy soils, Chen (2008) proposed an empirical 

equation of thermal conductivity expressed as a function of porosity and degree of 

saturation. The equation is based on 80 needle-probe experimental tests on four types 

of sandy soils with different degrees of saturation at different porosities. He proposed 

the following equation: 

𝑘𝑘 = 𝑘𝑘𝑤𝑤 
𝑛𝑛 𝑘𝑘𝑠𝑠1−𝑛𝑛[(1 − 𝑏𝑏)𝑆𝑆𝑑𝑑 + 𝑏𝑏]𝑐𝑐𝑛𝑛                                                                             13 

Where b and c are empirical parameters obtained from the fitting of the measured data 

and equal to 0.0022 and 0.78, respectively.  

2.6 Haigh (2012) model  

Haigh (2012) proposed an analytical model based on unidirectional heat flow through 

a three-phase soil element. The model analyses the one-dimensional heat flow 

between two equally sized spherical soil particles of radius R. two geometric 

parameters β and ξ  are introduced to express the saturation degree and the void ratio 

respectively. According to the Haigh procedure, the overall thermal conductivity can 

be expressed as the following: 

𝑘𝑘
𝑘𝑘𝑠𝑠

= 2(1 + 𝜉𝜉)2 � 𝛼𝛼𝑤𝑤
(1−𝛼𝛼𝑤𝑤)2

𝑙𝑙𝑎𝑎 �(1+𝜉𝜉)+(𝛼𝛼𝑤𝑤−1)
𝜉𝜉+𝛼𝛼𝑤𝑤

� + 𝛼𝛼𝑎𝑎
(1−𝛼𝛼𝑎𝑎)

𝑙𝑙𝑎𝑎 � (1+𝜉𝜉)
(1+𝜉𝜉)+(𝛼𝛼𝑎𝑎−1)𝑥𝑥

��  

+ 2(1+𝜉𝜉)
(1−𝛼𝛼𝑤𝑤)(1−𝛼𝛼𝑎𝑎)

[(𝛼𝛼𝑤𝑤 − 𝛼𝛼𝑎𝑎)𝑥𝑥 − (1 − 𝛼𝛼𝑎𝑎)𝛼𝛼𝑤𝑤]                                                14 



Where, 

𝜉𝜉 = 2𝑒𝑒−1
3

                                                                                                                   15  

𝛼𝛼 = 𝑘𝑘𝑓𝑓
𝑘𝑘𝑠𝑠

                                                                                                                       16 

𝑥𝑥 = �1+𝜉𝜉
2
� �1 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐 − √3𝑐𝑐𝑠𝑠𝑎𝑎𝑐𝑐�                                                                          17 

Where, 

𝑐𝑐𝑙𝑙𝑐𝑐3𝑐𝑐 = 2(1+3𝜉𝜉)(1−𝑆𝑆𝑑𝑑)−(1+𝜉𝜉)3

(1+𝜉𝜉)3
                                                                                 18 

Where 𝛼𝛼𝑤𝑤 and 𝛼𝛼𝑎𝑎 are the thermal conductivities, normalised by that of the soil solids, 

of water and air respectively, as found in Equation (19). 

3- Experimental Methodology 

3.1 Materials 

The soil tested in this work is a sandy soil obtained from North Africa known as Tripoli 

sand. This sandy soil is found in a large area surrounding the city of Tripoli in Libya 

and also in many areas of the Sahara desert. The samples tested were extracted from 

a depth of one meter at a distance of 2.0 km south of the centre of Tripoli. Sieve 

analysis following BS 1377, indicates that this soil can be classified as a fine sand with 

coefficients of uniformity and curvature of 1.83 and 0.742, respectively (Fig. 2). It can 

be noted that 3.52% of Tripoli sand is fines. The mineralogical composition of this 

sample, determined by X-ray fluorescence, reveals that 93.25 % of the soil solids are 

silica (Silicon Dioxide) with negligible amounts of other materials (Table 1). 

3.2 Steady state thermal conductivity measurement 



The thermal conductivity of the soil was measured at different degrees of saturation 

using a thermal cell that utilises the steady-state method (divided bar method). The 

design of the apparatus is based on the application of Fourier’s law, where a one-

directional uniform heat flux is generated through two identical specimens. The main 

body of the cell is made of acrylic, whose low thermal conductivity helps in minimising 

the radial heat loss and whose stiffness allows specimens to be compacted during 

preparation if required. The cell body consists of three main parts: a central insulating 

cylinder made from double-wall tubes separated by insulation material (40 mm of 

polyurethane foam) and two identical acrylic specimen cylinders, each having the 

same cross-section as the U100 sampling tube. Fig. 3 shows a schematic diagram of 

the thermal cell in which a heater disc is placed between the two specimens and a 

thermal gradient parallel to the axis of the specimen is generated by a DC cartridge 

rod heater that can be easily inserted into the disc through a drilled hole in the acrylic 

body of the cell. Two aluminium sink discs, at the unheated end of each specimen, 

were used to dissipate the heat from the outer ends of the specimens. The heater disc, 

sink discs and specimens have the same diameter (103 mm). In order to eliminate 

radial heat losses caused by ambient temperature interference (ATI), a thermal jacket 

surrounding the body of the cell was used. The thermal jacket consists of two spiral 

plastic tubes surrounding the body of the cell with one inlet in the middle and two 

outlets at the sides. Using a controlled temperature water bath and a circulating pump, 

the temperature of the thermal jacket can be adjusted to match the specimen 

temperature and hence reduce radial heat losses. More details on the apparatus 

design, performance and calibration are given by Alrtimi (2014).   

In steady state conditions, the temperature of at least three points for each specimen 

can be plotted versus time. Using Fourier’s equation for heat conduction assuming 



one dimensional heat flow at steady-state, the effective thermal conductivity 𝐾𝐾 can be 

determined to be:  

𝐾𝐾 = 1
2
𝑄𝑄
𝐴𝐴

  𝐿𝐿
 ∆𝑇𝑇

     (W/m K)                                                                                      19                          

Where: 𝑄𝑄 is the power supplied to the two samples, 𝛥𝛥𝛥𝛥 is the temperature drop across 

the specimen, 𝐿𝐿 is the specimen length and 𝐴𝐴 is the cross sectional area.  

3.2.1 Sample preparation  

The study focused on the effects of degree of saturation and porosity on the thermal 

conductivity of Tripoli sand. For the interpretation of the test data, both porosity and 

degree of saturation were controlled. Four porosities (dry densities) were chosen 

(0.400, 0.430, 0.460, and 0.490), each level being tested at five degrees of saturation 

(0, 10, 25, 50, and 60 %). It should be noted that it was difficult to prepare samples 

with higher degree of saturations, especially at high porosities, as disaggregation 

occurs due to the elimination of the friction force between sand grains caused by the 

high water contents. This resulted in twenty tests being performed. The soil was first 

oven dried for 24hrs and allowed to cool in a dry place before being used. For each 

particular condition, the water content, dry density, and bulk density can be calculated 

using mass-volume relations. According to the desired moisture content, a dry soil 

mass was mixed with the appropriate amount of water. By knowing the volume of the 

specimen the required wet mass to obtain the predefined dry density can be 

calculated. The positions of the sink discs in the two specimen cylinders were adjusted 

to maintain the desired volume. The calculated wet masses of soil were then 

compacted in the two specimen cylinders using a conventional compaction procedure 

(Fig. 4). To ensure accurate assessment of the sample properties, the moisture 

content of the remaining portion of the samples were measured by dry method 

procedure and samples were reweighed to check the dry density. If the dry density 

was far from the required target, the preparation was repeated. 



3.2.2 Test procedure 

After preparation of the specimens was completed, the two cylinders containing the 

soil samples were then inserted into the insulating cylinder.  The length of the 

specimen cylinders is designed to ensure complete contact between the heater disc 

and the two specimens when they reach their final position inside the insulating 

cylinder.  

To monitor the temperature gradient along each specimen length, four thermocouples 

were laterally pushed through the lateral holes in the cell body to reach the centre of 

the specimens at 0, 30, 60, and 80 mm from the heater. Two further thermocouples 

were used to monitor the temperature of the thermal jacket and room temperature. 

The room temperature was adjusted to the desired level (constant room temperature 

at 20°C was applied for all tests).  The apparatus then left for some time to allow soil 

specimens and the thermal cell to reach thermal equilibrium. This can be checked from 

the continuous readings of thermocouples temperature on the Pico-logger software. 

Fig. 5 shows the complete test setup. Once thermal equilibrium was achieved, the DC 

power supply and the thermal jacket were switched on and the test run until steady 

state condition was achieved. The power selection depends on the required 

temperature gradient. For unsaturated conditions, the temperature gradient was kept 

as low as possible near the room temperature to avoid moisture migration. The power 

(𝑄𝑄 = 𝑉𝑉 ∗ 𝐼𝐼) supplied to the heater is controlled by changing the voltage 𝑉𝑉 and current 

𝐼𝐼 supplied by the DC power supply. Fig. 6 shows an example of data for temperature 

versus time. Using Equation 19, the effective thermal conductivity k can be 

determined. At least two thermal conductivity values were calculated using different 

specimen lengths. The thermal conductivity results were then plotted against the 

corresponding specimen lengths. The radial heat losses along the specimen length 



can be identified by the slope of the line connecting these thermal conductivity values. 

If the line is not horizontal, radial heat losses took place during the test period. A 

correction step can be applied by extrapolating the thermal conductivities to a 

specimen length of zero (Alrtimi 2014). Fig. 7 shows an example of the thermal 

conductivity correction method. 

4- Experimental results and discussion 

The thermal conductivities of twenty specimens of Tripoli sand with different porosities 

and degrees of saturation have been measured using the steady state apparatus 

method. The physical properties of the tested specimens and the effective thermal 

conductivities obtained are presented in Table 2. From these results, several relations 

between the physical properties of Tripoli sand and thermal conductivity can be 

assessed. The effect of other properties such as mineralogical composition and grain 

size cannot be evaluated as they were identical in all tests. Furthermore, the 

performance of selected prediction models results was evaluated against the 

experimental results to establish the validity of using such models in the calculation of 

the thermal conductivity of Tripoli sand. 

4.1 Steady state method versus prediction models 

A comparison between the experimental results obtained using the steady state 

thermal cell apparatus and the corresponding calculated values obtained from the 

selected prediction methods is shown in Fig 8. It should be noted that in all models 

calculations the value of thermal conductivity of the solids (Quartz), water, and air were 

taken as 7.69, 0.60 and 0.026 W/mK respectively. These values are obtained from 

Horai (1971), Ramires et al. (1995), and Stephan and Laesecke (1985) respectively. 



It can be seen that the De Vries (1963) model can be used to satisfactorily predict the 

thermal conductivity of Tripoli sand at high degrees of saturation. However, at low 

saturation levels, the model predicted higher values than were observed 

experimentally. This may be attributed to the assumption that the soil particles and air 

are considered to be immersed in a continuous water phase. This assumption is only 

valid only at high water content. The Johansen (1975) model is not able to predict the 

thermal conductivity of Tripoli sand at dry condition. The main reason of that is the 

logarithmic dependence on the saturation ratio which leads to erroneous results at low 

degrees of saturation. However, at high saturations (above 50%) the model values are 

in good agreement with the experimental results with a deviation ranging between 8 

and 19% from experimental results depending on the porosity level. The Côté and 

Konrad (2005) model correctly predicted the thermal conductivity of Tripoli sand at dry 

condition for all levels of porosity with an average deviation less than 8%. This was 

also observed at high saturations with average deviation around 13%. It can also be 

observed from Fig. 8, that the same result is captured by Lu et al. (2007). This is due 

to the fact that both models can be seen as a logical extension of Johansen model.  It 

should be noted for the Lu et al. (2007) model, that the optimum fit to all test results is 

obtained with values a = 2.71 and b = 1.65 for the relationship between dry thermal 

conductivity and porosity. Fig. 8 shows that the Chen (2008) model overestimated the 

result of thermal conductivity at dry and low degrees of saturation of Tripoli sand with 

a deviation ranging from 30 to 50%. However, at high saturations the results became 

more consistent, especially at low porosities, and the deviation ranged between 6 to 

22%. The equations derived by Haigh (2012) are relatively complicated when 

compared with existing empirical models. The model simplifies the fluid behavior at 

particle contacts at various void ratios and soil saturations. The results obtained from 



the application of this theoretical model for Tripoli sand shows that this model can only 

provide reasonable results at very low porosity values especially at high degrees of 

saturation. 

From these observations, it can be concluded that none of the selected models is able 

to correctly match the thermal conductivity of Tripoli sand at all conditions. It is obvious 

that some of these models give good predictions in relatively dry conditions and others 

at high degrees of saturation. One important observation is that most of these models 

are able to produce better predictions at high saturation and low porosity. This implies 

that performance increases as the soil approaches a two phase state where 

conduction plays the dominant role in controlling heat transfer. It is also noticeable that 

all models relatively failed to estimate the thermal conductivity of such soil at low 

degrees of saturation. This might be due to the lack of the consideration of some key 

governing factors such as soil and liquid type and pore size distribution in these models 

Dong et al (2015). The calculated thermal conductivity using these prediction methods 

is compared against the measured values in Fig. 9. The observed discrepancies 

between the calculated and measured thermal conductivity results can be explained 

by the fact that most of the presented models were developed from empirical curve-fit 

datasets for soils with different physical properties. Furthermore, the values quoted for 

thermal conductivity of the soil particles vary from one model to another. The true 

thermal conductivity of soil grains will obviously impact on the effective thermal 

conductivity of the bulk soil. Finally, most of the experimental results used in the 

calibration of these models were based on transient methods which provide different 

values of thermal conductivity when compared with steady state methods. Midttomme 

and Roaldset (1999) mentioned that up to 20% difference between the two methods 

has been reported in previous studies.  



The observed overall higher thermal conductivity of Tripoli sand can be related to the 

existence of the clay (3.52%). Despite of the much lower thermal conductivity of clay 

soils compared with the quartz grains, at low moisture contents the clay provides more 

water thermal bridges between the granular skeleton of sand which increases the 

number of contact point that forms more conductive heat flow paths. Also, the clay 

expands the surface area that can be covered with water films (Sakaguchi et al., 2007).  

4.2 Effect of degree of saturation  

For a given porosity (dry density), Fig. 10 clearly shows that the thermal conductivity 

increases as the degree of saturation increases. This trend is most significant at low 

saturation ratios, (less than 10%). After that the increase decelerates with parallel 

trend for all levels of porosity. When the thermal conductivity results are plotted against 

the water content (Fig. 11), the thermal conductivity at first increases rapidly as the 

moisture content increases but beyond certain moisture content (approximately 3%) 

the rate of the increase become much lower. In dry conditions, owing to the thermal 

conductivity of air being much lower than those of the other soil components, heat 

transfers only through contact points between soil particles resulting in a low thermal 

conductivity. As the water content increases, more water collects around the contact 

points and form water bridges between soil grains. As a result, the inter-particle 

contact within the material is enhanced by the formation of the water menisci and so 

conduction from one grain to another is enhanced (Tarnawski et al., 2000a; Hall and 

Allinson, 2009). This improvement is rapid until the water film covers all the surface of 

the soil particles. At this point, the transfer of heat arises largely from two mechanisms; 

one is the heat conduction through the soil skeleton and water between solid particles 

(thermal bridges), and the other is the transfer of latent heat. Under a temperature 

gradient, more water vapor is likely to condense on the water films surrounding the 



soil particles due to the larger surface area of the water films compared with the 

surface area of the water bridges. Condensation, conduction and evaporation take 

place through both the water films and the water bridges (Sakaguchi et al., 2007). Both 

heat conduction through the water bridges and the latent heat transferred with the 

movement of water vapor are the main cause of the rabid enhancement of the effective 

thermal conductivity at low water content values. Beyond this point, any enhancement 

of the thermal conductivity is only related to the replacement of air by water in the pore 

spaces, resulting in a slower increase in thermal conductivity.   

4.3 Effect of dry density 

The overall effective thermal conductivity of a porous medium can be expressed as 

the sum of the conductivities related to different heat transfer processes.  In dry soils, 

the effective thermal conductivity is mainly controlled by the gaseous phase (Huetter 

et al., 2008). This is because the contact areas between the particles are very small 

compared to the contact areas between air and particles. Heat transfer is hence 

governed by conduction within the gas and by heat transfer across the gas-solid 

interface. The thermal conductivity of dry soils is hence usually low owing to the low 

thermal conductivity of air. This can be observed clearly in Fig.12, showing the 

variation of thermal conductivity with dry density at different degrees of saturation. It 

can also be observed that dry density has a much more minor impact on thermal 

conductivity than does the degree of saturation. Increasing dry density results in a 

minor increase in thermal conductivity owing to a slight increase in the number of 

contact points between soil particles (Hall & Atkinson 2009). The parallel lines in Fig. 

12 indicate that the effect of dry density is similar at all degrees of saturation in Tripoli 

sand.    



5- The proposed empirical model for Tripoli sand 

From the above discussion it obvious that none of the selected prediction models can 

be used effectively in determining of the Tripoli sand thermal conductivity. An empirical 

equation based on the experimental results can be produced that can be used to better 

predict thermal conductivity. The results obtained from the steady state apparatus are 

adopted in this empirical model.  

From the relation between the thermal conductivity and water content that presented 

in Fig. 11, It can be observed that the thermal conductivity of the Tripoli sand can be 

satisfactory described as logarithmic function of the water content. Fig. 13 is an 

example of this logarithmic relation. This logarithmic function can be determined at all 

levels of porosity with R2 values range between 0.9694 to 0.9732. Accordingly, the 

effective thermal conductivity of Tripoli sand can be expressed in terms of water 

content as: 

keff = a Ln w + b                                                                                                        20 

where, a  and 𝑏𝑏 are empirical values expressing the effect of the porosity. 

Table 3 shows the values of 𝑎𝑎  and  𝑏𝑏 at different porosities. 

From this table the empirical parameters 𝑎𝑎  and 𝑏𝑏 can be expressed in terms of 

porosity n as: 

𝑎𝑎 = 1 − 𝑎𝑎                                                                                                                 21 

𝑏𝑏 = 6.83 − 7.75𝑎𝑎                                                                                                      21 

Substituting in equation 20 and simplifying we obtain: 

𝑘𝑘 =  (1 − 𝑎𝑎)Ln 𝑤𝑤 − 7.75𝑎𝑎 + 6.83                  𝑤𝑤 > 0.0                                               22 



At dry condition (𝑤𝑤 =  0.0), the following linear relation between the effective thermal 

conductivity and the dry density ( 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑) can be used: 

𝑘𝑘 = 1.025 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 − 1.065                                                                                               23 

The calculated thermal conductivity values using this equation are compared to the 

experimental results in Fig. 14 and the implementation of this model using different 

Tripoli sand conditions along with corresponding experimental results are shown in 

Fig. 15. From these figures, it is clear that this model can provide sensible values of 

Tripoli sand thermal conductivity with average variation from experimental results 

equals to 5.734%. 

6- Conclusion 

This paper presented results of an experimental program carried out on sandy soil 

aiming to investigate the thermal behavior of this particular soil under different 

porosities and degrees of saturation. The thermal conductivity has been measured 

using a steady state apparatus. The design of the steady state apparatus is based on 

the application of Fourier’s law where a one-directional uniform heat flux is generated 

through two identical specimens. The results have shown that the thermal conductivity 

increases significantly below a certain level of saturation and started to decelerate 

above this level. The validation of some selected prediction models against the 

experimental results revealed that none of these models can be used to predict the 

thermal conductivity of such soil at all conditions. Some can provide good agreement 

at dry or nearly dry condition while others perform well at high saturations. It is also 

notable that most of the prediction models provided better results at low levels of 

porosity, especially at high saturation ratio. The experimental results have also shown 

that the variation of the thermal conductivity against the volumetric water content can 



be closely expressed as a logarithmic function. As a result, an empirical model based 

on the experimental results expressing the effective thermal conductivity in terms of 

water content and porosity has been obtained and validated.   
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