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Abstract 

 

The governing procedure in coupled Monte Carlo (MC) codes relies on discretization 

of the simulation time into time steps. Typically, the MC transport solution at discrete 

points will generate reaction rates, which in most codes are assumed to be constant 

within the time step. This assumption can trigger numerical instabilities or result in a 

loss of accuracy, which, in turn, would require reducing the time steps size. This 

paper focuses on reducing the time discretization error without requiring additional 

MC transport solutions and hence with no major computational overhead. The sub-

step method presented here accounts for the reaction rate variation due to the variation 

in nuclide densities and thermal hydraulic (TH) conditions. This is achieved by 

performing additional depletion and TH calculations within the analyzed time step. 

The method was implemented in BGCore code and subsequently used to analyze a 

series of test cases. The results indicate that computational speedup of up to a factor 

of 10 may be achieved over the existing coupling schemes. 
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1. Introduction 

 

Many Monte Carlo (MC) coupled computer codes have been developed and are 

widely used to perform reactor designs and fuel cycle analyses (Bomboni et al., 

2010). Coupled codes, such as SERPENT (Leppänen et al., 2015), BGCore (Fridman 

et al., 2008) and MCNPX (Fensin et al., 2010) are just a small subset of such codes, in 

which the MC transport solution is linked to a deterministic point depletion solver. 

There is an ongoing effort to expand the use of such MC based codes to full core 

analysis (Leppänen et al., 2014). Therefore, there is a need to introduce additional 

feedback that will account for variation in thermal-hydraulic (TH) conditions in the 

coupled calculation routine.  

The coupling schemes implemented by the various codes typically rely on 

explicit methods to couple between MC transport solution and burnup with TH 

calculations. The explicit nature of these coupling schemes relates to the time 

integration. Recently however, a major deficiency in such explicit coupling methods 

was reported (Dufek et al., 2013a and Kotlyar and Shwageraus, 2013). Non-physical 

behavior of the results in a form of oscillations in various local parameters, such as 

the neutron flux distribution was observed and studied. The mentioned studies showed 

that large systems (e.g. 3D fuel assemblies or cores) may exhibit such unphysical 

behavior. Previous results also indicated that the trigger for such numerical 

instabilities could relate, for example, to slightly asymmetrical flux distribution which 

may be caused by poor spatial convergence of MC statistics. However, the asymmetry 

in flux distribution could also be due to an asymmetric distribution of burnup or TH 

parameters such as coolant density, which is often the case in realistic core conditions. 

These studies concluded that the issues were linked to the use of explicit coupling 

methods during time integration. In other words, reducing the length of the time-step 

to sufficiently small value would be required to eliminate the instability issues.   

Therefore, new coupling methods have been developed first for MC-burnup 

applications (Dufek et al., 2013b) and implemented in Serpent and BGCore. Then, 

more comprehensive fully coupled MC-burnup-TH schemes (Kotlyar and 

Shwageraus, 2014) were proposed and implemented in BGCore. The stability issues 

were resolved through the use of alternative methods such as the Stochastic-Implicit-

Euler (SIE) and Stochastic-Implicit-Mid-point (SIMP) methods. The methods solve 
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the depletion and TH problems simultaneously and iteratively. Each iteration updates 

either the end-of-step (SIE) or middle-of-step (SIMP) flux, which is weighted with 

variable under-relaxation factor and combined with the values obtained in previous 

iterations. 

Recent studies (Kotlyar and Shwageraus, 2016) indicated that the efficiency of 

the SIE may be quite poor. More specifically, in order to obtain accurate results, the 

time discretization steps are required to be extremely small, which increases the 

overall calculation time. Although, the same study indicated that the SIMP method 

considerably improves the accuracy of the results, the computational efficiency is still 

relatively low. The SIE method, for example, relies on the end-of-step (EOS) reaction 

rates to calculate the EOS nuclide densities, similarly to the explicit methods that rely 

on the beginning-of-step (BOS) reaction rates. The reason for superior performance of 

the SIMP method is that the middle-of-step (MOS) reaction rates are assumed to be 

timestep representative, which is certainly a better approximation than using fixed 

BOS or EOS reaction rates.  However, none of these assumptions are suitable for 

many practical problems with rapid change of neutron energy spectrum such as 

Gadolinium depletion.  

One of the options to improve the original SIE methods was to include a sub-step 

approach. Previous studies (Kotlyar and Shwageraus, 2016) introduced the sub-step 

methodology for coupled MC depletion solution and fixed TH conditions. The 

method was implemented in BGCore and used a log-linear correlation between the 

nuclide densities and reaction rates to better account for the variation in reaction rates 

within the time step. The method required only additional depletion calculations to be 

carried out but no additional transport calculations. This method was implemented in 

BGCore code, which was subsequently used to analyze a number of test cases for a 

typical PWR fuel assembly. The results systematically showed that the method 

outperforms the original SIE and SIMP methods in accuracy and computational 

efficiency.   

The current research seeks to extend the previously proposed sub-step method by 

accounting for the variation in TH properties within the analyzed time step. The 

variation in TH conditions will in turn lead to variation in reaction rates as well. 

Therefore, the first stage of this research was to develop reasonably accurate 

correlations between the reaction rates and nuclide densities as well as TH conditions. 

These correlations that link fuel temperatures (or any other TH conditions) and 
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nuclide densities are constructed on the fly. Each iteration within the analyzed 

timestep adds an extra data point, from which the reaction rates calculated from the 

MC transport are linked to a unique fuel temperature and nuclide density set. The sub-

step sequence within each time step starts at BOS, for which the reaction rates are 

known.  Depletion with BOS reaction rates allows to obtain the end of sub-step 

nuclide densities. Then, the new reaction rates are updated from the constructed 

correlations by substituting the updated nuclide densities. These updated reaction rates 

are used to calculate the new TH conditions, which are then used to update the 

reaction rates according to the correlations. This procedure is subsequently performed 

for the following sub-steps within the calculated time step. This is a coupled routine 

since reaction rates are continuously updated, however the scheme requires no 

additional MC solutions. This method was implemented in BGCore and was used to 

perform various 3D test cases. The results indicate that this method allows to achieve 

accurate results with considerably larger time steps than required with other coupling 

methods considered and compared in this study (e.g. explicit, SIE and SIMP).   

 

2. BGCore description 

 

The proposed coupled sub-step method was programmed into BGCore system. 

BGCore is a system of codes in which Monte-Carlo code MCNP4C (Briesmeister et 

al., 2000) is coupled with fuel depletion and thermal-hydraulic (TH) modules. 

BGCore utilizes multi-group methodology for calculation of one-group transmutation 

cross-sections (Haeck et al., 2007; Fridman et al., 2008) which significantly improves 

the speed of burnup calculations. In addition to the depletion module, BGCore system 

also includes a built-in thermal-hydraulic (TH) feedbacks module. The modules are 

executed iteratively so that the coupled system is capable of predicting fuel 

composition, power, coolant density and temperature distributions in various types of 

reactor systems (Kotlyar et al., 2011).  

 

3. Burnup-thermal hydraulic coupling methodology 
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Coupled burnup-TH analyses are used to account for the strong relation between 

the various neutronic and thermal hydraulic parameters. The nuclide densities, 𝐍, and 

TH properties, 𝐓, depend on each other and also on the energy and space distribution 

of neutron flux,  𝜙. However, calculation of 𝜙 requires a prior knowledge of 𝐍 and 𝐓. 

Practicality, the solution of such time-dependent non-linear problem is obtained by 

discretizing the simulated time period into time steps.  Within a time step, the 

parameters of interest, such as nuclide densities are computed by assuming that other 

parameters, such as reaction rates remain constant during the time step. Generally, this 

assumption may lead to a loss of accuracy when the time steps are not sufficiently 

small.  

The non-linear problem mentioned above can be described by three coupled 

equations. The first is the neutron transport eigenvalue equation that provides reaction 

rates, denoted here as 𝓜. In this work, the neutron transport operator will be denoted 

by φ. The MCNP4C code is used here to obtain the reaction rates 𝓜 = φ(𝐍, 𝐓) for a 

known mixture of nuclides 𝐍 and TH conditions 𝐓. The second is the heat balance 

equation that computes the temperature distribution from which also the coolant 

and/or moderator densities can be derived. The operator for solving the heat 

conduction and convection problem, which requires the reaction rates as an input, is 

denoted here as Υ(𝓜). The last is the burnup equation that determines the change in 

nuclide densities during time t, as described in Eq. 1.  

In order to progress in time, a set of first order Bateman equations (Bateman, 

1932) have to be solved. This solution is known as matrix exponential (Eq. 1).  

𝐍(𝑡) = 𝑒𝓜∆𝑡𝐍(0) (1) 

where, 𝐍 = [𝑛1 ⋯ 𝑛𝑛] is unique for a certain time point and 𝑛𝑗  is the atomic  

density of nuclide j. The operator 𝓜 in Eq.1 represents the transmutation matrix that 

includes removal terms on its diagonal and production rates on the off-diagonal 

locations as explained in Eq.2: 

𝑀𝑗,𝑗 = −𝜆𝑗 − 𝜎𝑗𝜙 

𝑀𝑗,𝑘≠𝑗 = 𝜆𝑘⟶𝑗 + 𝜎𝑘⟶𝑗𝜙 
(2) 

where 𝜆𝑗 and 𝜎𝑗 are the decay constant and energy averaged absorption cross 

section of nuclide j respectively, 𝜆𝑘⟶𝑗 and 𝜎𝑘⟶𝑗 are the decay constant and the 

average cross section of nuclide k which leads to j respectively. And 𝜙 is the 1-group 

neutron flux.    
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As mentioned earlier, in fuel cycle calculations, the irradiation time is divided 

into sub-steps. At each time step, the transport, depletion and TH problems are solved 

separately and the solutions are iteratively coupled in a designated subroutine. The 

coupling scheme determines the accuracy and numerical stability of the solution. 

Section 3.1 describes the beginning-of-step explicit method used in many of the 

existing computational tools used in reactor physics analyses. This is then followed by 

the SIE and SIMP algorithms introduction in Section 3.2 and 3.3 respectively. Lastly, 

the proposed SUB-STEP algorithm is presented in Section 3.4. The different 

numerical schemes presented in these sections describe the coupling procedure to 

solve the coupled problem for a single time-step with time step length ∆𝑡 = 𝑡1 − 𝑡0. 

In addition, 𝐍𝑖, 𝐓𝑖  and 𝓜𝑖 are the nuclide density vector, TH conditions and 

transmutation matrix at 𝑡𝑖 respectively.  

3.1 Explicit Euler method 

The most commonly used coupling approach is the beginning-of-step (BOS) 

method that is based on the explicit Euler method. Thermal-hydraulic (TH) iterations 

(index-k) for a pre-determined fuel inventory are performed at the BOS until reaction 

rate convergence is achieved. Then, the space and energy dependent microscopic 

reaction rates are assumed to be constant during the depletion time step. Knowing 

these reaction rates allows obtaining the concentration at the end-of-step (EOS) in a 

single calculation step.  

 

1  𝒇𝒐𝒓 𝜅 = 1: 𝜅𝑚𝑎𝑥 

2 𝓜𝟎 ⟵ φ(𝐍0, 𝐓̅0 ) 

3 𝐓0
(𝜅)

⟵  Υ(𝓜𝟎) 

4 
𝐓̅0 = ∑

𝐓0
(𝑖)

𝜅

𝜅

𝑖=1

 

5 𝒆𝒏𝒅 𝒇𝒐𝒓 

6 𝐍1 ⟵ 𝑒𝓜0∆𝑡𝐍0 

 

In this work, different methods were compared with respect to their accuracy for 

a given number of iterations. Therefore, kmax in the above flowchart is fixed. An 
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alternative approach would be to provide a convergence criterion (or accuracy) and 

then compare the number of iterations required to achieve it.  

The Explicit Euler method was shown to be prone to numerical stability issues 

(Kotlyar and Shwageraus, 2014). Furthermore, it uses the BOS reaction rates, which 

are assumed to be constant throughout the depletion step, thus leading to under- or 

over- prediction of the nuclide densities.  

 

 

 

 

 

 

3.2 Stochastic Implicit Euler (SIE) method 

 

SIE (Dufek et al., 2013b) is a recently proposed method that is not susceptible to 

numerical oscillations. In contrast to the BOS explicit method, in this method, the 

depletion and TH problems are solved simultaneously and iteratively with the 

transport problem. The solution is obtained by using the so-called stochastic 

approximation with under-relaxation factor based on the Robbins-Monro algorithm 

(1951). The relaxation algorithm could be either applied to the nuclide density field 

(i.e. SIE/ND) or the reaction rate field (i.e. SIE/FLUX).  The mathematical derivation 

of the methods and their implementation is presented in the original paper and hence 

will not be repeated here.  

Since the coupled MC calculations are computationally expensive, only the 

performance of the SIE/ND method is evaluated. Therefore, the SIE/ND algorithm 

will be referred to as just SIE throughout this paper. 

In this method, the depletion calculations are performed with EOS flux and cross 

sections (𝓜1) rather than BOS quantities.  

 

1 𝓜𝟎 ⟵ φ(𝐍0, 𝐓0) 

2 𝐍̅1 ⟵ 𝑒𝓜0∆𝑡𝐍0 

𝐓̅1 ⟵  Υ(𝓜𝟎) 
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3  𝒇𝒐𝒓 𝜅 = 1: 𝜅𝑚𝑎𝑥 

4 𝓜𝟏
(𝜅)

⟵ φ(𝐍̅1, 𝐓̅1) 

5 𝐍1
(𝜅)

⟵ 𝑒𝓜𝟏
(𝜅)

∆𝑡𝐍0 

𝐓1
(𝜅)

⟵  Υ(𝓜𝟏
(𝜅)

) 

6 
𝐍̅1 = ∑

𝐍1
(𝑖)

𝜅

𝜅

𝑖=1

     𝐓̅1 = ∑
𝐓1

(𝑖)

𝜅

𝜅

𝑖=1

 

7 𝒆𝒏𝒅 𝒇𝒐𝒓 
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3.3 Stochastic Implicit Mid-Point (SIMP) method 

 

SIMP (Kotlyar and Shwageraus, 2014) is another recent method that uses a 

philosophy similar to that adopted in the SIE. However, the convergence procedure is 

performed with the middle-of-step (MOS) or time step-averaged quantities rather than 

the EOS ones. The relaxation algorithm could be applied either to the nuclide density 

field (i.e. SIMP/ND) or to the flux field (i.e. SIMP/FLUX).  The mathematical 

derivation is presented in the original paper and hence will not be repeated. Only the 

performance of the SIMP/ND (denoted as SIMP) method will be reported. The results 

for the SIMP/FLUX method are expected to be similar.  

In this method, the depletion calculations are performed with MOS (i.e. at 𝑡0.5 =

𝑡1+𝑡0

2
) reaction rates (𝓜0.5) and time step average TH properties (𝐓̅0.5).  

 

1 𝓜𝟎 ⟵ φ(𝐍0, 𝐓0) 

2 𝐍̅1 ⟵ 𝑒𝓜0∆𝑡𝐍0 

𝐓̅0.5 ⟵  Υ(𝓜𝟎) 

3  𝒇𝒐𝒓 𝜅 = 1: 𝜅𝑚𝑎𝑥 

4 
𝓜𝟎.𝟓

(𝜅)
⟵ φ (

𝐍̅1 + 𝐍0

2
, 𝐓̅0.5

(𝜅−1)
) 

5 𝐍1
(𝜅)

⟵ 𝑒𝓜𝟎.𝟓
(𝜅)

∆𝑡𝐍0 

𝐓0.5
(𝜅)

⟵  Υ(𝓜𝟎.𝟓
(𝜅)

) 

6 
𝐍̅1 = ∑

𝐍1
(𝑖)

𝜅

𝜅

𝑖=1

     𝐓̅0.5 = ∑
𝐓0.5

(𝑖)

𝜅

𝜅

𝑖=1

 

7 𝒆𝒏𝒅 𝒇𝒐𝒓 
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3.4 Sub-step method 

   

The methods presented in Sections 3.1, 3.2 and 3.3 are limited to a constant 

power/flux approximation, in which either the BOS, EOS or MOS reaction rates are 

considered to be representative of the entire time step. The stochastic semi-implicit 

sub-step (denoted as SUBSTEP) method presented here is an extension to a recently 

suggested revised sub-step methodology for coupled MC depletion analysis (Kotlyar 

and Shwageraus, 2016). In this approach, the main idea was to create a relation 

between the reaction rates and the logarithm of nuclide densities and then apply the 

sub-step method to account for the reaction rates change as a function of nuclide 

densities. This method was inspired by the sub-step scheme originally introduced by 

Isotalo and Aarnio (2014) and the improved log-linear rate method (Carpenter et al., 

2010) that has been developed for MC21 Monte Carlo code (Sutton et al., 2007).  

The main idea of the proposed method is to create a relation between the reaction 

rates and the nuclide densities as well as the TH conditions (stage 5 in the flow chart 

presented below). A functional relationship needs to be assumed between the reaction 

rates, thermal-hydraulic conditions and nuclide densities. The choice of this relation 

will be discussed in subsequent section. The correlation coefficients can then be 

updated as more data becomes available with each additional iteration. The sub-step 

approach was incorporated into the SIE method. In this approach, the time step is 

divided into sub-steps and the depletion and TH problems are solved separately for 

each sub-step (stages 7 through 12 in the below chart). This sub-step method accounts 

for the change in reaction rates without requiring additional MC solutions. First, the 

reaction rates are updated (Stage 10 in the flow chart) due to the variation of nuclide 

densities (Stage 9). These reaction rates are then used to calculate the new TH 

conditions (Stage 11), which in turn change the reaction rates for the subsequent sub-

step (Stage 8).  
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1 𝓜𝟎 ⟵ φ(𝐍0, 𝐓0) 

2 𝐍̅1 ⟵ 𝑒𝓜0∆𝑡𝐍0 

𝐓̅1 = 𝐓0 ⟵  Υ(𝓜𝟎, 𝐍0) 

3  𝒇𝒐𝒓 𝜅 = 1: 𝜅𝑚𝑎𝑥 

4 𝓜𝟏 ⟵ φ(𝐍̅1, 𝐓̅1) 

5 𝓜𝒕 ≡ 𝓜𝒕(𝐍𝑡, 𝐓𝑡) 

6 𝐍ℓ
(𝜅)

= 𝐍0     𝐓ℓ
(𝜅)

= 𝐓0    

7 𝒇𝒐𝒓 ℓ = 1: ℓ𝑚𝑎𝑥 

8 𝓜ℓ ⟵ 𝓜𝒕(𝐍ℓ
(𝜅)

, 𝐓ℓ
(𝜅)

) 

9 
𝐍ℓ+1

(𝜅)
⟵ 𝑒

𝓜ℓ×
∆𝑡

ℓ𝑚𝑎𝑥𝐍ℓ
(𝜅)

 

10 𝓜ℓ ⟵ 𝓜𝒕(𝐍ℓ+1
(𝜅)

, 𝐓ℓ
(𝜅)

) 

11 𝐓ℓ+1
(𝜅)

⟵ Υ(𝓜ℓ, 𝐍ℓ+1
(𝜅)

) 

12 𝒆𝒏𝒅 𝒇𝒐𝒓: ℓ 

13 
𝐍̅1 = ∑

𝐍1
(𝑖)

𝜅

𝜅

𝑖=1

     𝐓̅1 = ∑
𝐓1

(𝑖)

𝜅

𝜅

𝑖=1

 

14 𝒆𝒏𝒅 𝒇𝒐𝒓: 𝜅 

 

The variables 𝐍𝑡 and 𝓜𝑡  in stage 5 are nuclide densities and reaction rates as a 

function of time respectively. These variables are constructed from knowing the BOS 

𝐍0 and 𝓜0 and EOS 𝐍1 and 𝓜1 values. It must be pointed out that the same 

correlation (described in section 3.4.3) to obtain 𝓜𝑡 will be used in all subsequent 

sub-steps. However, the correlation coefficients will be updated with each subsequent 

iteration as we obtain more MC transport solutions. 

The method presented here is a general one and can be used in coupled problems 

where depletion and TH feedbacks are important. However, the method can also be 

used for problems with no TH feedback, such as cases with reduced dimensionality. 

The iterations can be switched off by setting 𝜅𝑚𝑎𝑥 to 1.  
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3.4.1 Derivation of the sub-step scheme within the time step  

 

This section describes how the link between the reaction rates and other parameters of 

interest is established. The first stage includes generation of data at BOS and EOS 

time points, from which the reaction rates are tabulated as a function of nuclide 

densities and temperatures. These data points are stored for each nuclide and reaction 

type. According to the SIE methodology, depletion and TH calculations are performed 

simultaneously. Therefore, the input variables (i.e. nuclide densities and thermal 

hydraulic conditions) are passed to the transport solver to obtain the corresponding 

reaction rates, as schematically illustrated in Fig. 1.  

 

 

 

 

 

 

Fig. 1. Schematic illustration of the change in reaction rates (ℳ) as a function of 

nuclide densities (N) and temperatures (T) 

 

 

The main assumption that we make here is that the reaction rates in [t0, t1] may be 

obtained through interpolation in the following manner: 

ℳ(N, T) = [1 − 𝜃(N, T)]ℳ0 + 𝜃(N, T)ℳ1 (3) 

where the weighting parameter 𝜃 ∈ [0,1] depends on the nuclide density and TH 

conditions. For simplicity, we will assume here that TH conditions are represented by 

the fuel temperature only. However, the described methodology can be easily 

extended to a more generic case, where TH conditions could also include coolant 

temperature, density, etc.   

We now assume that if the nuclide densities are fixed and only the temperature 

varies, then, assuming linear reaction rate dependence on temperatures we obtain: 

𝜃(N, T) = 𝜃(T) =
T − T0

T1 − T0
 (4) 

𝑡0 𝑡1 

ℳ0 = ℳ0(N0, T0) 

ℳ1 = ℳ1(N1, T1) 
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Or, alternatively, if the temperatures are fixed and only the nuclide densities are 

changed then, assuming the reaction rates vary linearly with the logarithm of nuclide 

densities, we obtain: 

𝜃(N, T) = 𝜃(N) =
𝑙𝑛

N
N0

𝑙𝑛
N1

N0

 (5) 

 

More detailed reasoning behind the correlations presented in Eqs. 4 and 5 will be 

explained in Section 3.4.3. 

In reality however, both nuclide densities and temperatures are varied simultaneously 

and therefore both changes should be accounted for. This may be achieved by 

assigning weighting/importance factors as described in Eq. 6 below. 

𝜃(N, T) = 𝑤(N, T)𝜃(N) + [1 − 𝑤(N, T)]𝜃(T) (6) 

 

The 𝑤(N, T) weight can be approximated by the following relation: 

𝑤(N, T) =
|
𝜕ℳ
𝜕N

| |N − N0|

|
𝜕ℳ
𝜕N

| |N − N0| + |
𝜕ℳ
𝜕T

| |T − T0|
 (7) 

 

The numerator in Eq. 7 describes the absolute change in reaction rates due to the 

change in nuclide densities. Therefore, the weight coefficient, 𝑤(N, T), describes the 

importance of change in nuclide densities relative to the total change in both nuclide 

densities and TH conditions.   

The derivatives 
𝜕ℳ

𝜕N
 and 

𝜕ℳ

𝜕T
 in Eq. 7 can be approximated by applying a standard 

perturbation theory as follows. For the changes ∆N and ∆T, the reaction rates ℳ at a 

perturbed state can be expressed using a Taylor series expansion: 

ℳ(N0 + ∆N, T0 + ∆T) = ℳ0 +
𝜕ℳ

𝜕N
∆N +

𝜕ℳ

𝜕T
∆T + Ο[(∆N)2, (∆T)2] (8) 

 

In order to obtain the derivatives 
𝜕ℳ

𝜕N
 and 

𝜕ℳ

𝜕T
, we need to solve the following system 

of equations 
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[∆N(𝑖−1) ∆T(𝑖−1)

∆N(𝑖) ∆T(𝑖)
] [

𝜕ℳ

𝜕N
𝜕ℳ

𝜕T

] = [
ℳ(𝑖−1) − ℳ0

ℳ(𝑖) − ℳ0

] (9) 

where  

∆N(𝑖) = N1
(𝑖)

− N0 

∆T(𝑖) = T1
(𝑖)

− T0 
(10) 

And the superscript i denotes the iteration index. According to this approach, the 

derivatives are iteration’s dependent and the procedure for calculating the derivatives 

can only start for 𝑖 > 1. 

 

3.4.2 Sub-step procedure 

This section describes the practical implementation of the sub-step methodology 

within the time step 𝑡 ∈ [𝑡0, 𝑡1]. Let us assume that the time step is divided into 10 

equal length sub-steps. Then, the following procedure is applied: 

1. For fixed N0 and T0, the reaction rates, ℳ0, are evaluated from the neutron 

transport solution (MCNP) at 𝑡0. 

2. The reaction rates ℳ0 are simultaneously used in depletion and TH 

calculations with a time step of 𝑡1 − 𝑡0. 

3. As a result, the EOS N1 and T1 are obtained and used in the transport 

calculations to obtain the EOS reaction rates ℳ1. 

4. The sub-step procedure restarts at 𝑡0, where N0 , T0 and  ℳ0 (stage 1) are 

known.  

5. Assuming that the reaction rates  ℳ0 are constant within the first sub-

step (𝑡1 − 𝑡0)/10, the nuclide densities N𝑡 are obtained.  

6. Equations 3-10 are used to obtain the updated ℳ𝑡. 

7. These updated reaction rates ℳ𝑡  are used to recalculate the power distribution. 

8. The updated power distribution is used to update the temperatures T𝑡. 

9. The temperatures T𝑡 are used in eqs. 3-10 to obtain the updated ℳ𝑡. 

10. At this point, N𝑡 , T𝑡 and  ℳ𝑡 are known at (𝑡1 − 𝑡0)/10 and stages 4-9 are 

repeated for all subsequent sub-steps within the time step by varying N𝑡 , T𝑡 

and ℳ𝑡.  
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3.4.3 Reaction rates correlations 

PWR unit cell with UO2 (3.5 w/o of U
235

) is used here to demonstrate the impact 

of different input parameters (e.g. nuclide densities and TH conditions) on various 

microscopic reaction rates (i.e. microscopic cross section multiplied by the flux). Fig. 

2 shows a schematic view of the unit cell. The UO2 fuel is mixed with 1.5 v/o of 

Gd2O3 and has a radius of 0.4095 cm. The thickness of the Zirconium clad is 0.0655 

cm and the fuel pin pitch is 1.26 cm. The boundary conditions in all directions are 

reflective.  

 

 

Fig. 2. PWR unit cell 

 

Fig. 3 and Fig. 4 illustrate the reasoning behind the correlation used in Eqs. 4-5.  

For this purpose, the reaction rates were plotted for each of the separate input 

variables, i.e. nuclide concentration - N (Fig. 3) and fuel temperature - 𝑇𝑓 (Fig. 4). No 

burnup calculations were carried out here, but rather static MC calculations, in which 

each of the input parameters was varied and the corresponding reaction rates (ℳ) are 

obtained and presented in the figures. It should be noted that the fuel composition also 

included fission products, plutonium, and minor actinides obtained by depleting the 

UO2 fuel in 

advance. For each of the input variables, a least square fit curve is also shown. As can 

be seen from these figures, different correlations were chosen to best represent the 

dependence of the reaction rates on nuclide densities and TH conditions. The 

correlations are summarized in Eq. 11 and justify the assumptions used in Eqs. 4-5.  

ℳ(𝑁) = 𝐴1 ln 𝑁 + 𝐴2 

ℳ(𝑇𝑓) = 𝐴3𝑇𝑓 + 𝐴4 
(11) 
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It must be pointed out that higher order correlations could also be suitable. However, 

such analysis was outside the scope of the current study but it is planned to be covered 

in future research.  

 

 

Fig. 3. Reactions rates as a function of concentration 

 

 

 

Fig. 4. Reactions rates as a function of fuel temperature 
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4. Results and discussion 

 

Two 3D test cases were analyzed to demonstrate the proposed method. For both 

cases, a reference solution was generated by the SIE method with ultra-fine time 

steps. Section 4.1 presents the results for a typical PWR 3D unit cell for which all the 

analyzed methods produce relatively accurate results. Section 4.2 presents a 

somewhat more realistic 3D case, in which Gd2O3 is used as a burnable absorber and 

due to which, the flux amplitude and spectrum change rapidly with time. This section 

shows, that neither of the previously proposed methods (i.e. explicit, SIE and SIMP) 

could accurately capture the real behavior, while adopting the new sub-step method 

has shown to be successful in achieving that.  

 

4.1 PWR 3D unit cell 

PWR unit cell with UO2 (3.5 w/o of U
235

) is used to show that for cases where the 

spectrum varies slowly with time, the SIE and SIMP methods produce relatively 

accurate results. Additional objective is to explore the sensitivity of accuracy of the 

results to the length of the time step. Therefore, the analyses were performed for 

typical values of 60 days and then repeated for 120 days’ time steps. Typical PWR 

power density of 104 W/cm
3 

which corresponds to 38 MW/kgHM was used.   

The radial and axial schematic views of the examined case are shown in Fig. 5. The 

pin dimensions are identical to those reported in Table 1. 

The active height of the fuel is 366 cm and was divided into 12 equal height axial 

layers which included identical materials at the beginning of irradiation campaign. 

The bottom (20 cm) and upper (20 cm) reflectors were modeled as homogeneous 

mixtures of water and stainless steel. The mass flow rate for this single TH channel 

was 0.3 kg/sec.  Each neutron transport calculation with MCNP used 150 active 

fission source iteration cycles with 50,000 histories per cycle. Sensitivity studies 

varying the number of active cycles were performed. The results indicated that 150 

active cycles are sufficient to assure the source convergence.   
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 The different coupling approaches were compared to the reference solution. This 

solution was obtained using fine time steps of 10 days with SIE method.  In all 

methods, a fixed number of 10 iterations was used.  

The results are presented in Fig. 6 through Fig. 9. The results show that the 

SUBSTEP method outperforms the SIE, SIMP and the explicit methods. Moreover, 

the results indicate that when the time step is increased from 60 days to 120 days, the 

performance of the SIE and explicit methods is significantly deteriorated, while there 

is almost no impact on the accuracy of results when the SIMP and SUBSTEP methods 

are adopted.  

Fig. 6 presents the difference in reactivity for various methods. When 60 days 

time steps are used (Fig. 6a), the results obtained with the SIE and SIMP generate 

relatively accurate results with maximum reactivity difference below 100 pcm. The 

prediction of reactivity with the explicit method is somewhat poorer with maximum 

reactivity difference slightly below 200 pcm. The results obtained with the SUBSTEP 

method are within the statistical uncertainties (1σ). Moreover, the explicit and SIE 

methods produce less accurate results when the time step is increased to 120 days 

(Fig. 6b), with a maximum difference of 340 and 200 pcm respectively. Fig. 7 and 

Fig. 8 show the relative difference in Pu
239

 and U
235

 concentration as a function of 

time. Again, the SUBSTEP produces more accurate results than the SIMP, SIE and 

the explicit methods. Lastly, Fig. 9 presents the axial Pu
239

 distribution at the end of 

the irradiation campaign (at 920 days). These figures show that the explicit method 

under-predicts and the SIE over-predicts the overall distribution. These differences are 

further increased when a larger time step is used. However, a good agreement in Pu
239

 

distribution is observed when the sub-step or SIMP methods are used.  
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(a) x-y view (b) x-z view 
Fig. 5. PWR 3D unit cell 

 

 

 

 

(a) 60 days time step 
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(b) 120 days time step 

Fig. 6. Comparison of k-inf for various coupling schemes, unit cell case 

 

 

 

 

 

 

 

 

 

(a) 60 days time step 
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(b) 120 days time step 

Fig. 7. Comparison of Pu
239

 concentration for various coupling schemes, unit cell case 

 

 

 

 

 

 

 

 

 

(a) 60 days time step 
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(b) 120 days time step 

Fig. 8. Comparison of U
235

 concentration for various coupling schemes, unit cell case 

 

 

 

 

 

 

 

 

 

(a) 60 days time step 
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(b) 120 days time step 

Fig. 9. Comparison of Pu
239

 axial distribution for various coupling schemes, unit cell 

case 

 

 

 

 

4.2 PWR 3D mini-assembly with Gadolinium 

A 33 array of PWR pins with UO2 fuel (Kotlyar et al., 2015) is examined in this 

section. The initial fuel enrichment was taken to be 3.5 w/o. The fuel in the central pin 

was mixed with 1.5 v/o of Gd2O3. The central pin was radially subdivided into 5 

equal-volume regions to realistically track the spatial burnup of Gd isotopes and its 

effect on the system’s criticality. Axially, the active fuel was divided into 12 equal 

length axial layers, 30 cm each. Bottom and upper reflectors contained a 

homogeneous water-stainless steel mixture. Schematic view and operating parameters 

of the considered mini-assembly test case are given in Fig. 10 and Table 1. 

In order to obtain relatively small statistical uncertainties, 250 active fission 

source iteration cycles with 100,000 histories per cycle were used in the neutron 

transport calculations with MCNP. The efficiency of each scheme to achieve a certain 

convergence was not studied here and rather a fixed number of 10 iterations was used 

in all cases. 
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a. Radial layout b. Axial layout 

Fig. 10. PWR mini-assembly geometry 

 

 

 

 

 

Table 1: Summary of the mini-assembly design parameters 

Parameter Value 

Fuel pellet diameter, cm 0.8100 

Fuel pin diameter, cm 0.9500 

Cladding thickness, cm 0.0655 

Fuel lattice pitch, cm 1.2600 

Number of pins per assembly 9 

Active height, cm 360 

Total height, cm 400 

Power, W/cm
3
 104 

𝑚̇, kg/sec 19.20 

 

 

The chosen problem includes Gd absorber which strongly affects the system’s 

neutron energy spectrum and hence criticality. In the current study, only the time 

interval between 0 and 110 days associated with Gd depletion was analyzed to 

illustrate the issues related to the different coupling schemes. 

The reference solution was obtained by using SIE method with very fine time 

steps of 0.25 days or 0.009 MWd/kg. The solutions with various methods were 
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obtained for 5 days time step and repeated for more practical time steps of 20 days. 

Fig. 11 presents the system criticality as a function of time obtained using different 

methods.   

Fig. 12a depicts the difference in reactivity (pcm) between the reference and the four 

studied coupling schemes. The figure shows that there is an under-prediction and 

over-prediction in reactivity when either explicit or the SIE methods are used 

respectively. The figure also shows that considerable improvement is achieved when 

SIMP is used, but there is still a slight under-prediction of 250 pcm. Fig. 12b shows 

that increasing the time step amplifies the error, e.g. from 1500 pcm to >2000 pcm or 

from -250 to -1000 pcm when SIE or SIMP methods are used respectively. These 

discrepancies are practically diminished when the sub-step method is used. In general, 

the explicit, SIE and SIMP methods are not capable of capturing the realistic (i.e. 

close to reference) behavior of all neutronic and TH parameters as shown in Fig. 13 

and Fig. 14.  Fig. 13 presents the axial distribution of Gd
157

 in the central pin at 30 

days time point. Fig. 14 shows the axial centerline fuel temperature distribution in the 

central pin. One can notice that the explicit method tends to over-predict the Gd
157

 

concentration (Fig. 13) around the core mid-plane, which, in turn, leads to under-

prediction of the power and fuel temperature (Fig. 14) due to the artificially increased 

absorption in that region. The behavior of the results when SIE method is adopted is 

the opposite. In other words, concentration of Gd
157

 in the central regions is under 

predicted and results in over-prediction of the power and fuel temperatures.  
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(a) 5 days time step 

 

 

(b) 20 days time step 

Fig. 11. k-inf for various coupling schemes, mini-assembly case 
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(c) 5 days time step 

 

 

(d) 20 days time step 

Fig. 12. Comparison of k-inf for various coupling schemes, mini-assembly case 
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(a) 5 days time step 

 

 

(b) 20 days time step 

Fig. 13. Comparison of Gd
157

 axial distribution for various coupling schemes, mini-

assembly case 
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(a) 5 days time step 

 

 

(b) 20 days time step 

Fig. 14. Comparison of center line fuel temperature for various coupling schemes, 

mini-assembly case 

 

 

Fig. 15 and Fig. 16 demonstrate the effectiveness of the sub-step method. For 

illustration purposes, only a single time interval of 20 days was examined. As 

mentioned earlier, the reference solution was obtained by depleting the problem with 

0.25 days. Fig. 15 presents the reference total power of the central pin as a function of 
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time. This figure demonstrates that the power rapidly changes by ~25% within the 

examined 20 days time interval due to the rapid depletion of Gd
157

. The reason that 

SIE and explicit methods perform poorly is the lack of information regarding the 

time-dependent reaction rates within the 20 days interval. The vertical lines in Fig. 15 

show the explicit, SIE and SIMP powers used throughout the time step, which are 

assumed to be constant. The SUBSTEP extension allows to reproduce this time-

dependent behavior and therefore achieves more accurate results.  Fig. 16 

demonstrates the axial power distribution for 3 sub-steps within the time step. It must 

be pointed out again that the reference solution was obtained by performing MC 

transport calculations every 0.25 days. The sub-step method on the other hand used 

the time steps of 20 days with sub-steps that required no additional MC solutions.      

 

 

Fig. 15. Time-dependent power in the central pin for various coupling schemes, mini-

assembly case. 
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Fig. 16. Axial power distribution (central pin) for various coupling schemes, mini-

assembly case. 

 

5. Summary and Conclusions 

 

 Recent studies showed that traditional explicit coupling approaches can be 

numerically unstable. As a remedy to the stability issue, alternative methods (i.e. SIE 

and SIMP) were developed. In these methods, the depletion and thermal hydraulics 

feedbacks are solved simultaneously and iteratively with the transport problem. SIE 

method for example uses EOS fluxes to calculate EOS nuclide density and TH 

properties.  

 However, these methods rely on either constant EOS or MOS reaction rates 

throughout the entire time step. This assumption is valid only when the depletion 

steps are indeed sufficiently small and any spectrum variations are negligible. In 

reality, when practical time steps are used, the SIE and even SIMP are failing to 

produce accurate results. Moreover, if the stability issue could be ignored for the sake 

of an argument, explicit method would also fail to produce accurate results. The latter 

is a direct consequence of assuming constant BOS reaction rates values, which are 

certainly not representative of the entire time step.  

 

The accuracy issues of the currently used and newly proposed methods was 

reported in recent studies (Kotlyar and Shwageraus, 2016). The problem identified 
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was associated with using discrete time point quantities rather than using the actual 

time dependent shape of the reaction rates. In previous studies, we proposed to extend 

the original SIE method by including the sub-step methodology. The method was 

verified on multiple 2D and 3D problems and demonstrated significantly better 

performance in terms of accuracy and hence computational efficiency. This was 

achieved by accounting for the reaction rates variation within the depletion time step 

without the need for additional MC transport solutions. However, the method was 

developed only for coupling the depletion feedback with the transport solution.  

The current study focused on extending this methodology to incorporate 

simultaneous burnup-TH sub-step procedure also without requiring additional MC 

solutions. The method assumes that reaction rates are assumed functions of nuclide 

densities and fuel temperatures. The time step is divided into sub-steps, in which the 

depletion and TH calculations are performed. The updated nuclide densities and TH 

properties are then used to update the reaction rates. This routine is repeated for all 

subsequent sub-steps within the time step. This approach allows taking into 

consideration the variation of neutron spectrum due to the time-dependent variation of 

neutronic and TH properties.  

Verification of the proposed method was performed on two 3D problems. The 

reference solution was obtained with ultra-fine time steps. In the examined cases, the 

SUBSTEP method demonstrated notably better performance in terms of accuracy and 

hence computational efficiency.  

Future plans will focus on investigating higher order relations between the 

reaction rates and nuclide density and TH fields, which might improve the 

computational efficiency even further.  
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