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Abstract 26 
Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of 27 
infections caused by a variety of bacterial species. We investigated whether it could be repurposed 28 
for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and 29 
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non-wild-type range MICs for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin 30 
(MFX) using the microplate alamar blue assay of 126 clinical Mycobacterial tuberculosis strains from 31 
Beijing (China), of which 48 were OFX resistant based on drug-susceptibility testing on Löwenstein-32 
Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance 33 
determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) 34 
data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX, but higher 35 
than LFX and MFX based on the tentative epidemiological cut-off values (ECOFFs) determined in this 36 
study. All strains with non-wild-type MICs to AFX harbored known resistance mutations that also 37 
resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current 38 
critical concentration for OFX for Löwenstein-Jensen that was recently revised by the World Health 39 
Organization might be too high, resulting in misclassification of non-wild-type strains with known 40 
resistance mutations as wild-type. Based on our exploratory PK/PD calculations, the current dose of 41 
AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. 42 
 43 
 44 
Introduction 45 
In 2009, the Chinese State Food and Drug Administration granted marketing approval for the new 46 
fluoroquinolone antofloxacin hydrochloride (hereafter referred to as antofloxacin (AFX)), a derivative 47 
of levofloxacin (LFX) (1, 2). Its intended uses are: (a) acute bacterial exacerbations of chronic 48 
bronchitis due to Klebsiella pneumoniae, (b) acute pyelonephritis and cystitis due to Escherichia coli, 49 
and (c) wound infection and multiple epifolliculitis due to Staphylococcus aureus or coagulase-50 
negative staphylococci (1). However, given that AFX has activity against a wider array of bacterial 51 
pathogens and other fluoroquinolones are used for treatment of tuberculosis, we wanted to 52 
investigate its in vitro activity against Mycobacterium tuberculosis from China (1). Moreover, we 53 
studied the degree of cross-resistance to fluoroquinolones that are already being used to treat 54 
tuberculosis (i.e. ofloxacin (OFX), LFX, and moxifloxacin (MFX)) on a phenotypic as well as genotypic 55 
level to assess whether current genotypic drug-susceptibility testing (DST) assays could be used to 56 
detect resistance to AFX and whether AFX might be an option to treat strains that are resistant to 57 
these existing fluoroquinolones. 58 
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Methods 59 
Study setting and bacterial strains 60 
We studied 126 M. tuberculosis complex strains that were collected from the National Clinical 61 
Laboratory on Tuberculosis, Beijing Chest Hospital between January and March 2014 from 62 
retreatment patients with presumed multidrug-resistant (MDR) tuberculosis (i.e. resistance to 63 
rifampicin and isoniazid), which included 45 pan-susceptible, 49 MDR, and 17 extensively drug-64 
resistant tuberculosis strains (i.e. MDR with additional resistance to OFX and amikacin or 65 
capreomycin), as well as 3 strains that were mono-resistant to OFX (Sigma-Aldrich, St. Louis, MO, 66 
USA), as determined using the absolute concentration method on Löwenstein-Jensen (LJ) with 2 67 
μg/ml as critical concentration. The M. tuberculosis laboratory strain H37Rv (ATCC 27294) served as 68 
negative control. 69 
 70 
MIC testing  71 
We determined the MICs for OFX, LFX (Sigma-Aldrich, St. Louis, MO, USA), MFX (Bayer Pharmaceutical 72 
Corporation, Leverkusen, Germany), and AFX (Anhui Huanqiu Pharmaceutical Co., Hefei, China) using 73 
the microplate alamar blue assay (MABA) in two-fold dilutions ranging from 16 to 0.032 μg/ml (3, 4). 74 
Drug powder was dissolved in 1% NaOH at the concentration of 10 mg/ml, different aliquots were 75 
prepared and stored at -70°C. All the working solutions were freshly prepared before use. All the 76 
strains were sub-cultured onto LJ slopes for 3 weeks. Bacterial suspensions were prepared using 5% 77 
(vol/vol) Tween 80 in 0.9% NaCl and the turbidity was adjusted to 1 McFarland turbidity standard. 78 
Suspensions were further diluted (1:25) with 7H9 broth. H37Rv was used as control. 79 
 80 
Genotypic analyses 81 
We sequenced the quinolone resistance determining regions (QRDR) of gyrA (Rv0006) and gyrB 82 
(Rv0005) and called mutations relative to the H37Rv reference genome (AL123456.3) using the 2002 83 
numbering for gyrB (5-7). We usually sequenced from the drug-free LJ slopes, but where no 84 
resistance mutations were found in phenotypically resistant strains, sequencing was repeated from 85 
the OFX-containing LJ slope to detect low-frequency mutations (8, 9). Strains belonging to the East 86 
Asian lineage were identified based on the RD105 (10).  87 
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Results 88 
92.9% (117/126) of the strains in this study belonged to the East Asian lineage (Table S1) (11). We 89 
found that the MIC distributions for all four fluoroquinolones were bimodal (Figures 1A-D), where the 90 
more susceptible of the two distributions represented the phenotypically wild-type distributions, 91 
whereas the remaining strains were, by definition, phenotypically non-wild-type. Based on visual 92 
inspection, we therefore set tentative epidemiological cut-off values (ECOFFs) for MIC determination 93 
using the MABA method at 2, 1, 0.5, and 0.25 μg/ml for OFX, AFX, LFX, and MFX, respectively (12). 94 
Not all phenotypically wild-type strains were identical genotypically (i.e. all 126 Chinese strains 95 
harbored the known gyrA S95T mutation that does not correlate with resistance (7, 13)), but after the 96 
exclusion of this polymorphism, we found a near perfect correlation between the tentative ECOFFs 97 
and non-synonymous mutations in the two subunits of DNA gyrase, encoded by gyrA and gyrB. 98 

All gyrA mutations detected in this study were classical resistance mutations that fell into the 99 
QRDR and resulted in an MIC increase above the tentative ECOFF for all four fluoroquinolones (Figure 100 
1 and Table S1) (7, 14). This was in line with the fact that all gyrA mutants tested resistant to OFX on 101 
LJ, although retesting of seven strains that were initially discrepant was required to achieve complete 102 
agreement (Table 1). In line with a recent systematic review, the D94G and A90V mutations were the 103 
most and second most frequent mutations, respectively, whereas other changes (e.g. G88C) only 104 
occurred in a single strain (15). Theoretically, all of these mutations could have been detected with 105 
the genotypic DST assays by Hain Lifescience, NIPRO, and YD Diagnostics, whereas the assays by AID 106 
and Seegene would have missed the two resistant strains with mutations at codon 88 (Table S1) (16-107 
22). In practice, however, some resistance mutations might have been missed given that the 108 
detection limits of these assays, albeit unknown, are almost certainly higher than the critical 109 
proportion of 1% (e.g. strain 14140 was heteroresistant and its D94G mutation was only detectable 110 
using Sanger sequencing from the drug-containing slope (Table S1)) (23-25). 111 

As expected, gyrB mutations were rare and usually coincided with gyrA mutations (in 5/6 112 
cases) and thus did not improve the sensitivity of detecting phenotypically non-wild-type strains 113 
markedly (48/49 strains had a gyrA mutation) (15). Strain 14117 was the sole exception. It only 114 
harbored a gyrB mutation (T500N) and was found to be susceptible to OFX on LJ and had MABA MICs 115 
that corresponded to the aforementioned ECOFFs for the four respective fluoroquinolones (Table 1). 116 
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The mutation in question fell just outside of the gyrB QRDR as defined by Maruri et al., which spans 117 
codons 461 to 499, but inside the QRDR based on Pantel et al., which extends to codon 501 (7, 26). 118 
Using the recently developed version 2 of the Hain Lifescience Genotype MTBDRsl assay, which covers 119 
the codons 497 to 502 of gyrB, this mutation would have also been interpreted as resistant (22). We 120 
therefore repeated DST for this strain, whereupon the MICs for AFX, LFX, and MFX increased by one 121 
doubling dilution and consequently became phenotypically non-wild-type, whereas the OFX MIC and 122 
LJ result remained unchanged (Table 1). 123 
 124 
Discussion 125 
The aim of DST is usually to distinguish resistant strains, which are likely to fail treatment, from 126 
susceptible strains, which have a high likelihood of clinical success (an intermediate category is 127 
sometimes possible) (27). The clinical breakpoints (known as critical concentrations (CCs) in the 128 
tuberculosis field) employed for this purpose should be based on clinical, 129 
pharmacokinetic/pharmacodynamics, and, ideally, clinical outcome data, which, for a variety of 130 
reasons, are difficult to obtain for tuberculosis drugs (27). As a result, an important aim of DST for the 131 
majority of tuberculosis drugs is to distinguish wild-type from non-wild-type strains (i.e. strains with 132 
elevated MICs compared with strains that (i) have never been exposed to the agent or class of agent 133 
in question and (ii) are not intrinsically resistant) using the ECOFF, which represents the highest 134 
concentration of the wild-type distribution as determined by modern microbiological principles 135 
pioneered by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (12, 23, 27-136 
30). In other words, the ECOFF represents the lowest possible CC and some non-wild-type strains 137 
might remain treatable, as proposed for MFX, albeit based on limited evidence (i.e. the CC of 2 μg/ml 138 
set by the World Health Organization (WHO) is higher than the ECOFF) (9, 29, 31). 139 
 Setting conclusive ECOFFs and validating MABA as a method for routine DST was beyond the 140 
scope of this study, which would have required larger number of phylogenetically diverse strains from 141 
multiple laboratories and more extensive reproducibility testing, as specified by EUCAST and the 142 
International Organization for Standardization (ISO) (12, 28, 32, 33). Nevertheless, our MABA results 143 
were sufficiently robust compared with LJ DST and the genotypic results to set tentative ECOFFs. 144 
Accordingly, AFX had a lower ECOFF than OFX in vitro, but higher than LFX and MFX. All gyrA 145 
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mutations correlated with non-wild-type MICs to all fluoroquinolones. Consequently clinicians should 146 
consider the possibility that the use of AFX to treat E. coli, K. pneumoniae and staphylococci, at the 147 
doses currently suggested, might result in selection of fluoroquinolone resistance in M. tuberculosis in 148 
co-infected patients. 149 
 We only had one strain that had a gyrB mutation without a mutation in gyrA. The fact that 150 
four different amino acid changes had been observed at the gyrB codon in question (T500A/I/N/P) 151 
constitutes a potential signal for drug selection (7, 34, 35). In line with this observation, allelic 152 
exchange experiments of T500N in an Erdman background increased the MIC from wild-type levels to 153 
the CC for OFX and LFX, and just above the CC for MFX (36). The results of the equivalent experiment 154 
in a H37Rv background were identical for OFX and LFX, but no increase in MIC was observed for MFX 155 
(36). In accordance with in vitro selection experiments and the aforementioned allelic exchange 156 
results, this suggested that the MIC of gyrB T500N was close to the ECOFF, which, due to biological 157 
and technical variability (e.g. the ISO guidelines allow for the reproducibility of ±1 dilution of the 158 
mode for ≥95% of the results), would likely result a poor reproducibility of DST (32, 37-39). 159 
Irrespective of whether this slightly elevated MIC increases the likelihood of treatment failure, it is 160 
possible that it increases the likelihood of selecting for higher levels of fluoroquinolone resistance due 161 
to a gyrA or a secondary gyrB mutation, as observed for streptomycin (36, 40, 41). Larger datasets, 162 
ideally with longitudinal samples from the same patients, would be required to clarify this possibility 163 
(i.e. to determine in which order gyrA and gyrB mutations arose in double mutants, such as the five 164 
strains observed in this study (Figure 1 & Table S1)). 165 

Using the published AUC0-24 of 47.59±7.85 mg·h/L for the currently approved dose of AFX 166 
(i.e. 200 mg daily dose following a 400 mg loading dose) and limited protein binding data of 17.5%, 167 
the fAUC0-24/MIC ratio for the wild-type MICs of 0.064-1 μg/ml would range between 613.46±101.19 168 
and 39.26±6.48 h (42, 43). Although there is no consensus on the precise fAUC0-24/MIC ratio that best 169 
predicts in vivo efficacy, ratios of >100 at the upper end of the wild-type distribution are likely 170 
required to maximize clinical success (44, 45). Given that the currently recommended dose of AFX is 171 
unusually low (probably because of a narrow clinical indication) compared with the other 172 
fluoroquinolones used to treat tuberculosis, the target of fAUC0-24/MIC>100 at increased dosing is 173 
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likely achievable, but this would have to be evaluated in clinical trials where side effects would have 174 
to be monitored carefully. 175 
 Our study also has implications for DST for OFX on LJ. Although the absolute concentration 176 
method has not been validated by the WHO for second-line drugs, it is used clinically with the CC 177 
recommended for the proportion method (29). In our case, we employed a CC of 2 μg/ml, which 178 
corresponded to the old CC for this drug for the proportion method that the WHO recently increased 179 
to 4 μg/ml, although the rationale for this change is unclear (29). In light of the excellent correlation 180 
between the LJ DST results and MABA MICs for all four fluoroquinolones, which is in line with 181 
previous studies, this suggested that the revised CC is likely too high for the absolute concentration 182 
method, resulting in non-wild-type strains being misclassified as wild-type (46, 47). In fact, a CC of 4 183 
μg/ml is also likely too high for the proportion method, as shown by Coeck et al. (48). This, together 184 
with prior studies that raised doubts regarding the validity of some CCs, underlined the fact that the 185 
WHO should start to apply modern microbiological principles and, crucially, to publish the evidence 186 
used to set CCs, as has been the case for EUCAST for many years (12, 27, 39). 187 
 188 
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Table 1 382 
Initial and repeat LJ DST and MABA MIC results for the seven strains for which there was 383 
disagreement during the initial round of testing between the different methods (in each case, the 384 
repeat results are shown in Figure 1 and listed in Table S1). MICs above the ECOFF (i.e. non-wild-type 385 
results) are underlined. All of these discrepancies, which are shown in bold, resolved upon retesting. 386 
By contrast, 14117 was retested because the initial MICs and the previous literature suggested that 387 
the MICs were close to the ECOFFs, which retesting supported. 388 
 389 
Strain OFX LJ DST MABA MIC (μg/ml) Genotypea

OFX AFX LFX MFX gyrA gyrB 
14170 R 

S 
2 
0.5 

0.25
0.5 

0.125
0.25 

0.125
0.25 

WT WT 

12657 R 
S 

2 
1 

1
1 

0.5
0.5 

0.25
0.25 

WT WT 

14130 R 
S 

2 
1 

0.5
1 

0.25
0.5 

0.125
0.25 

WT WT 

14132 R 
S 

0.5 
1 

0.5
0.5 

0.125
0.5 

0.125
0.25 

WT WT 

14150 R 
S 

2 
1 

2
1 

1
0.5 

0.5
0.25 

WT WT 

14175 R 
S 

2 
0.5 

0.5
0.5 

0.25
0.25 

0.125
0.125 

WT WT 

14198 R 
R 

2 
8 

4
8 

2
4 

1
2 

D94A WT 

14117 S 
S 

2 
2 

1
2 

0.5
1 

0.25
0.5 

WT T500N 

aExcluding the gyrA S95T polymorphism. 390 
  391 
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Figure 1 392 
Wild-type and non-wild-type MIC distributions for the four fluoroquinolones under investigation 393 
relative to their gyrA and gyrB genotypes (Table S1). The tentative ECOFF represents the upper limit 394 
of the wild-type distribution. All clinical strains, with the exception of H37Rv, harbored the gyrA S95T 395 
mutation that is known not to confer FQ resistance and was consequently excluded from the analysis 396 
(13). 397 
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