CORE

d by Apollo

Prov

Downloaded from http://aac.asm.org/ on July 8, 2016 by MRC LAB OF MOLECULAR BIOLOGY

Copyright © 2016 Yu et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

1 Full-length paper

- 2 Mycobacterium tuberculosis wild-type and non-wild-type MIC distributions for the novel
- 3 fluoroquinolone antofloxacin compared with ofloxacin, levofloxacin, and moxifloxacin
- 4
- 5 Running title: *M. tuberculosis* MIC distributions for antofloxacin
- 6
- 7 Xia Yu¹, Guirong Wang¹, Suting Chen¹, Guomei Wei¹, Yuanyuan Shang¹, Lingling Dong¹, Thomas
- 8 Schön^{2,3}, Danesh Moradigaravand⁴, Julian Parkhill⁴, Sharon J. Peacock⁴⁻⁶, Claudio U. Köser⁵*, and
- 9 Hairong Huang¹*
- 10^{-1} National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis
- 11 Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor
- 12 Institute, Beijing, China
- 13 ²Department of Medical Microbiology, Linköping University Hospital, Linköping, Sweden
- 14 3 Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Kalmar,
- 15 Sweden
- 16 ⁴Wellcome Trust Sanger Institute, Hinxton, UK
- 17 ⁵Department of Medicine, University of Cambridge, Cambridge, UK
- 18 ⁶London School of Hygiene & Tropical Medicine, London, UK
- 19 *Corresponding authors. Tel +44-1223-331664; Email: cuk21@cam.ac.uk or Tel: +86-010-89509159;
- 20 Email: huanghairong@tb123.org
- 21
- 22 Keywords: Mycobacterium tuberculosis, antofloxacin, ofloxacin, levofloxacin, moxifloxacin,
- 23 epidemiological cut-off value
- 24
- 25

26 Abstract

- 27 Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of
- 28 infections caused by a variety of bacterial species. We investigated whether it could be repurposed
- 29 for the treatment of tuberculosis by studying its *in vitro* activity. We determined the wild-type and

30 non-wild-type range MICs for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin 31 (MFX) using the microplate alamar blue assay of 126 clinical Mycobacterial tuberculosis strains from 32 Beijing (China), of which 48 were OFX resistant based on drug-susceptibility testing on Löwenstein-33 Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance 34 determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) 35 data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX, but higher 36 than LFX and MFX based on the tentative epidemiological cut-off values (ECOFFs) determined in this 37 study. All strains with non-wild-type MICs to AFX harbored known resistance mutations that also 38 resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current 39 critical concentration for OFX for Löwenstein-Jensen that was recently revised by the World Health 40 Organization might be too high, resulting in misclassification of non-wild-type strains with known 41 resistance mutations as wild-type. Based on our exploratory PK/PD calculations, the current dose of 42 AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. 43

Downloaded from http://aac.asm.org/ on July 8, 2016 by MRC LAB OF MOLECULAR BIOLOGY

44

45 Introduction

46 In 2009, the Chinese State Food and Drug Administration granted marketing approval for the new 47 fluoroquinolone antofloxacin hydrochloride (hereafter referred to as antofloxacin (AFX)), a derivative 48 of levofloxacin (LFX) (1, 2). Its intended uses are: (a) acute bacterial exacerbations of chronic 49 bronchitis due to Klebsiella pneumoniae, (b) acute pyelonephritis and cystitis due to Escherichia coli, 50 and (c) wound infection and multiple epifolliculitis due to Staphylococcus aureus or coagulase-51 negative staphylococci (1). However, given that AFX has activity against a wider array of bacterial 52 pathogens and other fluoroquinolones are used for treatment of tuberculosis, we wanted to 53 investigate its in vitro activity against Mycobacterium tuberculosis from China (1). Moreover, we 54 studied the degree of cross-resistance to fluoroquinolones that are already being used to treat 55 tuberculosis (i.e. ofloxacin (OFX), LFX, and moxifloxacin (MFX)) on a phenotypic as well as genotypic 56 level to assess whether current genotypic drug-susceptibility testing (DST) assays could be used to 57 detect resistance to AFX and whether AFX might be an option to treat strains that are resistant to 58 these existing fluoroquinolones.

59 Methods

60 Study setting and bacterial strains

61 We studied 126 M. tuberculosis complex strains that were collected from the National Clinical 62 Laboratory on Tuberculosis, Beijing Chest Hospital between January and March 2014 from 63 retreatment patients with presumed multidrug-resistant (MDR) tuberculosis (i.e. resistance to 64 rifampicin and isoniazid), which included 45 pan-susceptible, 49 MDR, and 17 extensively drug-65 resistant tuberculosis strains (i.e. MDR with additional resistance to OFX and amikacin or 66 capreomycin), as well as 3 strains that were mono-resistant to OFX (Sigma-Aldrich, St. Louis, MO, 67 USA), as determined using the absolute concentration method on Löwenstein-Jensen (L) with 2 68 µg/ml as critical concentration. The M. tuberculosis laboratory strain H37Rv (ATCC 27294) served as 69 negative control.

70

71 MIC testing

72 We determined the MICs for OFX, LFX (Sigma-Aldrich, St. Louis, MO, USA), MFX (Bayer Pharmaceutical 73 Corporation, Leverkusen, Germany), and AFX (Anhui Huanqiu Pharmaceutical Co., Hefei, China) using 74 the microplate alamar blue assay (MABA) in two-fold dilutions ranging from 16 to 0.032 µg/ml (3, 4). 75 Drug powder was dissolved in 1% NaOH at the concentration of 10 mg/ml, different aliquots were 76 prepared and stored at -70°C. All the working solutions were freshly prepared before use. All the 77 strains were sub-cultured onto LJ slopes for 3 weeks. Bacterial suspensions were prepared using 5% 78 (vol/vol) Tween 80 in 0.9% NaCl and the turbidity was adjusted to 1 McFarland turbidity standard. 79 Suspensions were further diluted (1:25) with 7H9 broth. H37Rv was used as control.

80

81 Genotypic analyses

We sequenced the quinolone resistance determining regions (QRDR) of *gyrA* (*Rv0006*) and *gyrB* (*Rv0005*) and called mutations relative to the H37Rv reference genome (AL123456.3) using the 2002 numbering for *gyrB* (5-7). We usually sequenced from the drug-free LJ slopes, but where no resistance mutations were found in phenotypically resistant strains, sequencing was repeated from the OFX-containing LJ slope to detect low-frequency mutations (8, 9). Strains belonging to the East Asian lineage were identified based on the RD105 (10).

88 Results

00

89	92.9% (117/126) of the strains in this study belonged to the East Asian lineage (Table S1) (11). We
90	found that the MIC distributions for all four fluoroquinolones were bimodal (Figures 1A-D), where the
91	more susceptible of the two distributions represented the phenotypically wild-type distributions,
92	whereas the remaining strains were, by definition, phenotypically non-wild-type. Based on visual
93	inspection, we therefore set tentative epidemiological cut-off values (ECOFFs) for MIC determination
94	using the MABA method at 2, 1, 0.5, and 0.25 $\mu\text{g/ml}$ for OFX, AFX, LFX, and MFX, respectively (12).
95	Not all phenotypically wild-type strains were identical genotypically (i.e. all 126 Chinese strains
96	harbored the known gyrA S95T mutation that does not correlate with resistance (7, 13)), but after the
97	exclusion of this polymorphism, we found a near perfect correlation between the tentative ECOFFs
98	and non-synonymous mutations in the two subunits of DNA gyrase, encoded by gyrA and gyrB.

99 All gyrA mutations detected in this study were classical resistance mutations that fell into the 100 QRDR and resulted in an MIC increase above the tentative ECOFF for all four fluoroquinolones (Figure 101 1 and Table S1) (7, 14). This was in line with the fact that all gyrA mutants tested resistant to OFX on 102 LJ, although retesting of seven strains that were initially discrepant was required to achieve complete 103 agreement (Table 1). In line with a recent systematic review, the D94G and A90V mutations were the 104 most and second most frequent mutations, respectively, whereas other changes (e.g. G88C) only 105 occurred in a single strain (15). Theoretically, all of these mutations could have been detected with 106 the genotypic DST assays by Hain Lifescience, NIPRO, and YD Diagnostics, whereas the assays by AID 107 and Seegene would have missed the two resistant strains with mutations at codon 88 (Table S1) (16-108 22). In practice, however, some resistance mutations might have been missed given that the 109 detection limits of these assays, albeit unknown, are almost certainly higher than the critical 110 proportion of 1% (e.g. strain 14140 was heteroresistant and its D94G mutation was only detectable 111 using Sanger sequencing from the drug-containing slope (Table S1)) (23-25).

Downloaded from http://aac.asm.org/ on July 8, 2016 by MRC LAB OF MOLECULAR BIOLOGY

As expected, *gyrB* mutations were rare and usually coincided with *gyrA* mutations (in 5/6cases) and thus did not improve the sensitivity of detecting phenotypically non-wild-type strains markedly (48/49 strains had a *gyrA* mutation) (15). Strain 14117 was the sole exception. It only harbored a *gyrB* mutation (T500N) and was found to be susceptible to OFX on \Box and had MABA MICs that corresponded to the aforementioned ECOFFs for the four respective fluoroquinolones (Table 1). The mutation in question fell just outside of the *gyrB* QRDR as defined by Maruri et al., which spans codons 461 to 499, but inside the QRDR based on Pantel et al., which extends to codon 501 (7, 26). Using the recently developed version 2 of the Hain Lifescience Genotype MTBDRs/ assay, which covers the codons 497 to 502 of *gyrB*, this mutation would have also been interpreted as resistant (22). We therefore repeated DST for this strain, whereupon the MICs for AFX, LFX, and MFX increased by one doubling dilution and consequently became phenotypically non-wild-type, whereas the OFX MIC and LJ result remained unchanged (Table 1).

124

125 Discussion

126 The aim of DST is usually to distinguish resistant strains, which are likely to fail treatment, from 127 susceptible strains, which have a high likelihood of clinical success (an intermediate category is 128 sometimes possible) (27). The clinical breakpoints (known as critical concentrations (CCs) in the 129 this purpose tuberculosis field) employed for should be based on clinical. 130 pharmacokinetic/pharmacodynamics, and, ideally, clinical outcome data, which, for a variety of 131 reasons, are difficult to obtain for tuberculosis drugs (27). As a result, an important aim of DST for the 132 majority of tuberculosis drugs is to distinguish wild-type from non-wild-type strains (i.e. strains with 133 elevated MICs compared with strains that (i) have never been exposed to the agent or class of agent 134 in question and (ii) are not intrinsically resistant) using the ECOFF, which represents the highest 135 concentration of the wild-type distribution as determined by modern microbiological principles 136 pioneered by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (12, 23, 27-137 30). In other words, the ECOFF represents the lowest possible CC and some non-wild-type strains 138 might remain treatable, as proposed for MFX, albeit based on limited evidence (i.e. the CC of 2 µg/ml 139 set by the World Health Organization (WHO) is higher than the ECOFF) (9, 29, 31).

Setting conclusive ECOFFs and validating MABA as a method for routine DST was beyond the scope of this study, which would have required larger number of phylogenetically diverse strains from multiple laboratories and more extensive reproducibility testing, as specified by EUCAST and the International Organization for Standardization (ISO) (12, 28, 32, 33). Nevertheless, our MABA results were sufficiently robust compared with LJ DST and the genotypic results to set tentative ECOFFs. Accordingly, AFX had a lower ECOFF than OFX *in vitro*, but higher than LFX and MFX. All *gyrA* 146 mutations correlated with non-wild-type MICs to all fluoroquinolones. Consequently clinicians should 147 consider the possibility that the use of AFX to treat *E. coli, K. pneumoniae* and staphylococci, at the 148 doses currently suggested, might result in selection of fluoroquinolone resistance in *M. tuberculosis* in 149 co-infected patients.

150 We only had one strain that had a gyrB mutation without a mutation in gyrA. The fact that 151 four different amino acid changes had been observed at the gyrB codon in question (T500A/I/N/P) 152 constitutes a potential signal for drug selection (7, 34, 35). In line with this observation, allelic 153 exchange experiments of T500N in an Erdman background increased the MIC from wild-type levels to 154 the CC for OFX and LFX, and just above the CC for MFX (36). The results of the equivalent experiment 155 in a H37Rv background were identical for OFX and LFX, but no increase in MIC was observed for MFX 156 (36). In accordance with in vitro selection experiments and the aforementioned allelic exchange 157 results, this suggested that the MIC of gyrB T500N was close to the ECOFF, which, due to biological 158 and technical variability (e.g. the ISO guidelines allow for the reproducibility of ±1 dilution of the 159 mode for ≥95% of the results), would likely result a poor reproducibility of DST (32, 37-39). 160 Irrespective of whether this slightly elevated MIC increases the likelihood of treatment failure, it is 161 possible that it increases the likelihood of selecting for higher levels of fluoroquinolone resistance due 162 to a gyrA or a secondary gyrB mutation, as observed for streptomycin (36, 40, 41). Larger datasets, 163 ideally with longitudinal samples from the same patients, would be required to clarify this possibility 164 (i.e. to determine in which order gyrA and gyrB mutations arose in double mutants, such as the five 165 strains observed in this study (Figure 1 & Table S1)).

Downloaded from http://aac.asm.org/ on July 8, 2016 by MRC LAB OF MOLECULAR BIOLOGY

166 Using the published $AUC_{0\text{-}24}$ of 47.59±7.85 mg·h/L for the currently approved dose of AFX 167 (i.e. 200 mg daily dose following a 400 mg loading dose) and limited protein binding data of 17.5%, 168 the fAUC₀₋₂₄/MIC ratio for the wild-type MICs of 0.064-1 μ g/ml would range between 613.46±101.19 169 and 39.26 ± 6.48 h (42, 43). Although there is no consensus on the precise fAUC₀₋₂₄/MIC ratio that best 170 predicts in vivo efficacy, ratios of >100 at the upper end of the wild-type distribution are likely 171 required to maximize clinical success (44, 45). Given that the currently recommended dose of AFX is 172 unusually low (probably because of a narrow clinical indication) compared with the other 173 fluoroquinolones used to treat tuberculosis, the target of fAUC₀₋₂₄/MIC>100 at increased dosing is

176 Our study also has implications for DST for OFX on LJ. Although the absolute concentration 177 method has not been validated by the WHO for second-line drugs, it is used clinically with the CC 178 recommended for the proportion method (29). In our case, we employed a CC of 2 μ g/ml, which 179 corresponded to the old CC for this drug for the proportion method that the WHO recently increased 180 to 4 µg/ml, although the rationale for this change is unclear (29). In light of the excellent correlation 181 between the LJ DST results and MABA MICs for all four fluoroquinolones, which is in line with 182 previous studies, this suggested that the revised CC is likely too high for the absolute concentration 183 method, resulting in non-wild-type strains being misclassified as wild-type (46, 47). In fact, a CC of 4 184 µg/ml is also likely too high for the proportion method, as shown by Coeck et al. (48). This, together 185 with prior studies that raised doubts regarding the validity of some CCs, underlined the fact that the 186 WHO should start to apply modern microbiological principles and, crucially, to publish the evidence 187 used to set CCs, as has been the case for EUCAST for many years (12, 27, 39).

188

189

190 Funding information

191 The work was supported by the research funding from Infectious Diseases Special Project, Minister of 192 Health of China (2016ZX10003001-12) and Beijing Municipal Administration of Hospitals Clinical 193 Medicine Development of Special Funding Support (ZYLX201304). The strains used in this project 194 were obtained from the 'Beijing Bio-Bank of clinical resources on Tuberculosis' (D09050704640000), 195 Beijing Chest Hospital. In addition, this study was supported by the Health Innovation Challenge Fund 196 (HICF-T5-342 and WT098600), a parallel funding partnership between the UK Department of Health 197 and Wellcome Trust. T. S. was supported by grants from the Swedish Heart and Lung Foundation and 198 Marianne and Marcus Wallenberg Foundation. The views expressed in this publication are those of 199 the authors and not necessarily those of the Department of Health, Public Health England, or the 200 Wellcome Trust. C. U. K. is a Junior Research Fellow at Wolfson College, Cambridge.

201

202

203 Conflicts of interest

204	Anhui	Huanqiu Pharmaceutical Co. provided AFX for this study, but this work was designed,			
205	conducted, and analyzed independently of the company. T. S. is a member of the EUCAST subgroup				
206	on ant	on antimycobacterial susceptibility testing. J. P., S. J. P. and C. U. K. have collaborated with Illumina			
207	Inc. on	a number of scientific projects. J. P. has received funding for travel and accommodation from			
208	Pacific	Biosciences Inc. and Illumina Inc. S. J. P. has received funding for travel and accommodation			
209	from II	lumina Inc. C. U. K. is a consultant for the Foundation for Innovative New Diagnostics and was a			
210	technic	al advisor for the Tuberculosis Guideline Development Group of the World Health			
211	Organi	zation. The Bill & Melinda Gates Foundation and Janssen Pharmaceutica covered C. U. K.'s			
212	travel	and accommodation to present at meetings. The European Society of Mycobacteriology			
213	awarde	ed C. U. K. the Gertrud Meissner Award, which is sponsored by Hain Lifescience.			
214					
215					
216	Refere	nces			
217	1.	Wang J, Xiao Y, Huang W, Xu N, Bai C, Xiu Q, Mei C, Zheng Q. 2010. A phase II study of			
218		antofloxacin hydrochloride, a novel fluoroquinolone, for the treatment of acute bacterial			
219		infections. Chemotherapy 56:378-385.			
220	2.	Ge Y, Sun H, Wang M. 2011. Crystal structure and fluorescence property of antofloxacin. J			
221		Southeast Univ 27 :449-451.			
222	3.	Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT,			
223		Cook MB, Quenzer VK, Ferguson RM, Gilman RH. 1998. Rapid, low-technology MIC			
224		determination with clinical Mycobacterium tuberculosis isolates by using the microplate			
225		Alamar Blue assay. J Clin Microbiol 36: 362-366.			
226	4.	Yu X, Jiang G, Li H, Zhao Y, Zhang H, Zhao L, Ma Y, Coulter C, Huang H. 2011. Rifampin			
227		stability in 7H9 broth and Löwenstein-Jensen medium. J Clin Microbiol 49:784-789.			
228	5.	Dauendorffer JN, Guillemin I, Aubry A, Truffot-Pernot C, Sougakoff W, Jarlier V, Cambau E.			
229		2003. Identification of mycobacterial species by PCR sequencing of quinolone resistance-			
230		determining regions of DNA gyrase genes. J Clin Microbiol 41 :1311-1315.			

231	6.	Shi R, Zhang J, Li C, Kazumi Y, Sugawara I. 2006. Emergence of ofloxacin resistance in
232		Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation
233		analysis using denaturing high-pressure liquid chromatography and DNA sequencing. J Clin
234		Microbiol 44: 4566-4568.
235	7.	Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, Cambau E,
236		Aubry A. 2012. A systematic review of gyrase mutations associated with fluoroquinolone-
237		resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J
238		Antimicrob Chemother 67: 819-831.
239	8.	Bloemberg GV, Keller PM, Stuckia D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T,
240		Homke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Böttger EC. 2015. Acquired
241		resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986-
242		1988.
243	9.	Willby M, Sikes RD, Malik S, Metchock B, Posey JE. 2015. Correlation between gyrA
244		substitutions and ofloxacin, levofloxacin, and moxifloxacin cross-resistance in
245		Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:5427-5434.
246	10.	Li XY, Li Y, Zhang Y, Kang WL, Zhao LP, Ding PJ, Dai WT, Huang HR, Huang YF, Li WM. 2015.
247		The epidemiological characteristics of Beijing lineage Mycobacterium tuberculosis from a
248		National Referral Center in China. Biomed Environ Sci 28:539-543.
249	11.	Comas I, Homolka S, Niemann S, Gagneux S. 2009. Genotyping of genetically monomorphic
250		bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current
251		methodologies. PLoS One 4 :e7815.
252	12.	Kahlmeter G. 2015. The 2014 Garrod Lecture: EUCAST - are we heading towards
253		international agreement? J Antimicrob Chemother 70 :2427-2439.
254	13.	Feuerriegel S, Köser CU, Niemann S. 2014. Phylogenetic polymorphisms in antibiotic
255		resistance genes of the Mycobacterium tuberculosis complex. J Antimicrob Chemother
256		69: 1205-1210.
257	14.	Nebenzahl-Guimaraes H, Jacobson KR, Farhat MR, Murray MB. 2014. Systematic review of
258		allelic exchange experiments aimed at identifying mutations that confer drug resistance in
259		Mycobacterium tuberculosis. J Antimicrob Chemother 69:331-342.

260	15.	Avalos E, Catanzaro D, Catanzaro A, Ganiats T, Brodine S, Alcaraz J, Rodwell T. 2015.
261		Frequency and geographic distribution of gyrA and gyrB mutations associated with
262		fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic
263		review. PLoS One 10: e0120470.
264	16.	Hillemann D, Rüsch-Gerdes S, Richter E. 2009. Feasibility of the GenoType MTBDRs/ assay
265		for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of
266		Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 47:1767-1772.
267	17.	Mitarai S, Kato S, Ogata H, Aono A, Chikamatsu K, Mizuno K, Toyota E, Sejimo A, Suzuki K,
268		Yoshida S, Saito T, Moriya A, Fujita A, Sato S, Matsumoto T, Ano H, Suetake T, Kondo Y,
269		Kirikae T, Mori T. 2012. Comprehensive multicenter evaluation of a new line probe assay kit
270		for identification of Mycobacterium species and detection of drug-resistant Mycobacterium
271		<i>tuberculosis</i> . J Clin Microbiol 50: 884-890.
272	18.	Park C, Sung N, Hwang S, Jeon J, Won Y, Min J, Kim CT, Kang H. 2012. Evaluation of reverse
273		hybridization assay for detecting fluoroquinolone and kanamycin resistance in multidrug-
274		resistance Mycobacterium tuberculosis clinical isolates. Tuberc Respir Dis 72:44-49.
275	19.	Ritter C, Lucke K, Sirgel FA, Warren RW, van Helden PD, Böttger EC, Bloemberg GV. 2014.
276		Evaluation of the AID TB resistance line probe assay for rapid detection of genetic alterations
277		associated with drug resistance in Mycobacterium tuberculosis strains. J Clin Microbiol
278		52: 940-946.
279	20.	Lee YS, Kang MR, Jung H, Choi SB, Jo KW, Shim TS. 2015. Performance of REBA MTB-XDR to
280		detect extensively drug-resistant tuberculosis in an intermediate-burden country. J Infect
281		Chemother 21 :346-351.
282	21.	Molina-Moya B, Lacoma A, Prat C, Pimkina E, Diaz J, Garcia-Sierra N, Haba L, Maldonado J,
283		Samper S, Ruiz-Manzano J, Ausina V, Dominguez J. 2015. Diagnostic accuracy study of
284		multiplex PCR for detecting tuberculosis drug resistance. J Infect 71: 220-230.
285	22.	Tagliani E, Cabibbe AM, Miotto P, Borroni E, Toro JC, Mansjo M, Hoffner S, Hillemann D,
286		Zalutskaya A, Skrahina A, Cirillo DM. 2015. Diagnostic performance of the new version of
287		GenoType MTBDRs/ (V2.0) assay for detection of resistance to fluoroquinolones and second
288		line injectable drugs: a multicenter study. J Clin Microbiol 53:2961-2969.

289	23.	Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M, Mahler HT, Meissner G,
290		Mitchison DA, Sula L. 1963. Mycobacteria: laboratory methods for testing drug sensitivity
291		and resistance. Bull World Health Organ 29:565-578.
292	24.	Folkvardsen DB, Svensson E, Thomsen VO, Rasmussen EM, Bang D, Werngren J, Hoffner S,
293		Hillemann D, Rigouts L. 2013. Can molecular methods detect 1% isoniazid resistance in
294		Mycobacterium tuberculosis? J Clin Microbiol 51:1596-1599.
295	25.	Folkvardsen DB, Thomsen VO, Rigouts L, Rasmussen EM, Bang D, Bernaerts G, Werngren J,
296		Toro JC, Hoffner S, Hillemann D, Svensson E. 2013. Rifampin heteroresistance in
297		Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug
298		susceptibility test methods. J Clin Microbiol 51: 4220-4222.
299	26.	Pantel A, Petrella S, Veziris N, Brossier F, Bastian S, Jarlier V, Mayer C, Aubry A. 2012.
300		Extending the definition of the GyrB quinolone resistance-determining region in
301		Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M.
302		tuberculosis. Antimicrob Agents Chemother 56:1990-1996.
303	27.	Ängeby K, Juréen P, Kahlmeter G, Hoffner SE, Schön T. 2012. Challenging a dogma:
304		antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World
305		Health Organ 90: 693-698.
306	28.	Köser CU, Feuerriegel S, Summers DK, Archer JA, Niemann S. 2012. Importance of the
307		genetic diversity within the Mycobacterium tuberculosis complex for the development of
308		novel antibiotics and diagnostic tests of drug resistance. Antimicrob Agents Chemother
309		56: 6080-6087.
310	29.	World Health Organization. Companion handbook to the WHO guidelines for the
311		programmatic management of drug-resistant tuberculosis (2014).
312		http://apps.who.int/iris/bitstream/10665/130918/1/9789241548809_eng.pdf?ua=1&ua=1
313		(accessed 13.8.2015).
314	30.	Valsesia G, Roos M, Böttger EC, Hombach M. 2015. A statistical approach for determination
315		of disk diffusion-based cutoff values for systematic characterization of wild-type and non-
316		wild-type bacterial populations in antimicrobial susceptibility testing. J Clin Microbiol
317		53: 1812-1822.

318	31.	Rigouts L, Coeck N, Gumusboga M, de Rijk WB, Aung KJ, Hossain MA, Fissette K, Rieder HL,
319		Meehan CJ, de Jong BC, Van Deun A. 2016. Specific gyrA gene mutations predict poor
320		treatment outcome in MDR-TB. J Antimicrob Chemother 71 :314-323.
321	32.	International Organization for Standardization. ISO 20776-2:2007. Clinical laboratory testing
322		and in vitro diagnostic test systems — Susceptibility testing of infectious agents and
323		evaluation of performance of antimicrobial susceptibility test devices —
324	Part 2: E	Evaluation of performance of antimicrobial susceptibility test devices. First edition 2007-07-01.
325	33.	Torrea G, Coeck N, Desmaretz C, Van De Parre T, Van Poucke T, Lounis N, de Jong BC,
326		Rigouts L. 2015. Bedaquiline susceptibility testing of Mycobacterium tuberculosis in an
327		automated liquid culture system. J Antimicrob Chemother 70 :2300-2305.
328	34.	Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher
329		EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC,
330		Rodrigues M, Tang PK, Kato-Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN,
331		Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M.
332		2013. Genomic analysis identifies targets of convergent positive selection in drug-resistant
333		Mycobacterium tuberculosis. Nat Genet 45:1183-1189.
334	35.	Zhao LL, Sun Q, Zeng CY, Chen Y, Zhao B, Liu HC, Xia Q, Zhao XQ, Jiao WW, Li GL, Wan KL.
335		2015. Molecular characterisation of extensively drug-resistant Mycobacterium tuberculosis
336		isolates in China. Int J Antimicrob Agents 45: 137-143.
337	36.	Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. 2012. New insights into fluoroquinolone
338		resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB
339		mutations. PLoS One 7: e39754.
340	37.	McGrath M, Gey van Pittius NC, Sirgel FA, Van Helden PD, Warren RM. 2014. Moxifloxacin
341		retains antimycobacterial activity in the presence of gyrA mutations. Antimicrob Agents
342		Chemother 58: 2912-2915.
343	38.	Hombach M, Ochoa C, Maurer FP, Pfiffner T, Böttger EC, Furrer R. 2016. Relative
344		contribution of biological variation and technical variables to zone diameter variations of disc
345		diffusion susceptibility testing. J Antimicrob Chemother 71: 141-151.

346	39.	Niward K, Ängeby K, Chryssanthou E, Paues J, Bruchfeld J, Juréen P, Giske CG, Kahlmeter G,
347		Schön T. 2016. Susceptibility testing breakpoints for Mycobacterium tuberculosis categorize
348		isolates with resistance mutations in gyrA as susceptible to fluoroquinolones: implications
349		for MDR-TB treatment and the definition of XDR-TB. J Antimicrob Chemother 71: 333-338.
350	40.	Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K.
351		2007. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level
352		streptomycin resistance in bacteria. Mol Microbiol 63: 1096-1106.
353	41.	Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE.
354		2013. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in
355		the 5' untranslated region of whiB7. Antimicrob Agents Chemother 57:1857-1865.
356	42.	Liu L, Pan X, Liu HY, Liu XD, Yang HW, Xie L, Cheng JL, Fan HW, Xiao DW. 2011. Modulation
357		of pharmacokinetics of theophylline by antofloxacin, a novel 8-amino-fluoroquinolone, in
358		humans. Acta Pharmacol Sin 32: 1285-1293.
359	43.	Lü Y, Kang ZS, Zhu Y, Zhang M, Liu Y, Zhang M, Li TY, Xiao YH. 2011. Pharmacokinetic study
360		of single and multiple oral dose administration of antofloxacin hydrochloride in healthy male
361		volunteers. Chin Med J (Engl) 124:242-245.
362	44.	Ängeby KA, Juréen P, Giske CG, Chryssanthou E, Sturegård E, Nordvall M, Johansson AG,
363		Werngren J, Kahlmeter G, Hoffner SE, Schön T. 2010. Wild-type MIC distributions of four
364		fluoroquinolones active against Mycobacterium tuberculosis in relation to current critical
365		concentrations and available pharmacokinetic and pharmacodynamic data. J Antimicrob
366		Chemother 65: 946-952.
367	45.	Pranger AD, Alffenaar JW, Aarnoutse RE. 2011. Fluoroquinolones, the cornerstone of
368		treatment of drug-resistant tuberculosis: a pharmacokinetic and pharmacodynamic
369		approach. Current pharmaceutical design 17:2900-2930.
370	46.	Nosova EY, Bukatina AA, Isaeva YD, Makarova MV, Galkina KY, Moroz AM. 2013. Analysis
371		of mutations in the gyrA and gyrB genes and their association with the resistance of
372		Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J Med Microbiol
373		62: 108-113.

374	47.	Singh P, Jain A, Dixit P, Prakash S, Jaiswal I, Venkatesh V, Singh M. 2015. Prevalence of gyrA
375		and B gene mutations in fluoroquinolone-resistant and -sensitive clinical isolates of
376		Mycobacterium tuberculosis and their relationship with MIC of ofloxacin. J Antibiot (Tokyo)
377		68: 63-66.
378	48.	Coeck N, de Jong BC, Diels M, de Rijk P, Ardizzoni E, Van Deun A, Rigouts L. 2016.
379		Correlation of different phenotypic drug susceptibility testing methods for four
380		fluoroquinolones in Mycobacterium tuberculosis. J Antimicrob Chemother 71:1233-1240.
381		

Downloaded from http://aac.asm.org/ on July 8, 2016 by MRC LAB OF MOLECULAR BIOLOGY

382 Table 1

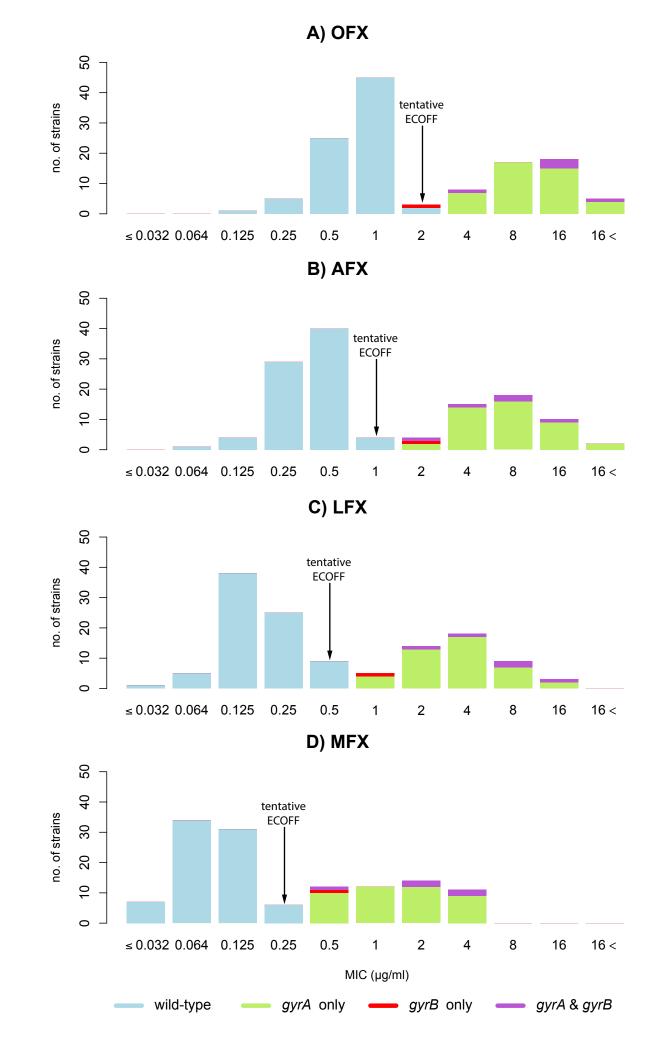
383	Initial and repeat LJ DST and MABA MIC results for the seven strains for which there was
384	disagreement during the initial round of testing between the different methods (in each case, the
385	repeat results are shown in Figure 1 and listed in Table S1). MICs above the ECOFF (i.e. non-wild-type
386	results) are underlined. All of these discrepancies, which are shown in bold, resolved upon retesting.
387	By contrast, 14117 was retested because the initial MICs and the previous literature suggested that
388	the MICs were close to the ECOFFs, which retesting supported.

389

Strain	OFX LJ DST		MABA M	IC (µg/ml)		Geno	type ^a
		OFX	AFX	LFX	MFX	gyrA	gyrB
14170	R	2	0.25	0.125	0.125	WT	WT
	S	0.5	0.5	0.25	0.25		
12657	R	2	1	0.5	0.25	WT	WT
	S	1	1	0.5	0.25		
14130	R	2	0.5	0.25	0.125	WT	WT
	S	1	1	0.5	0.25		
14132	R	0.5	0.5	0.125	0.125	WT	WT
	S	1	0.5	0.5	0.25		
14150	R	2	<u>2</u>	1	0.5	WT	WT
	S	1	1	0.5	0.25		
14175	R	2	0.5	0.25	0.125	WT	WT
	S	0.5	0.5	0.25	0.125		
14198	R	2	<u>4</u>	<u>2</u>	<u>1</u>	D94A	WT
	R	<u>8</u>	<u>8</u>	4	2		
14117	S	2	1	0.5	0.25	WT	T500N
2	S	2	<u>2</u>	<u>1</u>	<u>0.5</u>		

390 ^aExcluding the *gyrA* S95T polymorphism.

391


AAC

392 Figure 1

393	Wild-type and non-wild-type MIC distributions for the four fluoroquinolones under investigation
394	relative to their gyrA and gyrB genotypes (Table S1). The tentative ECOFF represents the upper limit
395	of the wild-type distribution. All clinical strains, with the exception of H37Rv, harbored the gyrA \$95T
396	mutation that is known not to confer FQ resistance and was consequently excluded from the analysis
397	(13).

Downloaded from http://aac.asm.org/ on July 8, 2016 by MRC LAB OF MOLECULAR BIOLOGY