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Recent advances in micro- and nanotechnology have enabled the development of ultra-sensitive
sensors capable of detecting small numbers of species. In general however, the response induced
by the random adsorption of a small number of objects onto the surface of such sensors results in
significant fluctuations due to the heterogeneous sensitivity inherent to many such sensors coupled
to statistical fluctuations in particle number. At present this issue is addressed by considering either
the limit of very large numbers of analytes, where fluctuations vanish, or the converse limit where
the sensor response is governed by individual analytes. Many cases of practical interest, however
fall between these two limits but remain challenging to analyse. Here, we address this limitation
by deriving a general theoretical framework for quantifying measurement variations on mechanical
resonators resulting from statistical number fluctuations of analyte species. Our results provide
insights into the stochastic processes in the sensing environment and offer new opportunities to
improve the performance of mechanical resonator based sensors. This metric can be used, among
others, to aid in the design of robust sensor platforms to reach ultra-high resolution measurements
using an array of sensors. These concepts, illustrated here in the context of biosensing, are general
and can therefore be adapted and extended to other sensors with heterogeneous sensitivity.

INTRODUCTION

Micro- and nanotechnologies have experienced dra-
matic development in the past decades leading to the
fabrication of sensors capable of reaching the high sen-
sitivities and resolutions required for the detection of
small numbers [1–5] or single molecules [6]. Such de-
velopments have resulted in many applications ranging
from the early diagnosis of diseases [7, 8] to food safety
[9]. While measurements of a large number of objects
are accurately described by the average response of the
sensor, the significant measurement variations associated
with the adsorption of far smaller numbers of molecules
onto the surface of the sensor have represented a limita-
tion in the practical applicability of high resolution sens-
ing. Such measurement variations arise from the hetero-
geneous sensitivity across the surface of many nano- and
micro-fabricated sensors as well as from the statistical
variation in the number and mass of the species bound
to the sensor. For instance, in mechanical resonators -
where the response function arises from the spatial varia-
tion of their vibrational mode shapes - the same number
of objects of identical mass can induce different responses
depending on their location on the sensor surface. Fig-
ure 1.b shows the frequency shifts induced by four iden-
tical polystyrene particles of 10µm diameter positioned
at different locations (Fig. 1.a) on a micro-mechanical
resonator excited in the Lamé mode (see Supplemental

Material [10] for details). In this case, a measurement
variation of approximately 30% is observed between mea-
surement i and iii (Fig. 1.b). This fundamental issue has
also been identified for localised plasmon sensing [11],
impedance measurements [12] as well as for field effect
transistors, where a sensitivity dependence based on the
number of molecules [13] as well as their position [14]
have been reported. This problem is particularly rele-
vant to nano-fabricated sensors as the dimensions of such
sensors are comparable to the size of the objects to be de-
tected. Thus, in order to exploit the full potential offered
by micro- and nano-fabricated sensors for detecting small
numbers of analytes, it is of fundamental importance to
understand and quantify the nature of stochastic pro-
cesses in the sensing environment.

At present, the issue of heterogeneous sensitivity is
usually dealt with by considering two operational regimes
that depend on the number of objects located on the sur-
face of the sensor (see Fig. 1.d). In the first regime, when
the number of objects to be detected is very large, or in
the case of uniformly distributed mass [15, 16], the mea-
surement is accurately resolved by using the averaged
sensor response. However, due to the lack of a generally
applicable metric, it was unclear until now, how many
objects are needed to operate in this regime without in-
troducing large measurement variations. In the second
regime, if only a small number of objects are randomly
positioned on the sensor, complementary methods have
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FIG. 1: Effect of the the position-dependent sensitivity of mechanical resonators operating as gravimetric sensors and regimes
of operation. a) Images of four polystyrene particles of 10 µm diameter on a square plate resonator excited in Lamé mode for
three cases studied. b) Shows the amplitude response at resonance for each of the three cases presented and f0, the resonant
frequency without mass loading. c) Scanning electron micrograph showing four PS particles on a square plate resonator and
the measurement principle (inset). d) When the number of object is large, the average response resolves the measurement
accurately. This assumption is valid for the case of distributed mass using thin film deposition for example (see [15, 16]). When
the number of objects is small, the fluctuations become very large and complementary methods are necessary to resolve the
measurements. Multimodal approaches (I) have been used to measure single objects [17] and up to 3 beads in [19]. Transfer
function methods (II) and physico-chemical methods (III) were used to detect single objects [18] and [6] respectively. However
the interpretation of results falling between these two regimes, that represent many cases of practical interest, are not described
by current models.

been developed to describe the measured response. In the
case of mechanical resonators, these alternative methods
include multi-modal approaches, which have enabled the
detection of single proteins [20] and microparticles [17],
transfer function methods, used to detect single micro-
beads [18], and physico-chemical methods that precisely
position the objects on areas of high sensitivity and have
enabled the detection of single DNA molecules [6]. How-
ever, while these methods are well suited for the detec-
tion of one or a few objects, they are not easily scalable
to tens of objects. For example, the use of multi-modal
approaches is limited by the number of modes studied
[5, 19] which currently sets a practical transduction limit
for this approach. Notable exceptions include sensors op-
erating in the flow-through regime [3] and sensors that
rely on real-time sensing strategies [20]. However in both
cases, the small dimensions of these types of sensors, nec-
essary to meet the sensitivity conditions to detect small
amounts of molecules, can seriously limit their perfor-
mance. In the case of sensors operating in the flow-
through regime, the size of the channels restricts the
volume that can be probed over a reasonable time (see
for example [3]). In the case of real-time sensing, even
though nano-mechanical resonators have been used in the
gas phase [20], their operation in liquid media for affinity

based sensing for example, is limited by the small area
available to bind the analytes of interest [21].

Despite these recent developments, many cases of prac-
tical interest, including the early detection of diseases as
illustrated later, fall in between the two regimes men-
tioned above (Fig. 1.d). In this paper, we address this
limitation by deriving a general theoretical framework
that describes the measurement variations induced by
any number of objects randomly positioned on a sensor
with heterogeneous sensitivity. This metric can be used
to define the limit between the above regimes of operation
and, importantly, offers new opportunities to design ro-
bust sensor platforms to reach ultra-high resolution mea-
surements, as we illustrate in the context of biosensing
using an array of micro-resonators. In addition, our met-
ric provides further insights into stochastic processes in
the sensing environment, a problem which has recently
been identified as one of the major challenges in micro-
and nano-mechanical biosensing [22]. Without loss of
generality, the results are presented for mechanical res-
onators. This sensor platform was chosen because the
response of such sensors depends on the spatial variation
of their mode shape and therefore the findings in this
study apply to mechanical resonators of all length scales.
In fact, our general framework can be extended to other
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sensors with heterogeneous sensitivity. We anticipate,
therefore, that our results will have a positive impact
on many micro-/nano-fabricated sensors and will find a
particular relevance in the field of biosensing where early
diagnosis relies on the measurement of a small quantity
of biomolecules [2–4, 7, 8].

MEASUREMENT VARIATIONS

General expression

In order to evaluate the measurement variations in-
duced by a random number of objects N with variable
mass mj randomly positioned on a gravimetric sensor
operating in the dynamic mode, we study the relative
variance of the total added effective mass ∆m̃ reported
by the sensor upon exposure to added masses mj (see
[23])

∆m̃ =

N∑
j=1

mj |ϕ(xj)|2, (1)

where ϕ(x) is the mode shape scaled to unit generalised
mass such that 1/A

∫
|ϕ(x)|2dx = 1/M , with A being the

sensor surface area and M its effective mass. The relative
variance is given by σ2/µ2 = Var[∆m̃]/E[(∆m̃)]2 where
Var[∆m̃] = E[(∆m̃)2] − E[(∆m̃)]2 and the expectation
values are averages over the sensor surface, as well as the
number and mass of the placed objects. The expectation
value of the total added effective mass, can be computed
as

E[∆m̃] =
〈N〉〈m〉
M

. (2)

From Eq. (1), we can calculate

(∆m̃)2 =

N∑
i=1

N∑
j=1

mimjϕ
2(xi)ϕ

2(xj) (3)

=

N∑
i=1

m2
iϕ

4(xi) +

N∑
i=1

∑
j 6=i

mimjϕ
2(xi)ϕ

2(xj)

and hence

E[(∆m̃)2] = 〈N〉〈m2〉E[ϕ4(xi)] +
〈N(N − 1)〉〈m〉2

M2
.

(4)

Combining Eq. (2) with Eq. (4) and using 〈m2〉 = σ2
m +

µ2
m, we obtain the relative variance

σ2

µ2
=

1

µn

{
M2

(
1 +

σ2
m

µ2
m

)
E[ϕ4(xj)]− 1

}
+
σ2
n

µ2
n

(5)

where µm,n and σm,n are the averages and standard devi-
ations of the mass and number distribution of the loaded

objects, respectively, and E[|ϕ(x)|4] = 1/A
∫
|ϕ(x)|4dx.

The detailed derivation can be found in the Supplemental
Material [10]. Equation (5) establishes a general frame-
work for the quantification of the measurement fluctua-
tions due to stochastic processes in the sensing environ-
ment. The limiting case of a sensor with homogeneous
sensitivity can be derived from Eq. (5) and is given by
σ2/µ2 = (σ2

m/µ
2
m)/µn + σ2

n/µ
2
n.

Figure 2.a shows the relative variance of measurements
in the case of a square plate resonator excited in the Lamé
mode and loaded with objects of variable mass distribu-
tion, as described by increasing coefficients of variation
(cv = σm/µm). The relative variance increases, as ex-
pected, with the coefficient of variation.

Special case: fixed number of objects N and mass m

A case of practical interest is the situation when a given
number of objects N of identical mass is measured, cor-
responding to σm = 0 and σn = 0 in Eq. (5)

σ2

µ2
=

1

N

{
M2E[|ϕ(x)|4]− 1

}
. (6)

Because E[|ϕ(x)|4] ∝ M−2, it can be seen that Eq. (6)
solely depends on the number of loaded objects and the
mode shape of the sensor studied. This observation sug-
gests that the resulting metric σ2/µ2 can be used to
compare the performance of different types of resonators.
Figure 2.b shows the relative variance (Eq. (6)) plotted
against the inverse of the number of objects for three
common gravimetric micro/nano-mechanical sensors: a
square plate resonator excited in the Lamé mode, a beam
excited in its first extensional mode and a beam (can-
tilever) excited in its first flexural mode. The figure
shows that the relative variance decreases linearly with
the inverse number of objects at a rate that depends on
the mode shape of the sensor. It is observed also that a
square plate resonator excited in the Lamé mode presents
lower measurement variations compared to the other res-
onators mentioned above. This advantage becomes less
pronounced as the number of objects increases, N →∞,
as in this case variations become negligible for all res-
onator types. This situation represents the first regime
of operation mentioned earlier.

Metrics and limits of detection

One of the most widely used metric to quantify the per-
formance of gravimetric sensors is their gravimetric limit
of detection. In this section we show that the expressions
derived above can serve as a new metric to define a nu-
meral limit of detection, or in other words, the minimum
number of objects necessary to obtain a measurement of
a given precision.
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Let us consider the case of the square resonator de-
scribed in the Introduction (Fig. 1c). Taking into ac-
count the electronics and equipment noise, that can
be extracted from the frequency noise floor, the gravi-
metric limit of detection of the sensor is defined by:
∆f = (dφ/df)

−1
∆φ, where (dφ/df) is the slope of the

phase at resonance frequency and the phase noise, ∆φ,
is taken as the standard deviation of the zero span phase
noise data (see Fig. S2). In our case, the short term fre-
quency noise floor is 9× 10−4 Hz, yielding a gravimetric
limit of detection of approximately 2 fg, which is much
lower than individual PS particles (∼ 0.52 ng) used ex-
perimentally. Using Eq. (6), one can calculate that 100
objects, which corresponds to 52 ng for PS particles of
10 µm diameter, are necessary to obtain measurements
with relative standard deviation of 5%.

This observation should be put in perspective with
the fact that the gravimetric limit of detection of 1 ag,
which corresponds to 25 molecules of ∼ 24 kDa, has been
reached by a variety of biosensors [3, 4, 24]. This number
of molecules, that falls between the 2 regimes of opera-
tion described above, shows the importance to tackle the
issue of the heterogeneous sensitivity in parallel to the
development of more sensitive sensors. We show in the
following section how the metrics derived in this paper
can be used to address this issue.

APPLICATION TO BIOSENSING

Design rules for sensing platform

In this section, we show that Equation (6), enables
the establishment of design rules to develop sensor plat-
forms, comprised of arrays of sensors, capable of reaching
ultra-high resolutions. This solution, particularly appro-
priate for micro/nano-mechanical sensors that are con-
ventionally fabricated in arrays, is made possible by us-
ing a simple statistical concept. In addition, unlike the
complementary methods conventionally associated with
high resolution measurements, the method proposed here
enables the measurement of any number of objects.

Within this framework, we can estimate the mean
value of the number of analytes, within a given preci-
sion, provided that the standard deviation of the popu-
lation is known for a given sample size. This approach is
described by the maximum error of the estimate, given
by: E = zα/2σ/

√
n, where zα/2 is the standard score, σ,

the standard deviation and n, the sample size. In the
case where the standard deviation of the population is
unknown however, it is necessary to obtain a large sam-
ple size to accurately estimate the mean as illustrated by
Fig. (3) that shows the normalised normal distribution
obtained using a Monte Carlo simulation (detailed later)
for different number of objects. The insets show the dis-
tributions corresponding to 200 objects for sample sizes

FIG. 2: Relative variance as a function of the number of ob-
jects on the sensor (see Eq. (5)). a) Effect of stochastic pro-
cesses in the sensing environment. Graph showing the relative
variance as function of the inverse of the number of objects for
a square resonator excited in Lamé mode. The relative vari-
ance increases with the coefficient of variation (cv = σm/µm)
which represents the ratio of the width of the mass distribu-
tion to the mean. b) Case of a given number of objects of
identical mass (σm = 0 and σn = 0). Three sensors are com-
pared; a square plate resonators excited in the Lamé mode
(i), a beam excited in its first extensional mode (ii), and a
cantilever excited in its first flexural mode (iii). The mode
shapes of each resonator (top to bottom) are presented on
the right.

of 2000 and 200 measurements, (i) and (ii) respectively.
In our case, the standard deviation can be calculated us-
ing Eq. (6). Defining the maximum acceptable standard
deviation of σmax for a given application, the maximum
error for one measurement (n = 1) is E1 = zα/2σmax.
Therefore, the minimum number of independent mea-
surements nmin necessary to reach the same error E1 for
a population of given standard deviation σi becomes

nmin =
σ2
i

σ2
max

, (7)

In other words, if a sensor yields measurements with large
(known) standard deviations σi, it is possible to reach
a higher level of precision (defined here by the maxi-
mum permitted standard deviation σmax) by repeating
the measurements a certain number of times nmin. It
should be noted that the application of this simple con-
cept is only possible with an a priori knowledge of the
measurement variation, which is now provided by Eq. (6).
In the case of biosensing, where the measurements are
stochastic in nature, an array of sensors will generate in-
dependent measurements that can be used to decrease
the limit of detection according to the concept described
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above.

The application of this principle is illustrated below
using a practical example for the detection of Protein
Specific Antigen (PSA), a bio-marker for prostate can-
cer, given a set of realistic constraints. We show how the
quantification of the measurement variations, enabled by
our theoretical platform, can contribute to the design of
robust, highly sensitive sensor platforms capable of high
resolution measurements. Assuming that an ideal sen-
sor should be able to detect small mass variations on a
daily basis, for example, to monitor the efficiency of a
treatment, we require that 95% of the measurements fall
within 5% of the mean (2σ rule). For a square resonator
excited in Lamé mode, a beam excited in extensional
mode and a cantilever excited in its first flexural mode
we find that the minimum number Nmin of objects neces-
sary to reach this condition, as calculated using Eq. (6),
is Nmin = 1600, Nmin = 3200 and Nmin = 8500, respec-
tively. Among the sensors compared, the square plate
resonator excited in Lamé mode represents the best op-
tion. That is, it requires fewer objects to reach the same
precision. The clinical limit of detection of PSA is 0.1 ng
mL−1 [7].

Assuming that the transport of the molecules to the
biosensor has been optimized, i.e. the sensor operates
in a reaction limited regime, one can use the Langmuir
isotherm to calculate the surface concentration of recep-
tors (capture molecules) bound by target molecules at
equilibrium. This assumption is valid for the sensors
studied here over a wide range of dimensions and con-
ditions, as detailed in the Supplemental Material [10]. If
we assume that the gravimetric limit of detection and
the desired sensitivity (both function of the dimensions
of the sensor, see for example [25]) limit the lateral di-
mension of the sensor to 10 µm at most, we find that a
maximum of 134 molecules of PSA are bound at equilib-
rium using IgG capture molecules with an average bind-
ing density bm = 6.5 × 1011 cm−2 [26] and association
and dissociation constants Kon = 2.2× 104M−1s−1 and
Koff = 3.2 × 10−4s−1 [27] respectively. This number of
molecules is below the 1600 molecules required to reach
the precision conditions defined above. Calculating the
relative variance induced by N = 134 molecules on a
square resonator excited in Lamé mode using Eq. (6)
and combining the result with Eq. (7), we find that 12
independent measurements are sufficient to estimate the
mean of the measurement within the defined precision
condition. Therefore, an array of 12 square resonators
of 10 µm side length will enable the detection of PSA
down to 0.1 ng mL−1 for the precision, resolution and
sensitivity constraints defined above.

We note that in practical cases it is unlikely that an
exact number N = 134 of molecules will bind to the
surface of the sensor. In order to take this situation into
consideration, we come back to the general expression
(Eq. (5)) and consider the case where σN/µN = 2.5%

(i.e. the number of molecules will vary between 127 and
141 in 95% of the cases on each sensor). We find that
an array of 16 resonators is necessary to reach the same
resolution.

FIG. 3: Results from Monte Carlo simulations for a square
resonator excited in the Lamé mode. The normal distribu-
tions represent the normalized frequency shift for 20, 100 and
500 objects and a sample size of 2000. The inset (left) shows
the normal distribution associated with 200 objects for a sam-
ple size of 200 (i) and 2000 measurements (ii). The inset
(right) shows the mode shape of the resonator.

Other practical cases

Let us now consider the more complicated situation
where a given number of objects N of variable mass dis-
tribution are loaded on the sensor. Fig. 2.b shows that
the relative variance increases with the coefficient of vari-
ation. This result has direct practical implications to at
least two important biological processes. First, in the
case of the measurement of biomolecules in liquid and
sensed using a mechanical resonator, the frequency shifts
recorded are induced by their solvated mass rather than
their dry mass, i.e. the response depends on the mass of
the molecules and that of the solvent they drag. How-
ever, the amount of solvent dragged by the molecule of
interest depend on their packing on the surface of the sen-
sor [28]. In this case, Eq. (5) can be used to take these
variations into consideration by adapting the coefficient
of variations. Second, the same equation can be used
to study the biological noise reported for many biosen-
sors based on mechanical resonators [6, 29, 30]. Affinity-
based biosensors rely on capture molecules such as anti-
bodies attached to the surface of the sensor to capture
the biomolecule of interest. However, even though appro-
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priate passivation layers can prevent strong and lasting
interaction between unwanted molecules and the sensors,
transient interactions cannot be completely eliminated.
Such interactions will results in a background measure-
ment noise due to the spatial sensitivity of the sensor.
One can use Eq. (5) to assess the effect of a number
of unwanted molecules (of different masses) on the sen-
sor. Assuming a number of unwanted molecules N whose
masses are distributed with a fixed coefficient of variation
cv, Fig. 2.b shows the relative variance expected for dif-
ferent cases.

Monte Carlo simulation

An independent Monte Carlo model was developed for
the purpose of the study to verify the validity of Eq. (6)
and to give further insights into stochastic processes on
resonators. The model is based on equation (1) and cal-
culates the total added effective mass for a given num-
ber of objects N positioned at randomly generated co-
ordinates. The model assumes no interaction between
the objects and represents measurements in the linear
regime where the principle of superposition can be ap-
plied. These assumptions are valid in the cases studied
in this paper as we are only considering a small number
of lightweight objects. The model also assumes a purely
gravimetric interaction between the object and the res-
onator’s surface. Statistical data, normalized to simplify
comparisons, extracted from a population of 5000 mea-
surement agreed within 3% with Eq. (6). For 2000 mea-
surements, the variations can go up to 4% while for 500
measurements they can reach up to 8%. Fig. (3) shows
the normalised normal simulation for different number of
objects. The insets show the distributions corresponding
to 200 objects for sample sizes of 2000 and 200 measure-
ments, (i) and (ii) respectively. Further details can be
found in the Supplemental Material [10].

In this section we examine how an adapted version of
the Monte Carlo simulations gives further insights into
non-specific interactions on a cantilever excited in its first
flexural mode. In this case, the model is adapted to pro-
duce a series of discrete measurements, where each mea-
surement is reported as a function of an arbitrary time
unit, instead of being averaged for a given measurement
population. Such model is used here to show measure-
ment variations as a function of time. Considering a hy-
pothetical experiment where the measurement sampling
time τn is shorter than the interaction between the un-
wanted molecules and the sensor, such that every time
a measurement is taken, the same number of unwanted
molecule of mass mu interact with the resonator. This
case is captured by Fig. (4) that shows the measurement
variations induced by 50 and 500 molecules respectively.
It can be seen that the figure appears like a noisy mea-
surement, suggesting that non-specific interaction with

unwanted molecules can contribute to the biological noise
observed on many biosensors based on mechanical res-
onators [6, 29, 30]. It should be noted however, that
even though the discrete Monte Carlo model provides a
visual clue to the type of measurement variations that
can be expected due to non-specific interaction, the gen-
eral framework presented in the manuscript (Eq. (5)),
that accounts for number and mass variation gives more
insights into this complex subject. However this study
falls outside the scope of this manuscript and will be ad-
dressed in future research.

FIG. 4: Results from a discretized version of the Monte Carlo
simulations model showing that non-specific interaction (tran-
sient binding and dissociation events) on a sensor with het-
erogeneous gravimetric sensitivity, in this case a cantilever
excited in its first flexural mode, can appear as a noisy mea-
surement (the variations decreases with the number of ob-
jects).

CONCLUSIONS

Finally, we note that our results, which were discussed
in the context of mechanical sensors operating in dynamic
mode, are general and can be extended to other types
of sensors when the measured output Os in response to
a variation in the input quantity y obeys the relation-
ship Os =

∑N
j=1 yjφ(xj), where φ(xj) represents the

location dependent sensitivity map. In the case stud-
ied in the manuscript, Os = ∆m̃ [23], yj = mj and
φ(xj) = |ϕ(xj)|2 where ϕ(xj) is the mode shape scaled
to unit generalised mass.

In conclusion, we have developed a general framework
to study stochastic processes on the surface of mechanical
sensors operating in the dynamic mode. We have quan-
tified the measurement variations induced by a variable
number of objects of varying mass randomly positioned
on the sensor. This new metric can be used to com-
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pare the performance of any gravimetric sensor based
on mechanical resonators and importantly it enables the
design of sensor platforms with improved performance.
Using an array of sensors, a solution particularly rele-
vant to micro/nano-sensors, it is possible to reach ultra-
high resolution measurement of any number of objects.
This solution does not require the implementation of the
complementary methods normally associated with this
regime of operation and enables the measurement of the
small quantities of molecules or cells relevant to the early
detection of diseases. In addition, our theoretical frame-
work can be used to study other stochastic processes in
the sensing environment. It can also give insight into bi-
ological noise due to non-specific interaction and it could
also be adapted to study the motility of cells or the ef-
fect of cooperative binding for example. Finally, since our
framework can be adapted to other sensor platforms, we
anticipate, due in particular to great interest in high res-
olution sensing, that the metric developed in the present
paper will be relevant to researchers developing or work-
ing with sensors across a variety of fields.
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