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ABSTRACT 

In liquids of high glass-forming ability, in which crystal growth rates are low, the rates can be 

measured over the full range of supercooling from the liquidus temperature down to the glass 

transition. For systems of low glass-forming ability, growth rates are readily measured at 

small supercooling and at very large supercooling around the glass-transition temperature, but 

it is difficult to acquire data over the full range of intermediate supercooling, especially at the 

maximum in growth rate. Data at intermediate supercoolings are however of considerable 

interest for understanding glass formation in such systems as pure metals and chalcogenides 

for phase-change data storage. We will review the methods emerging for making such 

measurements, and will note that the fragility of the liquid (including possible crossover from 

‘fragile’ to ‘strong’ liquid behaviour on cooling) is an important part of understanding fast 

crystal growth. We also note that there are deficiencies in existing theories of fast crystal 

growth.  
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1. Introduction 

 

Glass formation on cooling a liquid involves avoidance of crystallization, and analysing 

glass-forming ability (GFA) requires the kinetics of both crystal nucleation and growth to be 

taken into account. In this review, however, we focus only on the rates of crystal growth U. 

Furthermore, to avoid complications from solute partitioning, we restrict ourselves to systems 

that crystallize congruently (i.e. the liquid/glass and the single-phase crystal forming from it 

have identical compositions). High GFA is associated with sluggish crystallization, but there 

is much current interest in marginal glass-forming systems in which U can be high. Most 
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liquids, including it now seems pure-metal melts [1,2], can form glasses if cooled sufficiently 

rapidly, at >10
10

 K s
1

. For glass-forming systems, it is well accepted schematically, but 

rarely measured quantitatively, that U must exhibit a maximum in the temperature range 

between the melting point Tm (equivalent to the liquidus temperature when freezing is 

congruent) and the glass-transition temperature Tg. For classic glass-formers, such as silica 

and the oxide glasses, the values of U are low and can be measured (often by direct 

observation of the crystals) over the full range of supercooling from Tm down to Tg. Even for 

poor glass-formers, such as most metallic systems, large supercoolings can be achieved in 

levitated droplets, and there are now many measurements of rapid crystal growth [3]. But so 

far only one study (on Cu50Zr50 [4]) has reached supercoolings large enough to permit 

measurement of the maximum Umax in crystal growth rate. There are many measurements of 

U in the glass (Sect. 5) and supercooled-liquid states near Tg, but for poor glass-formers it is 

difficult to acquire data over the intermediate supercoolings relevant for Umax. Yet such data 

are not only of fundamental interest, for example in setting the ultimate limits to glass 

stability, but also of technological importance for the operation of phase-change memory 

(where the materials of current interest are chalcogenides). 

Our focus is on the measurement and analysis of fast crystal growth, especially in the 

temperature range of Umax.  We note that the mode of crystallization in this regime may well 

be different from that at small supercooling; in particular the high driving force permits fast 

congruent freezing to a metastable phase, favoured by the lack of the inhibiting factor of 

solute partitioning.  Property changes in the liquid as a function of temperature are not of 

concern in conventional solidification studies, where the liquid supercooling is always small. 

But such changes are important over the wide range of supercooling relevant for glass-

forming systems, and provide further points of interest. We will review the methods 

emerging for making measurements of U, emphasizing those relevant for fast growth in 

systems of low GFA, and will note that the fragility of the liquid (including possible 

crossover from ‘fragile’ to ‘strong’ liquid behaviour on cooling) can be an important part of 

understanding crystal growth rates. 

 

2. Liquid and glassy states 

 

It is familiar that different glassy states are formed by cooling the liquid at different rates. 

The range of states that can be achieved has been explored particularly intensively for 

metallic glass-forming systems [5]. We take such a system to show the range of enthalpies of 

interest: Fig. 1 is schematic, but based on calorimetric data for the system 

Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 (composition in at.%) forming the bulk metallic glass Vitreloy 105 

[6]. The Tg indicated in the figure is for the standard cooling rate of 0.33 K s
1

, and 

corresponds to the conventionally adopted value of viscosity  = 10
12

 Pa s. The heat of 
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crystallization Hx of a relaxed glass, measured using conventional differential scanning 

calorimetry (DSC) at a typical heating rate of ~10
1

 K s
1

, is ~0.4 Hm (where Hm is the 

latent heat of melting). The large difference between Hx and Hm indicates that there is 

considerable ordering in the liquid as it is supercooled. States of different order are retained 

in the glass by cooling at different rates. Figure 1 shows rates from 10
13

 K s
–1

 (possibly 

achieved, or exceeded, experimentally in pure-metal nanobridges [1]) down to 10
–14

 K s
–1

 

(the effective cooling rate that would correspond to ultrastable states obtainable by deposition 

with a glass-transition temperature at about 85% of the conventional value). For such a wide 

range of cooling rates, the range of enthalpy is very wide, up to ~ 0.9 Hm [5]. In principle, 

analysis of crystal growth rates in glass-forming liquids should consider such a wide range of 

states. For any glassy state, the details of the transition to the liquid state on heating depend 

on the heating rate (inset in Fig. 1). On heating, usually the glass undergoes relaxation and 

goes through Tg before crystallization; the nature of the crystallization must then be 

unaffected by the prior glassy state. For glassy states of very high enthalpy (rejuvenated 

states), however, crystallization may occur below Tg [2]. 

 

 

Fig. 1. Relative enthalpy as a function of reduced temperature for a bulk-metallic-glass forming system, 

showing representative scaling between the specific heats (dH/dT) and the heat of melting Hm. Tmax is the 

temperature at which the crystal growth rate reaches its maximum Umax. The inset shows the relaxation 

behaviour near Tg under differing heating rates. At a given temperature, the enthalpy range in potential glassy 

states is remarkably wide, up to ~0.9 Hm.  (Adapted from Ref. [5]) 

 

Our interest is mostly in the maximum growth rate Umax, which occurs at a temperature 

Tmax between Tg and Tm. It has been shown for a wide range of glass-forming systems (data 
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for some of these are included in Fig. 2) that there is a good correlation between Tmax and Tg, 

with Tmax = (1.48±0.15)Tg [7]. On that basis, Tmax is indicated in Fig. 1, and we see that at this 

temperature, far above the standard Tg, only a small range of enthalpy would be relevant for 

the maximum in crystal growth rate. The value of Umax would be affected only by quenching 

at the very highest rates not relevant for our current interest (though relevant for molecular-

dynamics simulations). While there can be non-equilibrium effects in supercooled liquids 

(e.g. analysed in terms of retarded viscosity [8]), we conclude that in the current work, with 

its focus near Tmax, we can take the properties of the liquid to be characteristic of the actual 

temperature (i.e. independent of thermal history, cooling or heating rate). 

 

3. Influence of reduced glass-transition temperature and fragility 

 

Turnbull [9] noted that the reduced glass-transition temperature, Trg (= Tg/Tm) is an 

important parameter governing GFA. He considered the rate, I, of homogeneous nucleation 

of crystals in the liquid, and showed that nucleation is effectively suppressed when Trg > 0.67. 

As Trg increases, the temperature at which I is maximum increases, and the maximum value 

of I decreases markedly. He also noted that the correlation of I(T) with Trg would be affected 

by different liquids having different temperature dependences of viscosity (T). In the current 

literature this is discussed in terms of the kinetic fragility of the liquid, defined as 

    
g

g10 dlogd
TT

TTm


   [10]. Senkov [11] has suggested that GFA can be correlated with 

a combination of the two independent parameters Trg, and m, and he defined a dimensionless 

parameter,     1

rg 211162


 TmF , with F varying from ~0.1 for very fragile liquids to 

~0.8 for strong liquid SiO2. 

 

 

Fig. 2. Survey of crystal growth rates in variety of glass-forming liquids showing congruent freezing. The 

upward arrows indicate the maximum in the crystal growth rate; the downward arrows mark the reduced glass-

transition temperature Trg, and the values are given.  The numbers in parentheses show values of the liquid 

fragility m. Modified from Ref. [7]. 
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Our previous work [7] examined how Trg and m might affect the temperature dependence 

of crystal growth rate U(T) in supercooled liquids. The compilation of U(T) data for diverse 

glass-forming systems (Fig. 2), remarkably resembles Turnbull’s plot of I(T) for different 

values of Trg. Although there are relevant studies of polymeric crystallization [12], we 

exclude polymeric systems from the comparison in Fig. 2;  as noted in earlier work [7,13], in 

such systems, factors such as chain length disrupt the usual correlation between crystal 

growth rate and viscosity.  In Fig. 2, the values of the maximum growth rate Umax range over 

nearly 11 orders of magnitude, and, for a given span of Trg values, this range is essentially the 

same as that of the maximum in I. Thus growth rates are also important in understanding 

GFA. For a high-GFA system, the value of Umax is low and occurs at high value of Tmax/Tm 

(e.g. 0.97 for SiO2). For a low-GFA system, U(T) shows a much broader peak, Umax is high, 

and occurs at a low value of Tmax/Tm (e.g. 0.61 for pure silver, obtained from molecular-

dynamics simulations). 

In Fig. 2, values of Trg and m are given for each set of data. The values of Umax do not 

show good correlations with a single parameter Trg or m. But this earlier work [7] established, 

adopting a strategy similar to that of Senkov [11], that Umax correlates well with a linear 

combination of Trg and m that can be regarded as a fragility-corrected Trg: 

 



m
TT  rggu . (1) 

 

The correlation of Umax with Tgu over the entire range of glass-forming systems, setting  = 

505, is shown in Fig. 3. A remarkably similar fragility-corrected Trg appears to explain, with a 

similar value of  = 520, the relative GFAs of Ni-Cr-Nb-P-B alloys [14]; with more data, on 

a total of 42 metallic-glass-forming liquids, a best fitting gives  = 532 [15]. 
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Fig. 3. Correlation between Umax and the fragility-compensated reduced-glass-transition temperature Tgu 

(equation 1). The coloured boxes show schematically typical ranges of Umax and Tgu that are measured by a 

variety of direct and indirect techniques (Tab. 1, Sect. 4). Modified from Ref. [7]. 

Independent of the underlying influences of Trg and m, Fig. 2 suggests a general 

correlation of Umax vs Tmax/Tm, and this is shown in Fig. 4 [7,16]. This shows scatter, some of 

which may be because the actual interface temperature is not well established in some 

experiments (methods and the limitations are treated in Sect. 4). There is also the influence of 

diverse growth mechanisms. Nevertheless, the correlation in Fig. 4 does provide a basis for a 

generalized description of crystal growth rate in glass-forming liquids, as developed by 

Schmelzer et al. [16] who derived the following master equation: 

 

 

max

eff

0 D
max max

0 max
eff

D m

1
exp

4
1 1

T T

q

D E
U T f

qd T

E T


  
  
   
             

, (2) 

 

where f ≤ 1 is the fraction of active growth sites at the interface accounting for different 

growth modes (f = 1 for a normal growth, mπ2 TTf   for a dislocation-mediated growth), 

D0 is the pre-exponential factor of the temperature-dependent diffusion coefficient  TD , d0 

is the molecular diameter, q is the latent heat of crystallization per molecule, and 
eff

DE  is the 

thermally-compensated activation energy for diffusion. Calculations based on Eq. (2) (solid 

blue circles, for oxides) [16] are compared with the measured data in Figure 4; the match is 

encouraging. 
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Fig. 4. Correlation between measured and calculated (Eq. 2 – solid blue circles) maximum in crystal growth rate 

Umax and homologous temperature Tmax/Tm. The red and blue solid lines show calculations for normal and 

dislocation-mediated growth, respectively. Published with permission from Ref. [16]. 

 

4. Measurement of crystal growth rates 

 

It is evident from Fig. 2 and Fig. 3 that the values of Umax span a wide range. In Fig. 3, 

we show the typical ranges over which different techniques may be useful for the 

measurement of growth rates. The techniques are both direct and indirect, as summarized in 

Table 1. The direct techniques each involve the observation of the advance of crystallization 

front. Even so, there may be uncertainties: for example, for higher values of U, the interface 

temperature may not be well known, significantly exceeding the temperature of the bulk 

sample. In optical microscopy, and electron microscopy, the front is directly observed; in 

experiments on levitated droplets, the position of the interface is inferred from the thermal 

front that crosses the droplet during solidification. 

 

Table 1 

A variety of experimental techniques, indirect and direct, are used to measure crystal growth rates in glass-

forming liquids (Fig. 3). Typical ranges of the maximum rate Umax and of the fragility-corrected reduced glass-

transition temperature Tgu (Eq. 1) probed by the techniques at varying heating/cooling rates are summarized. 

Indirect Techniques 
Umax 

(m s
1

) 
Tgu 

Heating/Cooling 

Rate (K s
1

) 
Limitations 

Computer Simulations 10
0
10

3
 0.10.3 10

11
10

15
/10

11
10

15
 Accurate interatomic 

potentials are needed
a) 

[17,18] 

Conventional DSC <10
4

 0.40.7 10
4
10

0
/10

4
10

1
 Arrhenius kinetics

b) 
[19,20] 

Ultrafast DSC 10
5
10

0
 0.220.55 10

1
10

6
/10

1
10

6
 Non-Arrhenius kinetics

c) 

[12,2123] 

Optical Excitations <10
3
 0.220.32 10

10
10

11
/up to10

12
 Temperature simulations; 

measures crystallized volume 
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fraction
d)

 [2426]  

Electrical Measurements <10
1

 0.220.32 10
0
10

8
/― Complex sample geometry

e)
 

[27,28] 

Direct Techniques 
Umax 

(m s
1

) 
Tgu 

Heating/Cooling 

Rate (K s
1

) 
Limitations 

Levitation 10
1
10

2
 0.10.5 ― Dendritic growth

f) 
[29] 

Dynamic TEM 10
1
10

1
 0.20.32 10

10
10

11
/10

10
 [3032] 

Conventional TEM <10
5

 0.40.7 10
4
10

0
/― Sample preparation and e-

beam influence [33] 

Optical Microscopy
g)

 <10
2

 0.40.7 ― ― 
a)For fast crystal growth the crystal-liquid interface temperature does not correspond to the bulk temperature. 
b)Because of the limited range of heating rates, crystallization occurs in a narrow temperature range in the supercooled liquid very close to 

Tg; the commonly used Kissinger analysis then gives the activation energy for crystal growth, QG. 
c)Because of extended heating rates, crystallization can occur over a wide temperature range in the supercooled liquid, revealing non-

Arrhenius kinetics. In this case, numerical modelling must be used to extract the temperature dependence of rates from the Kissinger data. 
d)These techniques measure overall transformation rate, not U(T). There is no direct measure of the temperature at the crystal-liquid 
interface, which has to be estimated by modelling.  
e)A thin-film sample is enclosed by electrodes and a dielectric. The mode and kinetics of crystallization can be strongly influenced by 

stresses in the sample and by effects such as structural and chemical templating, and possible interdiffusion, at the interfaces between the 

active layer and the electrodes. 
f)The heat released during the crystallization gives a negative temperature gradient ahead of the crystal-liquid interface, typically leading to 

instability of the solidification front and to dendritic growth. 
g)Without using fast cameras. 

 

Computer simulations are a special case; they are certainly useful (for example for pure 

metals) when experimental measurements are not available. In molecular-dynamics (MD) 

simulations, crystal growth rates in highly-unrelaxed (rejuvenated) glasses, not supercooled 

liquids, can be computed because of the high cooling rates (Fig. 1). The crystal growth rates 

that are of most interest in the present work have mostly been characterized by indirect 

techniques. These typically involve measurement of the overall rate of crystallization. That 

rate depends on the number of growth centres, or the crystal nucleation rate, in addition to the 

crystal growth rate; nevertheless approximations can be made to estimate values of U. 

Calorimetric measurements have so far been based on heating at a constant rate. At a higher 

rate, the crystallization mainly occurs at a higher temperature. But numerical simulations of 

the heat evolution show that the maximum in U cannot be directly detected; instead samples 

fail to crystallize completely before Tm is reached on heating [23]. 

 

5. Mechanisms of fast growth 

 

The value of Tmax/Tm is a result of the interplay between kinetic (dominant at low 

temperature) and thermodynamic (dominant at high temperature) factors. Around a 

homologous temperature of 0.55, it is the kinetic factor that leads to the wide separation of 

the U values for a pure metal (Ag) and for a metallic-glass-forming system (Cu50Zr50), as 

seen in Fig. 2. As shown by the intervening data for Ge2Sb2Te5, this regime of potentially fast 

growth is likely to be of interest for device applications, such as phase-change memory 

(PCM). For such an application, the active materials must have a GFA that is low, in order to 

ensure fast crystal growth; at the same time the glassy phase once formed must be sufficiently 
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stable to retain the stored data. The wide range of growth behaviour between pure metals and 

systems such as Cu50Zr50 must provide opportunities to find materials with properties 

attractive for phase-change applications, possibly even improving on the chalcogenides that 

are typically used. This could be a new direction for metallic-glass research; for decades this 

has focused on finding systems of higher GFA, but it may now be useful to explore lower 

GFA. 

Most treatments of crystal growth in this regime still focus on the classical models for 

diffusion-limited and collision-limited growth. In the diffusion-limited model, it is assumed 

that crystal growth relies on thermally activated diffusive-type jumps of the atoms at the 

crystal-liquid interface; in this case the limiting velocity (in the thermodynamic limit when all 

jumps are from liquid to crystal) is of the order of 10 m s
–1

. But experiments, particularly on 

supercooled pure metals, show that this velocity can be exceeded [34]. Furthermore, the 

phenomenon of solute trapping shows that the velocity of the crystal-liquid interface can 

exceed the diffusive speed of solute in the liquid [35]. 

To cope with this, it was suggested that, for single-component metallic liquids, there 

need be no thermal activation of atomic jumps at the crystal-liquid interface; rather the atoms 

shuffle into place. In this collision-limited growth [36], the rate is limited by the sound 

velocity in the liquid  
1/2c

kin /U B  , where B is the adiabatic bulk modulus and  is the 

density of the liquid. The kinetic factor 
c

kinU  was found, by computer simulations [37], to be 

proportional to  m

c

kin MTRCU  , for cubic close-packed (ccp) metals, where M is the 

molar mass and C is a constant varying with interfacial orientation: C(100) = 1.3, C(110) = 1 and 

C(111) ranges between 0.50.9. There is thus a significant growth-rate anisotropy with 

     111110100 c

kin

c

kin

c

kin UUU   [38,39]. Also, for body-centred cubic (bcc) iron, 

   110100 c

kin

c

kin UU   [39]. According to such models, crystal growth rates in supercooled 

metals can be as high as ~10
3
 m s

1
, and rates as high as ~10

2
 m s

1
 have been observed 

experimentally. MD simulations suggest that such high growth rates are preserved far below 

Tg. But the recent experimental observations by Zhong et al. [1] suggest that, at least for 

refractory metals below Tg, the crystal growth rate must be much lower. The discrepancy 

between the computer simulations and the experimental observations emphasizes the need for 

better understanding of crystal growth in metallic systems. 

There are problems: many measured growth rates are not fitted well by either model 

(diffusion-limited or collision-limited) and seem to lie in an intermediate regime [40]. Even 

the MD simulations of crystal growth in pure-metal systems [41] that (as noted above) show 

values of U higher than observed experimentally, show a maximum in U(T). Therefore to 

some extent the crystal growth must be thermally activated, contrary to the classical collision-

limited model. 

Existing approaches focus on the transition, at increasing supercooling, from diffusion-

limited growth permitting solute partitioning, to collision-limited growth enforcing solute 
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trapping (i.e. partitionless solidification). But such a transition can account for no more than 

three orders of magnitude change in growth rate [35], and in any case does not treat different 

regimes within partitionless solidification. That such different regimes exist was shown by 

the work of Spaepen and Lin [42] on picosecond laser-induced quenching (cooling rate ≈ 10
12

 

K s
1

) of alloys in the system Fe1xBx. Without any solute-trapping transition (the crystal 

growth is always partitionless), the growth rate can be suppressed from 10
2
 m s

1
 for x < 3 

at.% to less than 10
1

 m s
1

 for higher B content, x > 5 at.%; in this way, at higher B content a 

glass is formed, even though, in the presence of a crystal/melt interface, there is no nucleation 

barrier. Glass formation in this system is controlled by U(T) (Fig. 5). For B contents x > 10 

at.% the GFA of the Fe-B system is good enough for the glassy state to be achievable by 

melt-spinning. 

 

 

 

Fig. 5. Laser-induced melting and quenching of Fe-B alloys. The contour lines superposed on the phase diagram 

correspond to isokinetic crystal growth rates (labelled in m s
1

). T0 is the equilibrium temperature for 

partitionless freezing to the bcc Fe(B) solid solution. Redrawn from Ref. [42]. 

 

Specifically, we conclude that the wide separation of the U values for pure metals (e.g. 

Ag) and for a metallic-glass-forming system (Cu50Zr50, extrapolated according to the 

diffusion-limited model) seen at a homologous temperature of ~0.55 in Fig. 2, is difficult to 

treat with current crystal-growth models. 

Some guidance may be obtained from molecular systems. There are cases of 

polymorphic (i.e. congruent) crystal growth below Tg; this glass-crystal growth has been 

measured, for example in ROY (Fig. 2), OTP, IMC and other organic (molecular) glasses 

[43,44]. These are of particular interest as the growth rate is not limited by bulk diffusion in 

the glass or the liquid, but by local conditions in a very thin (~3 nm thick) glass/crystal 

interface [43], or maybe by propagating fracture at the interface [45]. On supercooling, 
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crystal growth follows the diffusion-limited model from Tm down to a characteristic 

temperature of 1.11.2Tg, where there is a breakdown in the Stokes-Einstein relation between 

viscous flow and diffusion. Below this temperature, U increasingly deviates to values as 

much as 10
4
 times higher than predicted, and the value remains high even below Tg. There are 

several models to account for this [46], yet none can fully explain the observed growth mode. 

Whatever the details, this glass-crystal growth must be significantly decoupled from (i.e. 

is much faster than would be predicted from) the viscosity of the liquid. Crystal growth in 

pure-metal systems may represent an extreme case of such decoupling, and this may explain 

the instability of some as-deposited high-energy amorphous states [2]. 

 

 

 

 

6. Fragile-to-strong crossover 

 

Many authors have pointed out that supercooled liquids such as water [47], metallic-

glass-forming systems [48,49] and yttrium oxide-aluminium oxide [50,51] can undergo a 

fragile-to-strong crossover on cooling. The existence of such crossover is not only of 

fundamental interest but, as recently shown for Ag5.5In6.5Sb59Te29 [52,53] and for Te85Ge15 

[54], it may help to improve data retention in non-volatile chalcogenide-based phase-change 

memory (PCM). PCM exploits the contrast between high-resistance glassy and low-

resistance crystalline phases, in archetypical materials such as Ge2Sb2Te5 and (Ag,In)-doped 

Sb2Te (AIST), to store information. Memory switching is achieved by reversible 

glass↔crystalline transitions induced by electrical pulses: more intense pulses melt the 

crystal and the glass is formed on the subsequent rapid quenching; less intense pulses 

crystallize the glass. Contradictory requirements must be met: the memory must be stable 

against spontaneous crystallization; but fast recording, for which crystal growth is the rate-

limiting step, must be ensured. A fragile-to-strong crossover on cooling the liquid (Fig. 6) 

may assist in meeting the requirements. The much-studied liquid Ge2Sb2Te5 shows a high 

fragility (m = 90) that provides a good description of the temperature dependence of its 

viscosity throughout the temperature range of interest. In contrast, AIST shows more 

complex behaviour. The high-temperature liquid is fragile (m = 74) facilitating fast switching 

(recording), while the low-temperature liquid is strong (m = 37) improving resistance against 

spontaneous crystallization at ambient temperature [53]. 
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Fig. 6. Angell plot of viscosity showing the fragile-to-strong crossover on cooling liquid of phase-change 

materials Ag5.5In6.5Sb59Te29 [52,53], Te85Ge15 [54], and the metallic glass La55Al25Ni15 [56]. The phase-change 

chalcogenide Ge2Sb2Te5 [21] is an example of a highly fragile liquid. 

 

For chalcogenide systems of interest for PCM, measurements of viscosity are possible 

around Tg and in the equilibrium liquid (above Tm), but not over most of the intervening 

temperature range, in which the supercooled liquid crystallizes too readily.  It is then useful 

that this no-man’s land in viscosity data can be explored, albeit indirectly and partially, 

through measurements of crystal growth rates using the techniques considered in Fig. 3 and 

Table 1.  In any case, in a variety of chalcogenides, the existence of a kinetic crossover now 

seems clear [5255]. 

In-situ studies on oxides [50] and metallic glass-forming liquids [48] reveal structural 

changes in these liquids and suggest an existence of a first-order transition. It is puzzling that 

the crossover in phase-change chalcogenides [52–55] is much weaker than that found in 

metallic liquids [57]. Orava et al. [52] proposed that the existence of a crossover in AIST can 

be due to a change from metallic to semiconducting bonding on cooling, as was also 

suggested for pure tellurium [58]. Whether a crossover is sharp or not can be expressed by 

the ratio of the apparent fragilities mm , where m  is the fragility of the high-temperature 

liquid. For AIST [53], and Te85Ge15 [54], 2 mm , and the crossover is gradual and spread 

over a wide temperature range. Purely metallic liquids, such as those studied by Zhang et al. 

[56], have a sharper crossover mm  = 38. The recent study by Stolpe et al. [48] shows a 

sharp increase in viscosity by 4 orders of magnitude in a rather narrow temperature range, 

 gΔ T T  = 0.1, on cooling liquid Zr58.5Cu15.6Ni12.8Al10.3Nb2.8. 

It is clear that possible fragile-to-strong crossovers need further study. They would also, 

of course, directly affect U(T) and thereby the general correlations of interest in this review. 

It has already been noted that they may help to explain the differences in the crystallization 

behaviour of different chalcogenide phase-change systems (growth-dominated vs nucleation-
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dominated) [52,53]. Such behaviour also depends on crystal nucleation rates, which in AIST 

may be 6 orders of magnitude lower than in the highly-fragile liquid Ge2Sb2Te5, because of 

the crossover [52]. Similarly, Laksmono et al. [59] measured a 5 orders of magnitude 

decrease in nucleation rate in supercooled water due to the fragile-to-strong crossover. 

Mode-coupling theory and other fundamental analyses of the dynamics of glass-forming 

liquids suggest a characteristic temperature, typically in the range (1.1–2.0)Tg, at which there 

is a crossover in behaviour [60–63], variously considered in terms of the onset of non-

ergodicity or of dynamical cooperativity on cooling.  The temperature of the maximum 

growth rate, Tmax ≈ 1.48 Tg, lies in the middle of these suggested crossovers.  In the present 

work, we do not explore any link with the underlying dynamics, but treat the temperature-

dependent liquid viscosity only descriptively in terms of fragility and fragile-to-strong 

crossover. 

 

7. Conclusions 

 

Marginal glass-forming systems that show fast crystal growth are of current interest. 

They show that better models are needed for crystal growth in liquids, even for such 

comparatively simple systems as pure metals. The ability for fast switching between glassy 

and crystalline states is applicable in phase-change memory, and better understanding of 

crystal growth kinetics may enable the development of intrinsically better materials for 

memory and related applications. We have reviewed that a range of methods is being 

developed for both direct and indirect measurement of the growth rate in systems with poor 

glass-forming ability. In this way, some data are now available, even for poor-glass-forming 

systems, for the growth rate over the entire temperature range from the glass transition to the 

melting point. Fitting the kinetics of crystal growth requires both the reduced glass-transition 

temperature and the kinetic fragility of the liquid to be taken into account. These parameters 

largely govern the viscosity of the liquid, but to derive the crystal growth rate there are 

additional factors to consider such as possible decoupling of interfacial rearrangements from 

viscous flow. Present studies do offer the prospect of better understanding of both glass-

forming ability and glass stability. 
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