

1 2	PARINT-2016-37
3	High-intensity cardiac infections of Phthinomita heinigerae n. sp.
4	(Digenea: Aporocotylidae) in the orangelined cardinalfish, Taeniamia
5	fucata (Cantor), off Heron Island on the Great Barrier Reef
6	
7	Matthew J. Nolan ^{a, *} , Cinzia Cantacessi ^b , Scott C. Cutmore ^c , Thomas H. Cribb ^c , and Terrence
8	L. Miller ^{d, e,}
9	
10	^a Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, North
11	Mymms, Hatfield AL9 7TA, United Kingdom
12	^b Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
13	^c School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia.
14	^d Centre for Sustainable Tropical Fisheries and Aquaculture, School of Marine and Tropical Biology,
15	James Cook University, PO Box 6811, Cairns 4878, Australia
16	^e Fish Health Laboratory, Department of Fisheries Western Australia, 3 Baron-Hay Court, South Perth
17	6151, Australia
18	
19	* Corresponding author at: the Department of Pathology and Pathogen Biology, Royal Veterinary
20	College, University of London, Hatfield, Hertfordshire AL9 7TA, United Kingdom. Tel.: +44 (0) 1707 66
21	6803. Email: mnolan@rvc.ac.uk (M.J. Nolan).
22	
23	Email addresses:
24	MJN: mnolan@rvc.ac.uk
25	CC: <u>cc779@cam.ac.uk</u>
26	SCC: <u>scott.cutmore@uqconnect.edu.au</u>
27	THC: <u>t.cribb@uq.edu.au</u>
28	TLM: <u>terry.miller@fish.wa.gov.au</u>
29	

30 ABSTRACT

- 31 We report a new species of aporocotylid trematode (Platyhelminthes: Digenea) from the heart of the 32 orangelined cardinalfish, Taeniamia fucata (Cantor), from off Heron Island on the southern Great Barrier 33 Reef. We used an integrated approach, analysing host distribution, morphology, and genetic data from the 34 internal transcribed spacer 2 of the ribosomal DNA, to circumscribe Phthinomita heinigerae n. sp. This is 35 the first species of Phthinomita Nolan & Cribb, 2006 reported from the Apogonidae; existing species and 36 known 'types' are recorded from species of the Labridae, Mullidae, and Siganidae. The new species is 37 distinguished from its 11 congeners in having a body 2977-3539 long and 16.5-22.4 times longer than 38 wide, an anterior testis 6.2-8.2 times longer than wide and 8.3-13.0 times longer than the posterior testis, 39 a posterior testis whose width is 35–56% of the body width, and an ovary positioned 11–13% of the body 40 length from the posterior end. P. heinigerae n. sp. differs further in having an ovary that is positioned 41 entirely anterior to the posterior margin of the anterior testis. In addition, 2-34 base differences (0.4-7.0% 42 sequence divergence) were detected among the ITS2 sequence representing P. heinigerae n. sp. and the 43 14 representing other Phthinomita species/molecular types. Prevalence and intensity of infection with P. 44 heinigerae n. sp. was relatively high within the heart tissue of T. fucata, with 19 of 20 fish examined from 45 off Heron Island infected (95%) with 7-25 adult worms (arithmetic mean 16.6). Infections by these 46 parasites accounted for an occupation of 7-30% of the total estimated heart volume.
- 47
- 48 Keywords
- 49 Platyhelminthes
- 50 Trematoda
- 51 Apogonidae
- 52 Internal transcribed spacer 2 (ITS2) of the ribosomal DNA (rDNA)
- 53 Host-switching
- 54

55 1. Introduction

56 57 The Aporocotylidae Odhner, 1912 (Platyhelminthes: Trematoda) is a family of parasitic 58 flatworms that has, in recent years, emerged as an increasingly rich, and morphologically diverse, group 59 of digeneans. There are currently 142 accepted species from 37 genera [1-5], which infect a broad range 60 of fishes. Species from seven genera have been recorded from fishes of the Great Barrier Reef (GBR): 61 Ankistromeces Nolan & Cribb, 2004 (see [6]); Braya Nolan & Cribb, 2006 (see [7]); Cardicola Short, 62 1953 (see [7-9]); Pearsonellum Overstreet & Køie, 1989 (see [10, 11]); Plethorchis Martin, 1975 (see 63 [12]); Phthinomita Nolan & Cribb, 2006 (see [6]); and, Rhaphidotrema Yong & Cribb, 2011 (see [13]). 64 Phthinomita is the most complex of these, consisting of 11 recognised species and numerous undefined 65 'types' represented by a unique DNA sequence or single morphological specimen. Unlike most 66 aporocotylids, which are typically characterised by a flat body that may be linear, elliptical, or lanceolate, 67 species of *Phthinomita* are long and thread-like. As adults, they wind through the intertrabecular spaces of 68 the ventricle of their hosts, which to date include species of labrid (wrasses), mullid (goatfishes), and 69 siganid (rabbitfishes or spinefoots). Due to the extreme morphological similarity that exists among 70 species of *Phthinomita*, an effect most likely due to their site of infection, this group is best described as a 71 complex of cryptic species. As such, genetic data are required to enhance traditional methods of species 72 characterisation (i.e. microscopic and morphological examination, host and geographic distribution) and 73 the delineation of species is only possible though this integrated approach (see [14]). Here, we report 74 Phthinomita heinigerae n. sp. from the ventricle of the orangelined cardinalfish, Taeniamia fucata 75 (Cantor) (Perciformes: Apogonidae), collected during the CReefs project from 2009-2012 76 (http://www.aims.gov.au/creefs/field-program.html), from off Heron Island on the southern GBR. 77 78 2. Materials and methods 79 80 2.1. Sample collection 81 82 Between 2009 and 2012, 22 species of apogonid from nine genera (Table 1) were collected from 83 five sites off Heron Island on the southern GBR (23.4420° S, 151.9140° E), eight sites off Lizard Island 84 on the northern GBR (14.6680° S, 145.4617° E), and from seven sites on Ningaloo reef, off Western 85 Australia (22.5625, 113.810278). Apogonid fishes were stored in an 80 litre container before being 86 euthanised by an overdose of clove oil, in strict accordance with the Queensland Museum's Animal Ethics 87 Permit 07/01, issued for this research. Immediately upon death the heart, gills, and viscera were excised 88 and processed as described previously [8]. The hearts of infected apogonids were preserved in 10%

89 formalin (room temperature), for histological examination.

91	2.2. Morphological examination of aporocotylids	
92		
93	Fixed worms were washed, stained, and mounted as described by Nolan et al. [8]. Drawings	
94	were completed using a drawing tube attached to an Olympus BX53 compound microscope with	
95	Nomarski differential interference contrast (DIC) optics. We inferred the dorsal surface by reference to	
96	the position of the separate genital pores, which were assumed to be dorsal, as in all Phthinomita species.	
97	All measurements, in micrometres, were made using an Olympus UC50 digital camera and the software	
98	LabSens (Olympus Soft Imaging Solutions), and are presented as a range followed by the arithmetic	
99	mean in parentheses. Measurement of morphological characters from the anterior or posterior end of	
100	worms reflects the distance from the extremities of each feature. Caecal lengths as a percentage of body	
101	length are based on the right caeca only. Type-specimens, hologenophores, and paragenophores were	
102	deposited in the Queensland Museum, Australia (QM).	
103		
104	2.3. Isolation of genomic DNA, Polymerase chain reaction, and phylogenetic analysis	
105		
106	Total genomic DNA (gDNA) was isolated from three separate specimens identified	
107	morphologically as putative P. heinigerae n. sp. using a DNeasy [®] Blood and Tissue kit (Qiagen, Hilden,	
108	Germany), according to the manufacturer's instructions. PCR amplification of the entire internal	
109	transcribed spacer 2 (ITS2) of the ribosomal DNA (rDNA) region was achieved using the primers 3S	
110	(forward: 5'-GGTACCGGTGGATCACGTGGCTAGTG-3') and ITS2.2 (reverse: 5'-	
111	CCTGGTTAGTTTCTTTCCTCCGC-3'). PCR was carried out in a 20 µl volume as described by	
112	Cutmore et al. [15]. All resultant PCR amplicons were purified and sequenced as described by Nolan et	
113	al. [8].	
114	Prior to phylogenetic analysis, the sequence representing P. heinigerae n. sp. (GenBank	
115	accession no. KX168409) was aligned with 30 reference sequences for selected aporocotylid	 Formatted: Highligh
116	species/genera, presently available in GenBank. Sequences were aligned using the software MUSCLE	
117	version 3.7 [16, 17] with ClustalW sequence weighting and UPGMA clustering for iterations 1 and 2. The	
118	resultant alignment was adjusted manually using the software BioEdit [18]. Total nucleotide distance	
119	matrices were calculated using the pairwise deletion of gaps/missing data option in the software package	
120	MEGA v.5 [19].	
121	Minimum evolution analysis was conducted on the ITS2 dataset using MEGA v.5. Nodal	
122	support for the analysis of this dataset was inferred by bootstrap analysis using a heuristic search of	
123	10,000 replicates. The outgroup taxa used were six species/molecular types of Ankistromeces (GenBank	
124	accession nos. DQ335838–DQ335843, [6]).	
125		
126	2.4. Histology	

128	Sections (5 µm thick) were cut from 10% formalin fixed tissue samples as described by Heiniger
129	et al. [20]. In brief, tissue sections were stained with haematoxylin and eosin (H & E). Coverslips were
130	applied using DePeX (BDH, England). Digital, light microphotographs of the sections were taken at $\times 100$
131	magnification using an Olympus UC50 digital camera attached to an Olympus BX53 compound
132	microscope.
133	
134	2.5. Estimating volume of heart space occupied by P. heinigerae n. sp. in infected T. fucata
135	
136	To estimate the volume of individual worms, additional measurements were taken from each
137	type specimen ($n = 9$). Because blood flukes vary in diameter over the length of the body, between six
138	and 11 radius and height (i.e. length) measurements were taken and used in the formula for calculating the
139	volume of a cylinder ($V = \pi r^2 h$, where r is the radius and h is the height). The general body morphology
140	of species of <i>Phthinomita</i> are more cylindrical than dorso-ventrally flattened, therefore these volume
141	calculations were considered appropriate. These were then combined to obtain the approximate total
142	volume for each type specimen, and then averaged to obtain the arithmetic mean volume of a single
143	worm. To approximate the volume of a <i>T</i> . <i>fucata</i> heart, whole formalin fixed hearts $(n = 3)$ were
144	measured and the radius of each used in the formula to calculate the volume of a sphere ($V = 4/3 \pi r^3$).
145	Using the average volume of a worm, the percentage volume of heart 'space' occupied, based on the
146	minimum ($n = 7$), mean (16.6), and maximum (25) intensities observed, was estimated.
147	
148	3. Results
149	
150	3.1. Aporocotylid prevalence and specificity
151	
152	The hearts of 19 of the 724 apogonid specimens examined (2.6%) were infected with thread-like
153	aporocotylids. All 19 infected individuals were identified as the orangelined cardinalfish, T. fucata, which
154	were all collected from a single site in the Heron Island lagoon (19/20; 95% prevalence); none of the 27
155	T. fucata specimens collected from two sites off Lizard Island (Casuarina beach and Turtle beach) were
156	infected.
157	
158	3.2. Morphology
159	
159 160	Class Tramatoda Pudolnhi 1909
160	Class Trematoda Rudolphi, 1808 Subclass Digenea Carus, 1863
162	Order Diplostomida Olson, Cribb, Tkach, Bray & Littlewood, 2003
162	-
103	Suborder Diplostomata Olson, Cribb, Tkach, Bray & Littlewood, 2003

164	Superfamily Schistosomatoidea Stiles & Hassall, 1898
165	Family Aporocotylidae Odhner, 1912
166	Phthinomita Nolan & Cribb, 2006
167	
168	3.3. P. heinigerae n. sp.
169	
170	Description and measurements (Figs. 1-2): (based on nine whole mature worms). With all
171	features of genus. Body slightly notched at male genital pore, 2977–3539 (3249) × 133–198 (167), 16.5–
172	22.4 times longer than wide. Oral sucker weakly developed, bearing concentric rows of fine spines.
173	Oesophagus straight, 698-887 (783) or 22-25% of body total length. Intestine; right anterior caecum 25-
174	56 (37) or 0.8–1.7% of body total length, left anterior caecum 25–54 (35) long; posterior caeca sinuous,
175	unequal, irregular in outline; right posterior caecum 601-948 (758) or 18.9-31.8% of body total length;
176	left posterior caecum 882-1075 (977) long; 12.4-37.9 times longer than anterior pair.
177	Anterior testis originating posterior to intercaecal field, but antero-dextral to distal termination of
178	left posterior caecum (see Fig. 1), containing dorso-ventral muscle fibres, 844-1206 (1068) or 28-37% of
179	body total length \times 130–185 (155) or 83–99% of body total width, 6.2–8.2 times longer than wide, 8.3–
180	13.0 times longer than posterior testis; posterior testis ovoid, rudimentary, 76-114 (99) or 3-4% of body
181	total length \times 55–93 (76) or 35–56% of body total width, 1.0–1.6 times longer than wide. Vas deferens
182	seen antero-dextral to posterior margin of anterior testis; duct from posterior testis passing antero-
183	medially. Cirrus-sac tear-shaped, 34-54 (44) × 24-42 (31); 1.3-1.9 times longer than wide; 191-243
184	(219) from posterior extremity, 6-7% of body total length. Internal seminal vesicle ovoid, occupying
185	posterior end of cirrus-sac; ejaculatory duct sinuous; prostatic cells not seen.
186	Ovary spherical to ovoid, entirely anterior to posterior margin of anterior testis (see Fig. 2), 351-
187	435 (394) or 11–13% of body total length from posterior extremity, 68–99 (84) or 2–3% of body total
188	length \times 72–94 (82) or 40–60% of body total width. Oviduct originating at posterior dorsal margin of
189	ovary, dorsal to vas deferens, entering oötype postero-dorsally. Vitelline duct forming lateral to ovary,
190	posteriorly dextral to vas deferens and cirrus-sac. Oötype ovoid, $35-47$ (42) \times 18-24 (21). Mehlis' gland
191	extending anteriorly to posterior margin of cirrus-sac, and posteriorly to anterior margin of posterior
192	testis. Uterus extending from oötype sinuously, sinistral to oviduct. Uterine chamber forming posterior to
193	posterior margin of ovary, sinuous, curving dorsally posteriorly to female pore, 144–185 (171) \times 23–39
194	(33). Eggs 14–22 (18) \times 8–15 (10) (n = 10). Vitelline follicles extending anteriorly past intestinal
195	bifurcation, sinistral and dextral to oesophagus, posterior caeca and anterior testis, posteriorly extending
196	to anterior margin of ovary.
197	
198	3.4. Taxonomic summary
199	·
/	

200

Type-host: Taeniamia fucata (Cantor), the orangelined cardinalfish (Perciformes: Apogonidae).

201	Type-locality: Heron Island lagoon, Heron Island (23.4420° S, 151.9140° E), southern Great	
202	Barrier Reef, Queensland, Australia.	
203	Site: Intertrabecular spaces and lumen of ventricle (heart).	
204	Intensity: 7-25 (arithmetic mean 16.6).	
205	<i>Prevalence:</i> 19 of 20 (95%).	
206	Type-material: Holotype (QM G XXXXXX232105), eight paratypes (QM G XXXXXX232106-	
207	<u>232113</u>).	
208	Molecular sequence data: ITS2 (complete), three identical replicates.	
209	Molecular voucher data: Hologenophore (QM G 232114), two paragenophores (QM G 232115-	 Formatted: Font: Italic
210	<u>232116).</u>	Formatted: Indent: Left: 1.27 cm
211	GenBank accession number: <u>KX168409</u> XXXXXX.	 Formatted: Not Highlight
212	Etymology: Specific name 'heinigerae' is in reference to our esteemed colleague Dr Holly	<u></u>
213	Heiniger, for whom the initial samples of this species of Apogonidae were collected.	
214		
015		
215	3.5. Molecular data	
216		
217	Three replicate ITS2 sequences were generated from as many specimens of P. heinigerae, all of	
218	which were identical. Comparison of the sequence represented by <u>KX168409</u> XXXXX with reference	
219	data for aporocotylids available on GenBank indicated this sequence type to be new, and two nucleotides	
220	different (0.4% sequence divergence over 485 base positions) from the most similar available sequence,	
221	represented by DQ335856 [6], which corresponds to Phthinomita munozae Nolan & Cribb, 2006 from	
222	Choerodon venustus (De Vis) (Labriformes: Labridae).	
223	Phylogenetic analysis of 31 sequences (including outgroups) aligned over 485 positions	
224	(trimmed to match the shortest sequence length) resulted in a phylogram where species of Phthinomita	
225	formed a monophyletic clade, to the exclusion of the outgroup taxa (i.e. members of the genus	
226	Ankistromeces). The sequence representing P. heinigerae n. sp. grouped with the sequence represented by	
227	DQ335856, for P. munozae, as expected based on sequence comparisons. These sequences resolved as a	
228	strongly supported monophyletic clade together with sequences representing Phthinomita poulini Nolan	
229	& Cribb, 2006 (DQ335857–DQ335859) from Parupeneus barberinus (Lacepède) (Perciformes:	
230	Mullidae), Parupeneus bifasciatus (Lacepède) [now Parupeneus trifasciatus (Lacepède)], and	
231	Parupeneus cyclostomus (Lacepède), and Phthinomita sp. B (DQ335863) from Mulloidichthys	
232	vanicolensis (Valenciennes) (Mullidae) (see Fig. 3). As a result, species of Phthinomita that parasitise	
233	siganids represent a paraphyletic group. With the exception of sequences representing Phthinomita	
234	littlewoodi Nolan & Cribb, 2006, Phthinomita hallae Nolan & Cribb, 2006, and Phthinomita jonesi Nolan	
235	& Cribb, 2006 (bootstrap value = 69) components of the siganid-infecting species generally formed	
236	several well-supported clades (bootstrap values = $82-100$). Although sequences did not group based on	
237	host or geographic distribution, basal <i>Phthinomita</i> species are mainly more 'robust' morphs relative to the	
238	smaller, more delicate P. littlewoodi, P. hallae, and P. jonesi.	

240	3.6. Pathology
241	
242	Specimens of <i>P. heinigerae</i> n. sp. were found in the lumen and intertrabecular spaces of the
243	ventricle of T. fucata during autopsy and in histological sections of heart tissue. Fig. 4 shows a partially
244	dissected heart from a single T. fucata. Infections included between 7-25 adult worms, which may each
245	have a volume of between 1.85e+07-3.76e+07 (arithmetic mean 2.74e+07) µm ³ (see Section 2.5.). Based
246	on the minimum and maximum number of worms found in a single infection, this could account for
247	between 7–30% of the total estimated heart volume of <i>T. fucata</i> . Fig. 5 shows both transverse and
248	(partial) longitudinal sections of P. heinigerae n. sp. within the heart. Cross-sections of P. heinigerae n.
249	sp. were identified by the presence of cells within which different parts of the male (i.e. testes) and female
250	(i.e. oötype) genitalia, and the caeca were recognised (see Fig. 5). No direct pathological changes
251	produced by adult worms were detected in the heart tissue of infected fishes.
252	We did not observe eggs in the gills and/or the heart tissue of infected hosts.
253	
254	4. Discussion
255	
256	4.1. Taxonomy
257	
258	Phthinomita heinigerae n. sp. can be differentiated from all current species of Phthinomita by
259	the combined possession of a body 2977–3539 long and 16.5–22.4 times longer than wide, an anterior
260	testis that is 6.2–8.2 times longer than wide and 8.3–13.0 times longer than the posterior testis, a posterior
261	testis whose width is 35–56% of the body width, and having the ovary positioned 11–13% of the body
262	length from the posterior end (see Table 2). In addition, P. heinigerae n. sp. differs further from all 11
263	species in having an ovary that is positioned entirely anterior to the posterior margin of the anterior testis
264	(see Fig. 2); P. robertsthomsoni Nolan & Cribb, 2006 and P. poulini Nolan & Cribb, 2006 both possess
265	an ovary that is positioned so that the posterior margin of the anterior testis passes adjacent to the ovary's
266	medial line, while the remaining nine species all possess an ovary that is entirely posterior to, abutting, or
267	only slightly overlapping the posterior margin of the anterior testis. P. heinigerae n. sp. is different from
268	Phthinomita brooksi Nolan & Cribb, 2006 in having vitelline follicles that extend anteriorly past the
269	intestinal bifurcation, and from P. symplocos Nolan & Cribb, 2006, P. brooksi, P. hallae, P. jonesi, P.
270	littlewoodi, and P. sasali Nolan & Cribb, 2006 in having an anterior testis that overlaps the posterior
271	margin of the posterior caeca (see Fig. 1).
272	Due to the general lack of morphological variation observed among species of Phthinomita,
273	preceding work on this genus (and Ankistromeces) (see [6]) placed substantial weight on genetic data. To
274	achieve this, a total of 135 sequences, with between one to 17 replicates for 30 host species/parasite
~	

276 ITS2 genotypes were separated by 1-41 base differences (0.3-12.7% sequence divergence). These data 277 showed that species of *Phthinomita* could be distinguished by as little as a single base difference (see 278 page 69 in [6]). Here, sequence comparisons again confirmed that the specimens described as P. 279 heinigerae n. sp. are distinct from the 11 recognised and three putative species of Phthinomita (2-34 base 280 differences or 0.4-7.0% sequence divergence over 485 positions). These genetic differences, in 281 combination with the morphological distinctions described above, and the host family, are consistent with 282 P. heinigerae n. sp. being a new species. 283 284 4.2. Host specificity and prevalence of infection 285 286 This study is the first to report a species of *Phthinomita* from an apogonid fish. Existing species 287 and known 'types' are largely restricted to the Mullidae [seven species - Mulloidichthys vanicolensis, 288 Parupeneus barberinoides (Bleeker), P. barberinus, P. bifasciatus, P. cyclostomus, P. indicus (Shaw), 289 and P. multifasciatus (Quoy & Gaimard)] and the Siganidae [nine species - Siganus argenteus (Quoy & 290 Gaimard), S. corallinus (Valenciennes), S. doliatus Guérin-Méneville, S. fuscescens (Houttuyn), S. 291 lineatus (Valenciennes), S. puellus (Schlegel), S. punctatus (Schneider & Forster), S. virgatus 292 (Valenciennes), and S. vulpinus (Schlegel & Müller)] in the Indo-West Pacific Ocean [6]. One species, P. 293 munozae, has been recorded from a labrid fish (Choerodon venustus). Although we dissected 724 294 specimens (n = 1-274) of 22 species of apogonid, *P. heinigerae* n. sp. was absent in all species but *T*. 295 fucata. These specimens included 52 individuals of five species collected from the same patch reefs in the 296 Heron Island lagoon where infected T. fucata were sampled. Similarly strict host specificity has been 297 reported for Kudoa leptacanthae Heiniger & Adlard, 2012 (see [21]) (Multivalvulida: Kudoidae) from the 298 apogonids Zoramia leptacantha (Bleeker) (74% or 199/269) and Z. viridiventer Greenfield, Langston & 299 Randall (82.4% or 61/74) from off Lizard Island. Heiniger and Adlard [21] suggested this high prevalence 300 of infection and the high host specificity might be explained by apogonid developmental biology (i.e. life 301 cycle completion in a single lagoon, recruitment to home reefs, habitat specialists that are site attached 302 and specific; see [22-28]). Furthermore, these authors proposed that the two-host life cycle of K. 303 leptacanthae could be facilitated by the continual cycling of life stages through an intermediate host 304 (presumably an annelid) in close proximity to home patch reefs. Given the two-host life cycle of marine 305 teleost aporocotylids, which also incorporates an annelid intermediate host (e.g. [29-32]), similar 306 reasoning for the high host and site specificity, and the high prevalence of infection, could be applied 307 here. 308 In our phylogenetic analysis, P. heinigerae n. sp. and P. munozae (from a labrid) formed a well-309 supported clade together with the two mullid-infecting species of Phthinomita. As such, all the non-310 siganid infecting species form a clade exclusive to the siganid-infecting species, which form a 311 paraphyletic assemblage. The most parsimonious explanation of this distribution is that the non-siganid 312 clade arose as a host-switch from siganids. Host-switching is presumably difficult within this group as 313 demonstrated by the general fidelity to the Siganidae. The topology of our analysis suggests that,

314 following the initial host-switch out of the Siganidae, the clade has adopted three distinct and only

- 315 distantly related fish groups Apogonidae, Labridae, and Mullidae. Although all three families have
- 316 traditionally been considered members of the Perciformes, the Labridae are now considered by some to
- 317 belong to a separate order, the Labriformes (see Figs. 9 and 10 in [33]). Comparable evidence of host-
- 318 switching was reported by Nolan et al. [8], who showed that the lutjanid-infecting aporocotylids
- 319 Cardicola beveridgei Nolan, Miller, Cutmore, Cantacessi, & Cribb, 2014 and C. milleri Nolan & Cribb,
- 320 2006 formed a well-supported clade with the chaetodontid-infecting *C. chaetodontis* Yamaguti, 1970.
- 321 Similarly, Trieu et al. [34] showed that several apogonids (including *T. fucata*) shared a bivesiculid
- 322 trematode, the sister species of which occurs in an unrelated pomacentrid. All three cases are evidence of
- 323 the importance and recent history of host-switching by trematodes of coral reef fishes.
- 324

325 *4.3. Pathology*

326

327	Histological sections of heart tissue suggests that P. heinigerae n. sp. does not elicit
328	immunological responses from T. fucata (see Fig. 5). Pathological changes induced by adult
329	aporocotylids are rare, in contrast to the effects stimulated by accumulated eggs and escaping miracidia
330	(see [35-43]). Overstreet and Thulin [44] found Pearsonellum corventum Overstreet & Køie, 1989 evoked
331	an increased abundance of melanomacrophage centers in the heart of Plectropomus leopardus
332	(Lacepède), while Herbert et al. [45] and Herbert and Shaharom [46] found Cruoricola lates Herbert,
333	Shaharom-Harrison & Overstreet, 1994 and Parasanguinicola vastispina Herbert & Shaharom, 1995
334	(respectively) do not elicit pathological changes to infected blood vessels in Lates calcarifer (Bloch),
335	despite P. vastispina possessing large spines that push into the endothelial cell walls (albeit they do not
336	penetrate them). In contrast, Kirk et al. [38] found that attachment of adult Sanguinicola inermis Plehn,
337	1905 to vessel walls in the carp, Cyprinus carpio Linnaeus, caused hyperplasia of the endothelial lining
338	and the occlusion of blood flow. More recently, Alama-Bermejo et al. [47] reported Skoulekia meningialis
339	Alama-Bermejo, Montero, Raga, & Holzer, 2011 induced a "localised, mild but chronic inflammatory
340	response" (see Fig. 5F, G, and H in [47]) in the ectomeninx of the meninges involving lymphocytes,
341	macrophages, and eosinophilic granulocytes, together with clotted erythrocytes in the meningeal vessels
342	of Diplodus vulgaris (Geoffroy Saint-Hilaire). Despite these exceptions, it is conceivable that adult
343	aporocotylids, including P. heinigerae n. sp., use a series of strategies similar to those employed by
344	closely related schistosomes (i.e. rapid development, stealth-like host-interfaces, and immunosuppression;
345	{Wilson, 2009 #XXXXXX}), to avoid the immunosurveillance of their hosts {Leow, 2014 #XXXXXX}.
346	This could certainly explain the presence of the tegument and/or mucus observed to cover the spines of P .
347	symplocos (see Fig. 21, page 37 in {Nolan, 2006 #8092}).
348	Here, although we found fishes infected with between 7-25 adult worms (see Fig. 5), which
349	were calculated to account for between 7–30% of the total estimated heart volume of T. fucata, there
350	appears to be little visual impact on host health. This is despite P. heinigerae n. sp. also possessing small

351 tegumental spines in incomplete lateral transverse rows along the entire length of the body and the adults

352	being wound extensively throughout the intertrabecular spaces of the ventricle. Despite the absence of
353	evidence of pathogenic effects, we find it unlikely that such dramatic infection of such a key organ could
354	be without significant effect on host health.
355	
356	Conflict of interest
357	
358	The authors declare they have no competing interests.
359	
360	Acknowledgements
361	
362	This study was funded by, and is a contribution from, the Australian node of the CReefs global
363	research initiative (grant number: 209/29), a project generously sponsored by BHP Billiton in partnership
364	with The Great Barrier Reef Foundation, the Australian Institute of Marine Science, the Australian
365	Biological Resources Study, and the Alfred P. Sloan Foundation. CReefs is a field program of the Census
366	of Marine Life. We gratefully thank the staff of the Heron and Lizard Island Research Stations for their
367	support and hospitality during our stays.
368	
369	

370	References
371	
372	
373	
374	[1] Orelis-Ribeiro R, Arias CR, Halanych KM, Cribb TH, Bullard SA. Diversity and ancestry of
375	flatworms infecting blood of nontetrapod craniates "fishes". Adv Parasitol 2014;85:1-64.
376	[2] Orelis-Ribeiro R, Bullard SA. Blood flukes (Digenea: Aporocotylidae) infecting body cavity of South
377	American catfishes (Siluriformes: Pimelodidae): two new species from rivers in Bolivia, Guyana
378	and Peru with a re-assessment of Plehniella Szidat, 1951. Folia Parasitol (Praha) 2015;62:050.
379	[3] Santoro M, Cipriani P, Pankov P, Lawton SP. Aporocotyle michaudi n. sp. (Digenea: Aporocotylidae)
380	from the emerald rock cod, Trematomus bernacchii (Teleostei: Perciformes) in Antarctica.
381	Parasitol Int 2015;64:324–9.
382	[4] Ogawa K, Akiyama K, Grabner D. Paradeontacylix buri n. sp. (Trematoda: Aporocotylidae) from
383	Seriola quinqueradiata cultured in Japan with a description of unidentified Paradeontacylix sp.
384	from S. lalandi. Fish Pathol 2015;50:183–91.
385	[5] Orelis-Ribeiro R, Bullard SA. Two new genera of fish blood flukes (Digenea: Aporocotylidae) from
386	catfishes in the Peruvian Amazon. J Parasitol 2016:In-Press.
387	[6] Nolan MJ, Cribb TH. An exceptionally rich complex of Sanguinicolidae von Graff, 1907
388	(Platyhelminthes: Trematoda) from Siganidae, Labridae and Mullidae (Teleostei: Perciformes)
389	from the Indo-West Pacific Region. Zootaxa 2006;1218:1-80.
390	[7] Nolan MJ, Cribb TH. Cardicola Short, 1953 and Braya n. gen. (Digenea: Sanguinicolidae) from five
391	families of tropical Indo-Pacific fishes. Zootaxa 2006;1265:1-80.
392	[8] Nolan MJ, Miller TL, Cutmore SC, Cantacessi C, Cribb TH. Cardicola beveridgei n. sp. (Digenea:
393	Aporocotylidae) from the mangrove jack, Lutjanus argentimaculatus (Perciformes: Lutjanidae),
394	and C. bullardi n. sp. from the Australian spotted mackerel, Scomberomorus munroi
395	(Perciformes: Scombridae), from the northern Great Barrier Reef. Parasitol Int 2014;63:735-45.
396	[9] Yong RQ-Y, Cutmore SC, Miller TL, Adlard RD, Cribb TH. The ghost of parasites past: eggs of the
397	blood fluke Cardicola chaetodontis (Aporocotylidae) trapped in the heart and gills of
398	butterflyfishes (Perciformes: Chaetodontidae) of the Great Barrier Reef. Parasitology
399	2013;140:1186–94.
400	[10] Overstreet RM, Køie M. Pearsonellum corventum, gen. et sp. nov. (Digenea: Sanguinicolidae), in
401	serranid fishes from the Capricornia section of the Great Barrier Reef. Aust J Zool 1989;37:71-
402	9.
403	[11] Nolan MJ, Cribb TH. Two new blood flukes (Digenea: Sanguinicolidae) from Epinephelinae
404	(Perciformes: Serranidae) of the Pacific Ocean. Parasitol Int 2004;53:327-35.
405	[12] Cribb TH, Bray RA. Trematodes of fishes: a test case for predictions of parasite diversity on the
406	Great Barrier Reef. In: Greenwood JG, Hall NJ, editors. Proceedings of the Australian Coral
407	Reef Society 75th Anniversary Conference, Heron Island October 1997. Brisbane: School of
408	Marine Science; 1998. p. 43–56.

409 [13] Yong RQ-Y, Cribb TH. Rhaphidotrema kiatkiongi, a new genus and species of blood fluke 410 (Digenea: Aporocotylidae) from Arothron hispidus (Osteichthyes: Tetraodontidae) from the 411 Great Barrier Reef, Australia. Folia Parasitol 2011;58:273-7. 412 [14] Blasco-Costa I, Cutmore SC, Miller TL, Nolan MJ. Molecular approaches to trematode systematics: 413 'best practice' and implications for future study. Syst Parasitol 2016;93:295-306. 414 [15] Cutmore SC, Miller TL, Curran SS, Bennett MB, Cribb TH. Phylogenetic relationships of the 415 Gorgoderidae (Platyhelminthes: Trematoda), including the proposal of a new subfamily 416 (Degeneriinae n. subfam.). Parasitol Res 2013;112:3063-74. 417 [16] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic 418 Acids Res 2004;32:1792-7. 419 [17] Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space 420 complexity. BMC Bioinformatics 2004;5:113. 421 [18] Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for 422 Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8. 423 [19] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary 424 genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony 425 methods. Mol Biol Evol 2011;28:2731-9. 426 [20] Heiniger H, Cribb TH, Adlard RD. Intra-specific variation of Kudoa spp. (Myxosporea: 427 Multivalvulida) from apogonid fishes (Perciformes), including the description of two new 428 species, K. cheilodipteri n. sp. and K. cookii n. sp., from Australian waters. Syst Parasitol 429 2013;84:193-215. 430 [21] Heiniger H, Adlard RD. Host specificity and local infection dynamics of Kudoa leptacanthae n. sp. 431 (Multivalvulida: Kudoidae) from the pericardial cavity of two Zoramia spp. (Perciformes: 432 Apogonidae) at Lizard Island lagoon, Queensland, Australia. Parasitol Int 2012;61:697-706. 433 [22] Leis JM, Trnski T, Dufour V, Harmelin-Vivien M, Renon J-P, Galzin R. Local completion of the 434 pelagic larval stage of coastal fishes in coral-reef lagoons of the Society and Tuamotu Islands. 435 Coral Reefs 2003;22:271-90. 436 [23] Atema J, Kingsford MJ, Gerlach G. Larval reef fish could use odour for detection, retention and 437 orientation to reefs. Mar Ecol Prog Ser 2002;241:151-60. 438 [24] Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V. Smelling home can prevent dispersal 439 of reef fish larvae. Proc Natl Acad Sci 2007;104:858-63. 440 [25] Stobutzki IC, Bellwood DR. Nocturnal orientation to reefs by late pelagic stage coral reef fishes. 441 Coral Reefs 1998;17:103-10. 442 [26] Gardiner NM, Jones GP. Synergistic effect of habitat preference and gregarious behaviour on habitat 443 use in coral reef cardinalfish. Coral Reefs 2010;29:845-56. 444 [27] Gardiner NM, Jones GP. Habitat specialisation and overlap in a guild of coral reef cardinalfishes 445 (Apogonidae). Mar Ecol Prog Ser 2005;305:163-75. 446 [28] Kuwamura T. Social and reproductive behaviour of three mouthbrooding cardinalfishes, Apogon 447 doederleini, A. niger and A. notatus. Env Biol Fish 1985;13:17-24.

448	[29] Shirakashi S, Tani K, Ishimaru K, Shin SP, Honryo T, Uchida H, Ogawa K. Discovery of
449	intermediate hosts for two species of blood flukes Cardicola orientalis and Cardicola forsteri
450	(Trematoda: Aporocotylidae) infecting Pacific bluefin tuna in Japan. Parasitol Int 2016;65:128-
451	36.
452	[30] Sugihara Y, Yamada T, Tamaki A, Yamanishi R, Kanai K. Larval stages of the bluefin tuna blood
453	fluke Cardicola opisthorchis (Trematoda: Aporocotylidae) found from Terebella sp.
454	(Polychaeta: Terebellidae). Parasitol Int 2014;63:295-9.
455	[31] Cribb TH, Adlard RD, Hayward CJ, Bott NJ, Ellis D, Evans D, Nowak BF. The life cycle of
456	Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna,
457	Thunnus maccoyi. Int J Parasitol 2011;41:861-70.
458	[32] Køie M. The redia, cercaria and early stages of Aporocotyle simplex Odhner, 1900 (Sanguinicolidae)
459	- a digenetic trematode which has a polychaete annelid as the only intermediate host. Ophelia
460	1982;21:115–45.
461	[33] Betancur RR, Broughton RE, Wiley EO, Carpenter K, Lopez JA, Li C, Holcroft NI, Arcila D,
462	Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A,
463	Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Orti G. The
464	tree of life and a new classification of bony fishes. PLoS Curr 2013;5.
465	[34] Trieu N, Cutmore SC, Miller TL, Cribb TH. A species pair of Bivesicula Yamaguti, 1934
466	(Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of
467	speciation in coral reef fish trematodes. Syst Parasitol 2015;91:231-9.
468	[35] Evans WA. Growth, mortality, and hematology of cutthroat trout experimentally infected with the
469	blood fluke Sanguinicola klamathensis. J Wildl Dis 1974;10:341-6.
470	[36] Evans WA. The histopathology of cutthroat trout experimentally infected with the blood fluke
471	Sanguinicola klamathensis. J Wildl Dis 1974;10:243–8.
472	[37] Kirk RS, Lewis JW. Migration and development of the blood fluke Sanguinicola inermis Plehn,
473	1905 (Trematoda: Sanguinicolidae) in carp, Cyprinus carpio L. Parasitology 1996;113:279-85.
474	[38] Kirk RS, Lewis JW. Histopathology of Sanguinicola inermis infection in carp, Cyprinus carpio. J
475	Helminth 1998;72:33-8.
476	[39] Ogawa K, Hattori K, Hatai K, Kubota S. Histopathology of cultured marine fish, Seriola
477	purpurascens (Carangidae) infected with Paradeontacylix spp. (Trematoda: Sanguinicolidae) in
478	its vascular system. Fish Pathol 1989;24:75-81.
479	[40] Ogawa K, Fukudome M. Mass mortality caused by blood fluke (Paradeontacylix) among amberjack
480	(Seriola dumerili) imported to Japan. Fish Pathol 1994;29:265-9.
481	[41] Richards DT, Hoole D, Lewis JW, Ewens E, Arme C. Ultrastructural observations on the cellular
482	response of carp, Cyprinus carpio L., to eggs of the blood fluke Sanguinicola inermis Plehn,
483	1905 (Trematoda: Sanguinicolidae). J Fish Dis 1994;17:439-46.
484	[42] Richards DT, Hoole D, Lewis JW, Ewens E, Arme C. Changes in the cellular composition of the
485	spleen and pronephros of carp Cyprinus carpio infected with the blood fluke Sanguinicola
486	inermis (Trematoda: Sanguinicolidae). Dis Aquat Organ 1994;19:173-9.

- 487 [43] Shirakashi S, Kishimoto Y, Kinami R, Katano H, Ishimaru K, Murata O, Itoh N, Ogawa K. 488 Morphology and distribution of blood fluke eggs and associated pathology in the gills of
- 489 cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol Int 2012;61:242-9.
- 490 [44] Overstreet RM, Thulin J. Response by Plectropomus leopardus and other serranid fishes to
- 491 Pearsonellum corventum (Digenea: Sanguinicolidae), including melanomacrophage centres in 492 the heart. Aust J Zool 1989;37:129-42.
- 493 [45] Herbert BW, Shaharom-Harrison FM, Anderson IG. Histopathology of cultured sea bass (Lates 494 calcarifer) (Centropomidae) infected with Cruoricola lates (Trematoda: Sanguinicolidae) from 495 Pulau Ketam, Malaysia. Int J Parasitol 1995;25:3-13.
- 496 [46] Herbert BW, Shaharom-Harrison FM. A new blood fluke, Parasanguinicola vastispina gen. nov., sp. 497 nov. (Trematoda: Sanguinicolidae), from sea bass Lates calcarifer (Centropomidae), cultured in 498 Malaysia. Parasitol Res 1995;81:349-54.
- 499 [47] Alama-Bermejo G, Montero FE, Raga JA, Holzer AS. Skoulekia meningialis n. gen., n. sp. (Digenea: 500 Aporocotylidae Odhner, 1912) a parasite surrounding the brain of the Mediterranean common 501 two-banded seabream Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) (Teleostei: Sparidae): 502
- description, molecular phylogeny, habitat and pathology. Parasitol Int 2011;60:34-44.
- 503
- 504

505 **Table 1**

506 Numbers of specimens examined for 22 apogonid species collected from off Heron

507 Island and Lizard Island on the Great Barrier Reef, and on Ningaloo Reef off Western

508 Australia. The infection of *T. fucata* by *P. heinigerae* n. sp. is presented as number of

509 fish infected/number of fish sampled.

510

Genus	Heron Island	Lizard Island	Ningaloo Reef	Totals
Species				
Archamia		1		1
bleekeri (Günther)		1		1
Cercamia		1		1
eremia (Allen)		1		1
Cheilodipterus	37	65	1	103
artus Smith		12		12
intermedius Gon	5*	19	1	25
macrodon (Lacepède)	2*			2
quinquelineatus Cuvier	30*	34		64
Nectamia	31	21	1	53
fusca (Quoy & Gaimard)	31*	21		52
savayensis (Günther)			1	1
Ostorhinchus	52	46	56	154
angustatus (Smith & Radcliffe)	1		1	2
aureus (Lacepède)			14	14
compressus (Smith & Radcliffe)		5		5
cookii (Macleay)	34	1	1	36
cyanosoma (Bleeker)		4	24	28
doederleini (Jordan & Snyder)	17*	2		19
properuptus (Whitley)		5		5
rubrimacula (Randall & Kulbicki)		29		29
rueppellii (Günther)			16	16
Pristiapogon		2		2
exostigma (Jordan & Starks)		2		2
Rhabdamia		10		10
gracilis (Bleeker)		10		10
Taeniamia	20	106		126
fucata (Cantor)	19/20	27		47
zosterophora (Bleeker)		79		79
Zoramia		274		274
leptacantha (Bleeker)		274		274
Totals	140	526	58	724

511

512 * Species of apogonid sampled from the same Heron Island lagoon patch reefs that

513 infected individuals of *T. fucata* were collected from.

515 Table 2

516 Morphometric comparison of *Phthinomita heinigerae* n. sp. with the 11 recognised species of *Phthinomita* Nolan & Cribb, 2006. Shading indicates morphometric distinctions between

- 517 *P. heinigerae* n. sp. and described species. Percentages (%) are based on total body length. Measurement of morphological characters from the anterior or posterior end of worms
- 518 reflects the distance from the extremities of each feature.

519

																			-
									Character										
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	References
P. heinigerae n. sp.	2977-3539 (3249)	16.5-22.4	22-25	1–2	19–32	12.4–37.9	6.2-8.2	28–37	83–99	8.3-13.0	1.0-1.6	3–4	35-56	6–7	1.3–1.9	2–3	40-60	11–13	Present stud
P. symplocos (type- species)	3536–4858 (4217)	20.6-31.8	20-30	1–2	20-28	12.8-34.8	5.0-9.2	17-30	59-96	3.5-8.1	1.1-3.1	4–7	30-74	7–12	1.0-1.8	1–2	43-65	13-18	[6]
P. adlardi	4353–6294 (5394)	23.8-45.3	13-22	0–3	15-28	7.8–75.0	12.0-21.7	37–59	77–96	12.6-38.2	1.6-3.6	1–4	9–62	6–8	1.0-2.2	2-3	52-76	11-14	[6]
P. brooksi	4078–7843 (5207)	21.4-40.7	23-31	0–2	16-50	12.4-94.0	3.8-14.1	12-24	22-92	2.4-6.8	1.2-3.3	3–6	35-78	5-10	1.3-7.0	1–2	40-71	11-22	[6]
P. hallae	3070-3950 (3507)	24.5-32.8	20-35	?	?	?	10.1–21.7	35–37	48-95	7.6–9.9	1.8-2.5	3–5	37–66	6–10	0.6-1.3	1-2	40-57	9-15	[6]
P. ingramae	2317-2983 (2645)	15.6-27.4	18-32	1–3	21-46	7.8-24.0	5.4-11.3	23–47	44-100	4.9-10.7	1.1-2.4	3–6	46-71	7-10	0.9–2.0	2-3	46-72	13-21	[6]
P. jonesi	2060–5329 (3674)	23.6-75.0	16-40	1–2	15-35	8.1–71.8	5.3-19.8	18-40	71-100	3.5-22.4	1.1-6.3	1–5	29-70	6–12	0.9–1.7	1–2	45-95	9–20	[6]
P. littlewoodi	2993-4133 (3465)	26.3-59.7	24–42	1–2	14–29	8.5-26.7	4.9-15.5	16-31	62–97	4.4-12.4	1.7–3.3	2–4	30-67	6–10	0.9–2.1	1-2	46-80	11-19	[6]
P. robertsthomsoni	3784–5706 (4851)	19.8–34.7	9–36	1–2	13-31	10.0-37.5	9.0-22.9	38-62	65–94	14.8-31.3	1.2-3.3	2–3	15-46	5-10	1.2-1.4	2–4	30-71	10-18	[6]
P. sasali	3765–4017 (3863)	24.7–29.7	25-26	1–2	23–28	12.9–21.0	5.2-10.2	20-29	70–94	3.3-9.6	1.2-2.8	3–4	2	7-10	2.0-2.6	2	46-65	18-20	[6]
P. munozae	2714-6094 (5210)	31.8-41.8	21-28	1–2	30-41	13.1–37.5	11.2–21.2	27–44	67–100	11.7-25.0	1.8-5.0	2–3	11-43	5–7	1.1-2.1	1-2	35-85.0	11-15	[6]
P. poulini	2350-4269 (3451)	21.0-35.6	20-27	1-2	26-34	14.2-39.5	8.6-15.2	35-40	84–94	4.9-13.6	1.6-3.8	3-8	32-64	7-15	1.6-12.8	1-3	50-75	14-26	[6]

Character legend: 1) body length; 2) body length/width; 3) oesophagus %; 4) anterior caeca length %; 5) posterior caeca length %; 6) posterior caeca/anterior caeca; 7) anterior testis
length/width; 8) anterior testis length %; 9) anterior testis width %; 10) anterior testis length/posterior testis length; 11) posterior testis length/width; 12) posterior testis length %; 13)
posterior testis width %; 14) cirrus-sac position %; 15) cirrus-sac length/width; 16) ovary length %; 17) ovary width %; 18) ovary position (%)

525 List of Figures

- 526
- 527 Figs. 1–2. Phthinomita heinigerae n. sp. from T. fucata from off Heron Island. 1. Holotype, adult, whole
- 528 mount, lateral view. 2. Holotype, female terminal genitalia, lateral view. Abbreviations: GP, female
- 529 genital pore; MG, Mehlis' gland; OD, oviduct; Oö, oötype; Ov, ovary; T, testis; U, uterus; VD, vitelline
- 530 duct; VF, vitelline follicles. Scale–bars: 1, 500 μm; 2, 250 μm.
- 531
- 532 Fig. 3. The genetic relationships among species of *Phthinomita* inferred by minimum evolution analysis
- 533 of the complete ITS2 rDNA dataset. The sequence from the present study is indicated in bold. Bootstrap
- 534 support is indicated for all major nodes.
- 535
- 536 Figs. 4–5. The heart of *T. fucata*. 4. Dissected heart illustrating the intensity of a *P. heinigerae* n. sp.
- 537 infection in a single host fish. 5. Longitudinal section illustrating *P. heinigerae* n. sp. occupying the
- 538 intertrabecular spaces and lumen of the ventricle. Scale-bar: 4, 200 μm.