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To maintain cycling adult tissue in homeostasis, the balance between
proliferation and di↵erentiation of stem cells needs to be precisely
regulated. To investigate how stem cells achieve perfect self-renewal,
emphasis has been placed on models in which stem cells progress
sequentially through a one-way proliferative hierarchy. However, in-
vestigations of tissue regeneration have revealed a surprising degree
of flexibility, with cells normally committed to di↵erentiation able
to recover stem cell competence following injury. Here, we investi-
gate whether the reversible transfer of cells between states poised
for proliferation or di↵erentiation may provide a viable mechanism
for a heterogeneous stem cell population to maintain homeostasis
even under normal physiological conditions. By explaining the clonal
dynamics, we show that such models of “dynamic heterogeneity”
may be equally capable of describing the results of recent lineage
tracing assays involving epithelial tissues. Moreover, together with
competition for limited niche access, such models may provide a
mechanism to render tissue homeostasis robust. In particular, in
two-dimensional epithelial layers, we show that the mechanism of
dynamic heterogeneity avoids some pathological dependencies which
undermine models based on a hierarchical stem/progenitor organisa-
tion.

stem cell fate | stem cell heterogeneity | tissue homeostasis | stochastic models

Introduction
Stem cells are defined by their capacity to self-renew long-term
while giving rise to more di↵erentiated cell types. To achieve
homeostasis, the choice between proliferation and di↵erentia-
tion – stem cell fate – needs to be perfectly balanced. Two
generic mechanisms have been proposed to maintain a tissue
cell population in homeostasis: (i) Invariant asymmetric cell
division: after a stem cell divides, one daughter cell always re-
mains in the stem cell compartment while the other commits
to a di↵erentiation pathway; and (ii) Population asymmetry :
the individual fate of stem cell daughter cells may be chosen
stochastically, but in balanced proportions, so that on average
one daughter cell remains in the stem cell compartment and
one di↵erentiates [1, 2, 3, 4]. In recent years, experimental
techniques for tracing cell lineages in-vivo have allowed quanti-
tative information to be gathered on the proliferative potential
of stem cells, on which hypotheses on self-renewal strategies
can be tested. In particular, inducible genetic labeling meth-
ods have allowed the fate behavior of individual cells and their
progeny – clones – to be traced over time [5, 6, 7]. Using these
approaches, quantitative analyses have shown that the cell lin-
eage data in many mammalian tissues does not conform to a
pattern of invariant asymmetric division. Instead, the data is
consistent with models of population asymmetric self-renewal,
in which stem cell fate is chosen stochastically [8, 9, 10, 11].

In defining the quantitative fate behavior of stem cells and
their di↵erentiating progeny, most studies begin with a model
in which stem and progenitor cells are organized in a one-
way proliferative hierarchy. In this paradigm, under normal
physiological conditions, the loss of stem cell competence and
entry into a di↵erentiation pathway is an irreversible process.
However, in recent years it has been shown that, under condi-
tions of stress or injury, cells normally committed to di↵eren-

tiation may reacquire stem cell competence and contribute to
the long-term maintenance of tissue [12, 13, 14, 15, 16, 17, 18].
Moreover, intravital imaging studies of mouse testis and intes-
tine suggest that, even under normal physiological conditions,
adult stem cells are not homogeneous, but may transfer re-
versibly between states primed for proliferation and di↵erenti-
ation [19, 20, 21]. Finally, evidence for such stem cell flexibil-
ity has also been observed in the context of cell competition,
induced through the activation of oncogenic mutation, with
potential implications for the initiation of lesions and cancer
[11, 22].

Taken together, these observations suggest that transition
through a di↵erentiation pathway may not involve the sequen-
tial one-way progression through a hierarchy of functionally
equivalent states, but may instead be dynamic and heteroge-
neous, allowing cells to move reversibly between states primed
for duplication or di↵erentiation [23, 24, 25]. The genetic basis
of such behavior, which we term dynamic heterogeneity, has
been considered in a variety of contexts [21, 26, 27].

In this study, we address theoretically the question of
whether tissue maintenance can be sustained by a process of
dynamic stem cell heterogeneity, whether it can be discrimi-
nated from hierarchical self-renewal strategies by cell lineage
tracing assays, and whether such a mechanism o↵ers advan-
tages in promoting robustness. Specifically, we consider a
paradigm in which a (stem) cell may switch stochastically be-
tween internal “states” that may di↵er in their potential to
enter into a di↵erentiation pathway or to proliferate. As well
as investigating the clonal fate behavior of the model system,

Significance

In many tissues, such as intestine and skin, cells are constantly
turned over throughout life. To replenish cells that are lost, new
cells are generated by stem cells, which divide and di↵erentiate
to maintain tissue in steady-state. The mechanisms that allow
stem cells to achieve perfect self-renewal promise fundamental
insights into processes leading to diseased states. E↵orts to de-
fine strategies of stem cell self-renewal have placed emphasis on
models in which stem cells progress one-way through a di↵er-
entiation hierarchy. Here, we show that a di↵erent paradigm,
in which stem cells transfer reversibly between states primed for
renewal or poised for di↵erentiation, o↵ers a viable and robust
mechanism of tissue self-renewal.
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we also explore how the spatial distribution of cell types is
a↵ected by dynamic heterogeneity.

Results
Dynamic heterogeneity as a model of tissue maintenance.As
a starting point, we consider a model of a cycling adult tissue
which comprises a heterogeneous population of self-renewing
progenitor cells that give rise to more di↵erentiated progeny.
However, the fate potential of individual progenitors is not in-
variant, but conforms to a process of dynamic heterogeneity in
which, in the course of turnover, progenitors transit reversibly
between states primed for proliferation or biased towards dif-
ferentiation and loss. Whether these states represent defined
cell types marked by signature expression of molecular mark-
ers, or whether they are simply primed by location within
a niche environment, we do not distinguish. Both scenarios
will lead to the same long-term clonal dynamics, the focus of
the present study. Further, for simplicity, we consider only
two progenitor cell states, termed A and B-type. State B is
primed but not yet committed to terminal di↵erentiation and
loss, while the A-type cell remains in cycle. However, this bias
is temporary, and cells can switch reversibly and stochastically
between the two states, i.e. without division, an A-type cell
can transit into a B-type cell, while a primed B-type cell can
also return to the proliferative state A.

For simplicity, and to illustrate the paradigmatic features of
the model, we consider a scheme in which only A-type cells
have the capacity to enter into cycle while B-type cells are
non-proliferative. From a biological perspective, the B-type
cell may represent some transition state, poised in G

0

, and
deciding stochastically between re-entry into cell cycle or com-
mitment to terminal di↵erentiation. Furthermore, for conve-
nience, we assume that cell division leads to asymmetric fate
outcome, A! A+B, noting that other “channels” of division
- cell duplication or terminal division - can be captured by
the model through a combination of division and “reversion”
B  ! A.

Within this framework, the model dynamics is specified by
the “zero-dimensional” non-equilibrium process:

A
��! A+B, A

!B��!
 �
!A

B, B
��! ; [1]

where � denotes the cell division rate, and !B,A represent the
transition rates from A ! B, respectively B ! A, as shown.
The last process denotes the rate, �, at which B-type cells
commit to terminal di↵erentiation and permanent loss from
the A/B compartment. In the following we refer to this dy-
namics as the Dynamic Heterogeneity (DH ) model. Finally,
for simplicity, we suppose that all processes - the timing of cell
division, reversion and loss through di↵erentiation are stochas-
tic and Markovian, with the defined average rates. Although
periodicity in the timing of cell division and di↵erentiation
would impact on the short-term dynamics, the long term be-
haviour would be una↵ected.

In the following, we will compare the kinetics of the DH
model with that of a more orthodox hierarchical scheme
(termed the H model) in which progenitor cell fate is assigned
irreversibly following cell division, with only A-type cells re-
taining stem-like renewal potential (cf. Refs. [8, 11]),

A
��!

8
><

>:

A+A Pr. r +�/2

A+B Pr. 1� 2r

B +B Pr. r ��/2

, B
��! ; [2]

Here 0  r  1/2 determines the relative frequency of sym-
metric vs. asymmetric cell division, and � parameterizes the
potential bias in cell fate towards cell proliferation or di↵er-
entiation. In one incarnation of the H model, the parameters
r and � are set intrinsically and are unchanging over time
[8, 11]. In other variants of the model, these parameters are
variable, moderated by extrinsic cues such as the proximity to
a localized niche or neighboring cell density [9, 10, 28]. More-
over, one can conceive of further adaptations of the model in
which the B-type cell population has a limited renewal poten-
tial (viz. transit-amplification), or represents just one cell type
in a longer hierarchy [29]. Crucially, however, the H model, as
defined by Eq. 2, is paradigmatic of all models that involve
a one-way proliferative hierarchy in which the di↵erentiating
progeny of A-type cells are irreversibly committed to di↵eren-
tiation.

In recent years, lineage tracing studies of stratified epithe-
lial tissues (including interfollicular epidermis, oesophagus and
trachea), based on hereditary labelling using transgenic mouse
models, have found that the dynamics of epithelial cell pop-
ulations are consistent with models of stochastic fate choice
based on the hierarchical scheme of the H model [8, 9, 11]. In
the following, by comparing and contrasting the long-term be-
havior of these two model systems, we will investigate whether
dynamic heterogeneity can provide a basis for long-term tissue
maintenance, and whether its dynamics can be discriminated
from that of a hierarchical cell fate scheme through clone size
statistics alone.

Robustness of homeostasis. If the rates of cell division and
cell fate ratios of the H and DH model are fixed, for a given
arbitrary choice of parameters, the average size of the cell
population is not stationary and the system is not homeo-
static. Instead, the average number of A- and B-type cells
would expand or contract over time. To achieve homeosta-
sis in the H model, the net rate of progenitor cell duplication
must perfectly balance di↵erentiation and loss, requiring that
the degree of imbalance, �, must be tuned to zero. For � > 0,
the average size of the progenitor cell compartment will grow
exponentially, while for � < 0, the progenitor population will
contract until all cells are lost to di↵erentiation. In Ref. [30]
it was suggested that the dynamics of the H model can be
rendered stable by imposing a feedback mechanism in which
the imbalance parameter, �, depends on the total size of the
A-cell pool. Indeed, it is known that the cell division rate can
be correlated with local cell density [31] (contact inhibition)
as well as the cell loss rate [32, 33], a phenomenon which we
call crowding feedback (for a discussion of potential feedback
mechanisms, see Refs. [34, 35, 36, 37, 38]). For the H model,
such crowding feedback in the cell division rate or loss rate
is not su�cient to confer stability of homeostasis. Without
spatial regulation, only by controlling the cell fate bias � may
stability be conferred (see SI).

In the DH model, the time evolution of the average densities
of cell type A, nA, and of cell type B, nB – where nB,A are
cell numbers normalized by volume – is given by

@tnA = !A nB � !B nA [3]

@tnB = (�+ !B)nA � (� + !A)nB

Therefore, to achieve homeostasis, viz. @tnA,B = 0, the corre-
sponding rates must also be fine-tuned such that

�

�
=

!A

!B
. [4]

Under these conditions, with constant rates (i.e. no feedback),
the average density of A- and B-type cells remains constant
with nB = (�/�)nA. When seeded away from these values,
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nA and nB will converge back to their steady-state values, as
depicted in the flow diagram (Fig. 1A). If, however, the bal-
ance condition is not met, the populations of A- and B-type
cells either decay to zero (nA,B = 0) or grow indefinitely (cf.
Fig. 1B).

Even when the systems are fine-tuned to conditions of home-
ostasis, without further regulation, both models are unstable
towards fluctuations. In particular, in a closed system in which
the size of the cell population is only finite, statistical fluctu-
ations due to stochastic dynamics will inevitably lead to the
chance extinction of the population.

The mechanism of crowding feedback can be incorporated
in the models by imposing a dependence of the parameters
on the average total density of cells n = nA + nB . To illus-
trate this, we consider the case where the cell division rate
depends on n, viz. � = �(n), and decreases monotonically
with n, @n� < 0, as would be the case for contact inhibition
[31]. With this implementation, the nonlinear kinetic Eqs. 3
for the DH model1 acquire a single stable fixed point with

n⇤ = ��1

✓
!B�

!A

◆
, n⇤

A = ⇢n⇤ [5]

where ��1(· · · ) denotes the inverse of the function �(n) and
⇢ := !A/(!A + !B) is an e↵ective parameter, equivalent to
the steady-state fraction of A-type cells (see SI text). In
particular, for a linear response �(n) = �

0

� k n, where �
0

is the unconstrained cell division rate without crowding and
k = �@n� > 0 parametrizes the strength of the feedback,
the stationary point is n⇤ = (�

0

� !B�/!A)/k. Inspection of
the flow diagram (Fig. 1C) shows that, for a strictly linear
dependence of the division rate on cell density, the station-
ary point is indeed globally stable. In the SI text, we show
that, in fact, the system achieves a stable homeostatic state
for any monotonically decreasing function, �(n), that achieves
the point � = !B�/!A at some given value of n. Since there
is only one stable point, the system will eventually attain this
homeostatic steady state.

Importantly, referring to SI text for details, a stable homeo-
static state is also attained when any of the other parameters,
�, !A, or !B , are subject to negative feedback from the total
cell density n. In each case, the parameters self-adjust to at-
tain the balance condition 4. It therefore follows that, in the
case of dynamic heterogeneity, the system is robust, meaning
that the failure of one feedback pathway can be compensated
by another to maintain homeostasis. By contrast, for the H
model, a stable homeostatic state is only attained if the cell
fate bias � is a function of cell density n (see SI text). Crowd-
ing feedback in the parameters �, � and r is not su�cient to
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Fig. 1. Flow diagrams of the time evolution of the system, Eq. 3, as a func-

tion of cell densities nA, nB measured in units �
0

/k, where k = �@n� is the

strength of the crowding feedback. We have chosen �,!B = 0.5�
0

. The arrows

show the direction of the system’s time evolution (@tnA, @tnB). (A) Without

crowding feedback, � = �
0

, but balanced parameters !A = �!B/�. There

is a line of fixed points nB = (�/�)nA, but along this line, cell densities per-

form neutral drift. (B) Without crowding feedback, � = �
0

, no fate balance,

!A = 2.1!B > �!B/�. The cell population diverges. (C) For crowding

feedback with �(n) = �
0

� k n a stable fixed point emerges (black dot).

confer stability, so that within the framework of the model,
failure of the feedback in � leads immediately to the loss of
homeostatic stability.

Clonal dynamics. So far we have discussed the average behav-
ior of the DH model and its stability, but we have not ad-
dressed the dynamics of clones, i.e. the progeny of individ-
ually labeled cells within the steady state population. Since
the dynamics of the model is stochastic, the time-evolution
and survival of individual clones is variable and unpredictable.
However, the dynamics of the statistical ensemble of clones
can be determined. In the following we will consider the time-
evolution of the clone size distribution (CSD) in the balanced
case (fulfilling Eq. 4), defined as the probability PNA,NB (t) to
find a clone with NA A-cells and NB B-cells at time t when
starting with a single labelled cell at t = 0 (clonal induction).

Assuming a representative labelling of cell types, starting
with a single cell means that we have initially a cell of type
A with probability ⇢ = !A/(!A + !B) and of type B with
probability (1� ⇢), i.e. PNA,NB (t = 0) = ⇢ �NA,1 �NB ,0 + (1�
⇢) �NA,0 �NB ,1. For the H model, Eq. 2, it was shown that,
over time, the distribution of total clone sizes N converges
onto the form [8, 28] (valid for N � 1)

PH
N (t) =

1
(⌦t)2

exp

✓
�N

⌦t

◆
, [6]

where ⌦ = � r/⇢ is the only e↵ective parameter. The lat-
ter parameter also defines the growth rate of the average
size of surviving clones, i.e. clones that retain at least one
cell, hNis = (1 � PH

0

(t))�1

P
N>0

N PH
N (t) = ⌦ t, where

PH
0

(t) = ⌦t
1+⌦t

is the extinction probability [39]. In turn, the

survival probability (norm of PH
N in Eq. 6) diminishes as

1/(⌦ t) at large times, so that the total cell number remains
on average constant, consistent with homeostasis.

Formally, the dynamics of the clone size distribution for the
DH model can be obtained from the Master equation for the
probability PDH

NA,NB
(t),

@tP
DH
NA,NB

= � [NA PDH
NA,NB�1

�NA PDH
NA,NB

]

+ !B [(NA + 1)PDH
NA+1,NB�1

�NA PDH
NA,NB

]

+ !A [(NB + 1)PDH
NA�1,NB+1

�NB PDH
NA,NB

]

+ � [(NB + 1)PDH
NA,NB+1

�NB PDH
NA,NB

] [7]

with the parameters subject to the balance condition, Eq.
4. In general, a full analytic solution to the Master equa-
tion is unavailable. However, to address the long-time de-
pendence of the probability distribution, we can proceed by
implementing a van Kampen system size expansion [40] to
transform the Master equation into the Fokker-Planck equa-
tion (FPE) involving a continuous function P (NA, NB) that
interpolates PDH

NA,NB
(see SI text). The latter can be further

simplified by trading the variables NA and NB for a slow
variable Z := NA + [!B/(� + !B)]NB and a fast variable
W := NB � [!B/!A]NA. With the ansatz that P (NA, NB) =
P (Z) exp(�W 2/2Z), integration over W obtains the FPE for
the distribution P (Z),

@tP (Z) = @2

Z

⇥
(⌦̄Z + ⇤)P (Z)

⇤
[8]

where the constants ⌦̄ and ⇤ depend on the model parame-
ters, as given in the SI. From the solution to this equation,

1Note that Eqs. 3 with crowding feedback give an exact description of the average cell density,
based on the process, Eq. 1, given that � depends only on the average cell density n. If �
depends on the actual cell density, considering also fluctuations around the average, Eqs. 3 are not
exact, yet they would give an accurate (mean field) approximation.
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Fig. 2. Rescaled clone size distribution, showing normalized clonal frequencies

as a function of rescaled clone size X = N/hNis, where hNis = ⌦ t is the

average size of surviving clones (i.e. conditioned on N > 0). Here we choose

!A,B = � = � in the DH model, so that ⌦ = (4/9)� and we choose r = 2/9
for the H model to mimic this. Black lines are numerical results from the DH model

(Eq. 1) orange lines are numerical results from the H model (Eq. 2) and dashed

blue lines are the analytical result for long times, exp(�X). (A) At short times

post-induction, ⌦t = 1.0, the clone statistics of the DH and H model are largely

indistinguishable, but are distinct from the long-time exponential asymptotic depen-

dence.(B): At long times, ⌦t = 10.0, both models coincide with each other and

the predicted long-term exponential dependence.

P (Z) = (⌦̄t)�2 exp(�(Z + ⇤/⌦̄)/⌦̄t), we obtain the full joint
distribution function P (Z,W ). In particular, for large times
⌦̄t� 1, the term ⇤/⌦̄ can be neglected, and the distribution
collapses onto an exponential scaling form with hZis ⇠ ⌦̄t.
With the Gaussian ansatz for the W -dependence, fluctuations
scale as W/Z ⇠ O[(⌦̄t)�1/2], and can be neglected at large
times. Taking this approximation and resubstituting NA,B al-
lows to express the late-time clone size distribution as a func-
tion of N = NA +NB only (see SI text),

P (N, t) =
1

(⌦t)2
exp

✓
�N

⌦t

◆
, [9]

with

⌦ =
!B

⇢

1 + !B
�

(1 + !B
�⇢

)2
. [10]

Here we again used the parameter for the steady state A-type
cell fraction ⇢ = !A/(!A+!B) (or alternatively ⇢ = �/(�+�)
depending on which variable is eliminated through the bal-
ance condition). From these results it follows that the long-
term clone size distribution of the DH model is identical to
that of the hierarchical model. It also follows that for a slow
rate of cell type conversion, !A,B ⌧ �, the clonal growth rate
⌦ ⇡ !B/⇢, is proportional to the switching rate, while for fast
conversion, !A,B � �, we have ⌦ ⇡ �⇢, proportional to the
cell division rate. In the latter case, each cell loses memory
about its priming quickly and the two cell types behave just
like a single proliferating cell population with both cell division
rate and terminal di↵erentiation rate �⇢. This means that,
between two divisions, the probability of each cell to di↵eren-
tiate is 1/2 which corresponds exactly to the cell fate model
suggested by Marques-Pereira and Leblond in their study of
esophageal maintenance [41].

To assess how rapidly the system converges onto the limiting
size dependences defined above, the full solution of the Master
equation can be determined at arbitrary times from numerical
integration (see methods section). In Fig. 2, the numerical
solutions for the distribution of clone sizes for the DH and H
model are shown as a function of the clone size, scaled by the
average clone size. This comparison shows that H and DH
models are not distinguishable, both at short times (t = 1/⌦)
and at longer times (t = 10/⌦). Moreover, at t = 10/⌦, the
distributions have already converged onto the predicted long-
term scaling form, Eq. 9. Note that for parameters other
than !A = !B slight di↵erences between the models emerge
at t = 1/⌦ (see SI text). In the SI text it is also confirmed

that Eq. 10 for ⌦ agrees well with the numerical solution of
the Master equation.

Thus, when expressed in terms of the dimensionless rescaled
variable X = N/hNis, the clone size distribution of the DH
model converges rapidly onto the same rescaled clone size dis-
tribution as that obtained for the H model. Therefore, based
only on static clonal data alone, the dynamics of the two mod-
els cannot be discriminated.

Spatial regulation.Although both the H model and DH model
can be rendered stable in the zero-dimensional system through
feedback mechanisms, the advantage of the latter theory, in
terms of homeostatic control, becomes apparent when the sys-
tem is embedded into a defined stem cell niche geometry (see
[42, 43] for niche-based regulation mechanisms). To illustrate
this point, in the following we consider two concrete examples:
(i) one-dimensional layers of progenitor cells, where the lowest
layer is stem-like (A-cells) and higher layers are less prolifera-
tive and prone to terminal di↵erentiation (B-cells); (ii) a two-
dimensional epithelial sheet, as originally conceived for the H
model in its application to basal interfollicular epidermis [44].

One-dimensional layers: As a starting point, we con-
sider a quasi one-dimensional organization of cells in which a
chain of B-type cells are maintained by an adjacent popula-
tion of A-type cells, as illustrated in Fig. 3A. In the course
of turnover, following the rules of the DH model (Eq. 1) we
suppose that A-type cells divide asymmetrically so that the
daughter B-type cell replaces another B-type cell in the upper
layer, which is presumed to be lost. Alternatively, an A-type
cell (respectively B-type cell) can “switch” into a B-type cell
(respectively A-type cell). However, to maintain the architec-
ture of the tissue, this change of identity is accompanied by
exchange of cell position so that the newly created A-type cell
transfers to the A-type layer, and the B-type cell moves to the
B-type layer.

Such dynamics mimics the process of niche-based regulation
in which stem cell competence relies only on the proximity of
progenitors to a localized niche environment. A similar dy-
namics has been conjectured to define the maintenance of the
intestinal epithelium, where stem cell competence is linked to
the proximity of cells to Paneth cells, which are restricted to
the crypt base [19].

E↵ectively, the model can be reorganized as a single one-
dimensional chain of alternating cell types, with each cell ini-
tially belonging to a di↵erent clone:

Ai Bj Ak Bl Am · · · [11]
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Fig. 3. Results of the DH model with spatial regulation in one dimension. (A)

Illustration of the model dynamics, as defined by Eqs. 12 and 13. Cells in the

lowest layer are stem cell-like (A-cells) and divide asymmetrically. Cells in the upper

layer (B-cells) are prone to di↵erentiation but can also switch back into an A-type

cell. The di↵erent colors of the cell boundaries represent the a�liation to di↵erent

clones. (B) Clone size distribution as a function of X = N/hNis, resulting

from stochastic simulations. Parameters: ! = 0.1�, runtime=100/�, system size

= 10000 lattice sites. Points are simulation results and the curve is the function

P (X) = (⇡/2)X exp(�⇡X2/4) which is the theoretical prediction for the hi-

erarchical cell fate model in one dimension, Eqs. 12 and 13, and is consistent with

experimental data [10].
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where the indices denote the clone a�liation. The model dy-
namics then read:

Ai Bj
��! Ai Bi [12]

Ai Bj
! ! Aj Bi [13]

Eq. 12 represents asymmetric division wherein a neighboring
B-type cell of clone j is replaced by one of clone i; and Eq. 13
represents a reversion of cell type followed by an exchange of
position, with rate ! = !A = !B , according to the DH model.
(Note that such exchanges can occur in both directions.) With
these rules, the configuration of A- and B-type cells remains
by definition unchanged ensuring stability and homeostasis.
Only the clonal composition changes over time.

To explore the clonal dynamics implied by this model, we
made use of a Monte-Carlo simulation (see methods). The
resulting clone size distribution is shown in Fig. 3B to-
gether with the theoretical prediction for the analogous one-
dimensional hierarchical model, i.e. a one-dimensional voter
model in which stem cell loss through di↵erentiation is com-
pensated by the replacement of a neighbor through duplica-
tion, see Ref. [28]. At long-times, both models converge onto
the same distribution. Thus we conclude that the process of
dynamic heterogeneity can provide a viable means to ensure
long-term homeostasis and cannot be discriminated from a hi-
erarchical model by static clonal fate data alone.

Two-dimensional cell sheet: In the following we now
turn to address the implementation of cell fate models in a
two-dimensional geometry, like the arrangement of cells in
an epithelial basal layer. More precisely, we consider a two-
dimensional lattice of cells illustrated in Fig. 4, in which all
sites play host to either an A- or B-type cell. Keeping the total
number of cells on the lattice fixed (viz. uniform cell density),
cell division of an A-type cell only occurs when a neighbor-
ing B-type cell commits to terminal di↵erentiation and leaves
the cell sheet, e.g. migrates to upper layers of a stratified ep-
ithelium (stratification). The latter’s site is then immediately
replaced by the o↵spring of a neighboring dividing cell. E↵ec-
tively, the constraint of fixed cell number implements (local)
crowding feedback, since cell division becomes licensed only
when another cell leaves the cell layer, or vice versa. For the
hierarchical scheme this dynamics is captured by the following
process,

AB
��!

8
>>><

>>>:

AA Pr. r +�/2

BA Pr. (1� 2r)/2

AB Pr. (1� 2r)/2

BB Pr. r ��/2

[14]

where only neighboring lattice sites are depicted (lattice H
model). Formally, as the di↵erentiating cell B leaves the cell
layer, the neighboring proliferative A-type cell may divide to
replenish the vacated site, with each progeny occupying either
of the two sites with equal probability. However, this process
is licensed to occur only on the condition that there is an A-
type progenitor bordering the di↵erentiated B type cell. In
cases where A cells border A cells, or B cells border B cells,
the system is “blocked” from cell division or stratification.

The process defined by Eq. 14 has been studied comprehen-
sively for the balanced case � = 0 in Ref. [44], where it was
applied to the maintenance of interfollicular epidermis. There
it was shown that, under these rules, the system coarsens over
time and becomes increasingly inhomogeneous: the basal layer
phase separates into A and B-cell rich domains that grow over
time (see also Fig. 5, top rows). This process of coarsening
is accompanied by the gradual cessation of tissue turnover as

Fig. 4. Illustration of the dynamic heterogeneity model dynamics on a lattice

(lattice DH model), defined by the rules of Eq. 15. When an A-cell (blue) divides,

with rate �, a neighboring B-cell (white) commits to terminal di↵erentiation and is

lost (dashed boundary) and replaced by the o↵spring of the A-cell. At any time an

A-type cell can turn into a B-type cell, and vice versa, according to the rules of the

DH model.

only cells on the boundary of clusters can divide. Thus the
system remains in a non-homeostatic state until the lattice
consists of A-cells or B-cells only (fixation). Therefore, to
achieve steady-state turnover, further steps must be taken to
regulate proliferative activity and/or fate behavior to ensure
tissue maintenance in the hierarchical model. This lack of a
homeostatic state also renders the definition of a clone size dis-
tribution problematic, since it depends on the specific initial
condition of the configuration of cell types.

By contrast, in the paradigm of dynamic heterogeneity,
steady-state behavior of the two-dimensional system is en-
sured when the dynamics are implemented through the fol-

t=5 t=50 t=500 t=5000

Fig. 5. Spatial distribution of cell states in the two-dimensional lattice models,

at di↵erent times �t = 5, 50, 500, and 5000, obtained by Monte Carlo simulations

of the lattice H model, Eq. 14 and lattice DH model, Eq. 15. Each pixel represents

a cell in the lattice, blue pixel are A-cells, white pixels are B-cells. Top row: H

model, r=0.1, � = 0 Bottom row: DH model, !A,B = 0.1�.
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Fig. 6. Rescaled clone size distributions for two-dimensional lattice model, as a

function of X = N/hNis, where N is clone size and hNis the average size of

surviving clones. The black line are Monte Carlo simulation results from the lattice

DH model (Eq. 15), orange are results from the voter model [46]. In the simulations

we used as initial condition a randomly mixed distribution of cells, with a fraction ⇢
of A-type cells, and each cell representing an initial clone. The blue dashed line is

an exponential distribution which is known to be the long term clone size distribution

of the voter model. Parameters: lattice length L = 1000, !A,B = �, simulation

time t = 20/⌦, with ⌦ according to Eq. 10.
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lowing process (Fig. 4),

AB
��!

(
AB Pr. 1/2

BA Pr. 1/2
, A

!B��!
 �
!A

B [15]

(lattice DH model). Formally, although the chance develop-
ment of A- or B-cell rich clusters would, respectively, inhibit
cell division and di↵erentiation, the formation and stability of
these clusters is restricted by reversion events between A and
B-type cells.

To illustrate the process by which the system evolves spa-
tially, we implemented the model by Monte Carlo simula-
tion (see Methods) to determine the lattice configurations and
clonal distributions. Fig. 5 shows the time course of spatial
configurations of cell types. As can be seen, for the lattice
DH model (bottom row), the system remains homeostatic and
homogeneous on large length scales. The reversible transition
of A and B-type cells will always serve to release the dead-
lock, allowing the system to achieve long-term steady state
behavior in which cells continuously di↵erentiate and divide.
In contrast, the lattice H model (Fig. 5, upper row) shows a
persistent, non-homeostatic coarsening over the time course.

Superficially, the “pathological” coarsening behavior of the
lattice H model emerged through the rigid constraint on local
cell density, which appeared in the model through the tight-
correlation of cell division with di↵erentiation of a neighbor-
ing cell. This constraint may be relaxed by accommodating
a degree of compressibility in the model. Formally, this can
be achieved by accommodating vacancies or holes allowing for
stratification of B-type cells uncompensated by the division of
neighboring A-type cells. At the same time, A-type cells may
only divide when bordering such a site vacancy. However, even
under these conditions (considered in Ref. [44]), the dynamics
of the lattice H model are qualitatively the same and phase
separated domains of cell types emerge and grow. For the lat-
tice DH model with site vacancies, instead, the homeostatic
behavior prevails, as is shown in the SI text.

Further insight into the steady-state properties of the sys-
tem can be obtained by mapping these lattice models onto
a corresponding “kinetic spin model”, as encountered in sta-
tistical physics. By interpreting an A-type cell as a spin "
degree of freedom and a B-type cell as spin #, the lattice DH
model translates to a kinetic Ising model at infinite temper-
ature, featuring a combination of Glauber dynamics (random
spin flips) and Kawasaki dynamics (spin exchange) [45] (see
SI text). Starting from any initial condition, the system flows
to a homogeneous equilibrium distribution of spins, with the
ratio of ", ⇢ = !A/(!B + !A) (the ratio of # is 1 � ⇢), corre-
sponding to a homeostatic state. By contrast, the lattice H
model translates to a voter model, in which cells are stochasti-
cally and irreversible replaced by neighboring cells, following
the transitions " #!"" or " #!##, respectively, with equal
probability [46]. The latter model is non-ergodic, exhibiting
coarsening and phase separation into large irregular domains
of cell states that grow over time [46, 44]. This dynamics does
not support a homeostatic state.

Tracing the clonal dynamics in the lattice DH model, we
also compared the clone size distribution with results of a
voter model, shown in Fig. 6 as the result of Monte Carlo
simulations (see Methods). According to Fig. 6 the rescaled
clone size distributions of the lattice DH-model can not be dis-
tinguished from the voter model. Since it has been rigorously
shown that the voter model clone size distribution converges
onto an exponential distribution, we expect this also to be the
case for the two-dimensional lattice DH-model [46].

Discussion
Our study shows that dynamic heterogeneity in stem cell pop-
ulations of cells reversibly switching between states that di↵er
in their proliferative potential and their propensity towards
di↵erentiation, yields a viable mechanism to maintain homeo-
static tissues. Moreover, considering the long-term clone size
dependencies, a model based on dynamic heterogeneity can
not be discriminated from a hierarchical model. Since hier-
archical schemes involving intrinsic or extrinsic (niche-based)
regulation have been used to infer self-renewal strategies in
epithelial tissues such as mouse epidermis, esophagus, germ
line, and intestine [8, 10, 9, 11], it follows that both dynamic
heterogeneity and hierarchical fate may be equally capable of
describing the results of recent lineage tracing assays. It will
be important to find further short-term characteristics that
can help to discriminate these models. This remains true when
the model is embedded in specific spatial niche architectures
that resemble tissues. Nonetheless, both dynamic heterogene-
ity and hierarchical balanced fate belong to the class of pop-
ulation asymmetry, in which stem cells are lost and replaced,
with equal probability.

Through sensing of the cellular environment, cells may re-
spond to variations in cell density and adjust cell division (con-
tact inhibition) [31] and loss rate [32]. We show that with
this crowding feedback a dynamically heterogeneous system
adjusts to attain a stable homeostatic state. The biological
background of crowding feedback, by which the cells can mea-
sure local cell density, may find a biological basis in the mech-
anisms of mechanosensing [47], the limited exposure to dif-
fusible molecules released by the niche environment [20], or
biochemical communication between cells [43]. Importantly,
for dynamic heterogeneity, homeostasis is robust towards dis-
ruption of some crowding feedback pathways. In contrast,
for hierarchical models, involving intrinsic or cell-autonomous
regulation of fate, it is essential that cell fate outcomes are
specified at cell division, while the control of cell division or
loss rates are not su�cient to maintain homeostasis. Failure
of this single control mechanism leads to immediate destabi-
lization of the tissue cell population.

In a two-dimensional epithelium, however, the spatial
dynamics of cell types show fundamental di↵erences be-
tween dynamic heterogeneity and hierarchical cell fate, if left
unchecked. The dynamics of the hierarchical model lead to a
non-homeostatic coarsening of the tissue structure, in that re-
gions enriched with one cell type emerge so that the cell types
phase separate over time. In contrast for dynamic heterogene-
ity, reversible switching between states homogenizes the tissue
structure, leading quickly to a macroscopically homogeneous,
homeostatic cell population. The constraint of fixed total cell
number in the lattice is su�cient to confer cell fate balance
to the cell population in the case of dynamic heterogeneity,
whereas for the hierarchical model, the ratios of symmetric
cell divisions need to be fine tuned to assure balanced cell fate
dynamics.

To summarize, dynamic heterogeneity provides an alterna-
tive paradigm for cell fate dynamics in homeostatic tissues, in
accordance with cell lineage data. It provides a simple mech-
anism to balance tissue homeostasis and to homogenize the
distribution of cell types in epithelial sheets. The two cell
types in our model may be considered as a caricature of a
single progenitor cell population carrying some memory over
cell generations that renders cells primed towards prolifera-
tion or di↵erentation. In the case of fast cell type conversion,
this priming would be lost. In this limit the system can be
considered as a single cell type following the random di↵eren-
tiation dynamics of the model introduced by Marques-Pereira
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and Leblond [41]. To determine whether cell fate behaviour in
epithelial tissues may involve dynamic heterogeneity, further
detailed studies will be required that track cell lineages and
distinguish cell states over time.

Materials and Methods
Numerical solution of Master equation. The Master equation 7 is solved by nu-

merical integration of the constituent ordinary di↵erential equations, when a cut-o↵ in

NA and NB is applied. Specifically, we considered only terms with NA,B  50,
and used an adaptive Runge-Kutta method via Mathematica to solve the resulting

50 ⇥ 50 ordinary di↵erential equations to obtain PNA,NB . We then determined

the rescaled clone size distribution P (X = N/hNis), where hNis denotes the

average size of surviving clones (N > 0).

Monte-Carlo simulations of lattice models. Time is subdivided in discrete time

steps �t = 1/�
max

, where �
max

is the largest transition rate out of any system

configuration. At each time step �t, a lattice site and one of its neighbors are N
times randomly chosen (N= number of lattice sites). Then a random variable is

generated and any possible transition, as defined by the models 12,14, and 15, with
given rate �, is chosen to be updated with probability ��t, according to the Gillespie

algorithm [48].
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Supplementary Information: Dynamic

heterogeneity as a strategy of stem cell

self-renewal

May 11, 2016

In this supplementary note we outline in detail the stability analysis of
the discussed cell fate models, the analytical derivation of the clone size
distribution, and support our findings for the two-dimensional lattice models.

In the simple model for dynamical heterogeneity, without spatial regula-
tion (DH model), A-type cells divide asymmetrically, with rate �, to produce
one A-type and one B-type cell as daughters. A- and B-type cells can in-
terconvert between each other with rates !A,B respectively, and B-type cells
may terminally di↵erentiate and leave the niche, with rate �. These rules,
also given as Eq. 1 in the main text, read as

A
��! A+B, A

!B��!
 �
!A

B, B
��! ; (1)

where cell division, loss and fate choice are assumed to occur stochastically
with constant rates given above the arrows. The model thus represents a
Markov process with the given stochastic transition rates. Formally, this
dynamics is described by the Master equation, the time evolution for the
probability of having NA A-cells and NB B-cells at time t, PNA,NB(t),

@tPNA,NB = � [NA PNA,NB�1 �NA PNA,NB ] (2)

+ !B [(NA + 1)PNA+1,NB�1 �NA PNA,NB ]

+ !A [(NB + 1)PNA�1,NB+1 �NB PNA,NB ]

+ � [(NB + 1)PNA,NB+1 �NB PNA,NB ] .

1



To keep a compact notation we do not explicitly write the time dependence of
the probabilities PNA,NB here. This equation forms the basis for determining
the time evolution of average cell densities and of the clone size distribution,
i.e. the statistical distribution of the progeny of single cells.

1 Stability of the cell population

Assuming a fixed unit volume, cell densities are proportional to cell numbers,
and we define the average cell densities by nA,B =

P
NA,NB=0 NA,BPNA,NB

(note that NA,B stands here and in the following for “NA and NB, respec-
tively”. The same is valid for nA,B). Furthermore, we assume that cell
numbers are large so that the probability of extinction can be neglected,
P0,NB = PNA,0 = 0. With that, we get by using Master equation, Eq. 2, the
time evolution of nA,

@tnA =
1X

NA,NB=0

NA@tPNA,NB (3)

= � [
1X

N 0
A,N 0

B=0

N 02
A PN 0

A,N 0
B
�

1X

N 0
A,N 0

B=0

N 02
A PN 0

A,N 0
B
]

+ !B [
1X

N 0
A,N 0

B=0

(N 0
A � 1)N 0

A PN 0
A,N 0

B
�

1X

N 0
A,N 0

B=0

N 02
A PN 0

A,N 0
B
]

+ !A [
1X

N 0
A,N 0

B=0

(N 0
A + 1)N 0

B PN 0
A,N 0

B
�

1X

N 0
A,N 0

B=0

N 0
AN

0
B PN 0

A,N 0
B
]

+ � [
1X

N 0
A,N 0

B=0

N 0
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0
B PN 0

A,N 0
B+1 �

1X

N 0
A,N 0

B=0

N 0
AN

0
B PN 0

A,N 0
B
] ,

where in each sum we redefined the indices by N 0
A,B = NA,B ± 1 or N 0

A,B =
NA,B, respectively, such that in each occurrence of P the indices are identi-
cal, giving PN 0

A,N 0
B
. Proceeding analogously for @tnB, and resubstituting the

definition for nA,B above, we obtain the time evolution for the average cell
densities (cell numbers),

@tnA = !A nB � !B nA (4)

@tnB = (�+ !B)nA � (� + !A)nB ,

2



which corresponds to Eq. 3, main text. When we substitute nB = n � nA,
where n := nA + nB is the total average cell density, Eq. 5 becomes

@tnA(t) = f(nA, n) @tn(t) = g(nA, n) , (5)

where we introduced the functions

f(nA, n) := !A (n� nA)� !B nA (6)

g(nA, n) := �nA � � (n� nA) .

The steady state condition @tnA = @tn = 0, i.e. f(nA, n) = g(nA, n) = 0, is
fulfilled for

�

�
=

!B

!A
(7)

and
n⇤
A = ⇢n (8)

with
⇢ :=

!A

!A + !B
. (9)

Thus, for any n, there exists n⇤
A(n) that renders Eq. 5 stationary. Without

any further feedback in the parameters, i.e. when all parameters are inde-
pendent of cell densities nA, n, there is not a single fixed point but a line
of fixed points defined by Eq. 8. To check whether fixed points are stable,
we perform a linear stability analysis. For that purpose we compute the
Jacobian matrix of Eqs. 5,

J(nA, n) :=

✓
@nAf(nA, n) @nf(nA, n)
@nAg(nA, n) @ng(nA, n)

◆
. (10)

A fixed point (n⇤
A, n

⇤) is stable if both eigenvalues of J at the fixed point are
negative (see Ref. [49]). This is the case if

det(J(n⇤
A, n

⇤)) > 0 tr(J(n⇤
A, n

⇤)) < 0 . (11)

For the system defined by Eqs. 5 and 6, the Jacobian reads

J(nA, n) =

✓
�!A � !B !A

� + � ��

◆
(12)

having the trace and determinant

det(J(n⇤
A, n

⇤)) = 0 tr(J(n⇤
A, n

⇤)) = �� � !A � !B (13)
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Since det(J) = 0, the stability condition, Eq. 11, is never fulfilled. The
fixed point is not stable without further assumptions on the dependence of
parameters.

In the main text we discuss the situation where certain parameters depend
on the total cell density (crowding feedback). Note that for simplicity we
assumed that those parameters do only depend on the average cell density
n, not considering fluctuations in the cell density. With this approximation,
the derivation of the dynamics of average cell densities from the Master
equation follows the same procedure as above (see Eq. 3), and Eqs. 5 and 6
remain valid, yet with the parameters being functions of n.

First we consider the case where only � depends on n (contact inhibition
[31]); below we show that the same arguments remain valid for other pa-
rameters being subject to crowding feedback. Let us assume that � strictly
decreases with n, i.e. �0(n) < 0. As long as �⇤ := � !B/!A (matching the
balance condition, Eq. 7) is within the range of the function �(n), we get a
unique fixed point n⇤

A = ⇢n⇤ with n⇤ = ��1(�⇤). In that case �(n⇤) = �⇤ and
cell fate is balanced. The stability of the fixed point can again be assessed by
the trace and determinant of the Jacobian matrix J , Eq. 10, of the dynamic
system, Eqs. 5. Note that although we use formally the same functions f
and g as in Eq. 6, the fact that � = �(n) leads to di↵erent forms of the
derivatives @nf, @ng. The trace and determinant read, evaluated at the fixed
point (n⇤

A, n),

det(J(n⇤
A, n

⇤)) = �n⇤�0(n⇤)!A (14)

tr(J(n⇤
A, n

⇤)) = �� � !B � !A + �0(n⇤)⇢n⇤

Since n⇤ = ��1(�⇤) > 0 and ⇢ > 0, conditions 11 are always fulfilled for
�0(n) < 0. Thus, the system is always stable for � subject to crowding
feedback with �0(n) < 0.

Also the other model parameters may be subject to crowding feedback
through a dependence on n. If � = �(n) for example, we get

det(J(n⇤
A, n

⇤)) = n⇤�0(n⇤)!B (15)

tr(J(n⇤
A, n

⇤)) = �!A � �!A

!B
� (1� ⇢) (n⇤�0(n⇤) + !A + !B)

Therefore conditions 11 are always fulfilled for �0(n) > 0. For !B = !B(n),
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we get

det(J(n⇤
A, n

⇤)) = n⇤� !0
B(n

⇤) (16)

tr(J(n⇤
A, n

⇤)) = �� � !A � �!A

�

and conditions 11 are fulfilled for !0
B(n) > 0. Finally, for !A = !A(n), we

get

det(J(n⇤
A, n

⇤)) = �n⇤�!0
A(n

⇤) (17)

tr(J(n⇤
A, n

⇤)) = �� � !B � � !B

�

which again fulfills condition 11 for !0
A(n) < 0.

Thus, if any of the parameters �, �,!A,!B are subject to crowding feed-
back, with the correct trend in the parameters’ dependency on n, the stability
of homeostasis is maintained.

It is important to note that the stability does not depend on the explicit
form of the crowding feedback, in terms of the functions �(n), �(n),!A,B(n);
just the correct sign of the feedback is required. Fine-tuning of parame-
ters and of the crowding feedback mechanism is not required for stability of
homeostasis. If more than one parameter exhibits crowding feedback, the
homeostatic state is robust towards disruptions, e.g. by mutations that dis-
rupt feedback in one of the parameters. It is su�cient if one out of four
parameters retains the feedback dependence.

For the H model (Eq. 2, main text), the dynamics are more sensitive on
disruptions, even in case of crowding feedback. The time evolution of that
model is given by Eqs. 5, but now with the functions

f(nA, n) = �nA� (18)

g(nA, n) = �nA � � (n� nA)

A stationary state is only attained for

� = 0 (19)

giving the fixed point(s)
n⇤
A = ⇢n (20)

From condition 19 it becomes immediately clear that stability of the system
necessarily requires that � is controlled through crowding feedback. A re-
sponse of �, � or r on the cell density n is not su�cient to keep the system in
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homeostasis. To check the stability under crowding feedback of �, we follow
the same steps as above, with � = �(n). With this we get the Jacobian J :

J(nA, n) =

✓
�� �nA �0(n)
�+ � ��

◆
(21)

with determinant and trace

det(J(n⇤
A, n

⇤)) = �n⇤ � ��0(n) (22)

tr(J(n⇤
A, n

⇤)) = ��

which fulfills condition 11 for �0(n) < 0. Thus, crowding response of � can
in fact render the H model stable, however, this stability only prevails for
that specific parameter responding to crowding. If regulation of this single
cell fate parameter fails, crowding response of the other parameters on its
own is not su�cient to maintain homeostasis.

2 Clonal evolution without spatial regulation

Here we outline how the solution of the Master equation, Eq. 2, is obtained
for large NA,B � 1. In that case, the probability distribution P is broad
and varies only slowly between subsequent numbers NA,B. Therefore, NA

and NB are treated as continuous variables and PNA,NB is approximated by
a continuous function P (NA, NB). Then, di↵erences of the probability in
neighboring values of NA, NB can be approximated by a second order Taylor
expansion (corresponding to a van Kampen expansion [40]):

PNA+�A,NB+�B ⇡ P (NA, NB) + @NAP (NA, NB) · �A + @NBP (NA, NB) · �B
(23)

+ 1/2 @2
NA

P (NA, NB) · �2A + @NA,NBP (NA, NB) · �A�B + 1/2 @2
NB

P (NA, NB) · �2B

In the following, we only consider the balanced case for which !A/!B =
�/� (see Eq. 7). Substituting the Taylor approximation, Eq. 23, in Eq. 2,
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gives the Fokker-Planck equation (FPE)

@tP (NA, NB) = [K�+ (1 +K)!]P (NA, NB) (24)

+ [!(NA �NB K �K + 1)@NA P (NA, NB)

+ [K�+ (K � 1)! + (�+ !)(NBK �NA)]@NBP (NA, NB)

+ 1/2 [! (1 +K) + !NA + !KNB] @
2
NA

P (NA, NB)

+ 1/2 [K�+ !(1 +K) + (�+ !)(NA +NB K)] @2
NB

P (NA, NB)

� [!(1 +K +NA +NBK)] @NA,NBP (NA, NB)

Where for convenience we introduced the e↵ective parametersK := !A/!B =
�/� to eliminate � and used ! := !B. In the following we want to obtain
analytical solutions for the FPE when the “fast” degrees of freedom are
integrated out. For that purpose, we introduce auxiliary variables Z :=
NA + !

�+!NB and W := NB � NA/K. When substituting these variables,
and rearranging derivatives by partial integration, the FPE reads, expressed
in the new variables (Z,W ),

@tP (Z,W ) = @W [W (! +K(�+ !))P (Z,W )] (25)

+ @2
W

✓
W

K(�� !)! � !2 +K2!(�+ !) +K3(�+ !)2

2K! + 2K2(�+ !)

+ Z
(�+ !)(! + 2K! +K2(�+ !))

K! +K2(�+ !)
+

! + 3K! + 3K2! +K3(�+ !)

2K2

◆
P (Z,W )

�

+ @W@Z

✓
W

�!(! �K(�+ !))

(�+ !)(! +K(�+ !))
� Z

2�!

! +K(�+ !)

�(1 + 2K)�!

K(�+ !)

◆
P (Z,W )

�

+ @2
Z

✓
W

K�!(K(�+ !)� !)

2(�+ !)(! +K(�+ !))
+

�!(�+K�+K!)

2(�+ !)2

+Z
K�!

! +K(�+ !)

◆
P (Z,W )

�

Now we make the Gaussian ansatz

P (Z,W ) = P (Z) · exp(�W 2/(2Z))/
p
2⇡Z (26)

and integrate out the fast variable W . For this ansatz, boundary terms of
the integration vanish since limW!±1 W↵P (Z,W ) = 0 for any ↵. Thus all
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terms starting with the di↵erential operator @W vanish by intergration over
W , and we arrive at

@tP (Z) = @2
Z

⇥
(⇤+ ⌦̄Z)P (Z)

⇤
(27)

with

⇤ =
�!(�+K�+K!)

2(�+ !)2
(28)

⌦̄ =
K�!

! +K(�+ !)

Here we have used that
R1
�1 dW W P (Z,W ) = 0 and

R1
�1 dW P (Z,W ) =

P (Z) for the Gaussian ansatz. This partial di↵erential equation is solved by

P (Z, t) =
1

(⌦̄t)2
exp

✓
�Z + ⇤/⌦̄

⌦̄t

◆
. (29)

After all we want to find the clone size distribution as a function of the
total cell number N , P (N), where N = NA + NB. From the solution, Eq.
29, it follows that hZi = ⌦̄t� ⇤/⌦̄, thus for large times t � ⇤/⌦̄2, the term
⇤/⌦̄ can be neglected for Z ⇠ hZi. Since the distribution of W is Gaussian
with variance Z, and Z ⇠ t, fluctuations in W are of order O((⌦̄t)1/2), so
that NB = NA/K +O((⌦̄t)1/2), and we can approximate

Z

⌦̄t
=

NA + !
!+�NB

⌦̄t
=

(! +K! +K�)2

K(1 +K)!�(! + �)

N

t
+O(t�1/2) . (30)

Neglecting O(t�1/2) for large times and substituting Eq. 30 into Eq. 29, we
find the clone size distribution as a function of N

P (N, t) =
1

(⌦t)2
exp

✓
�N

⌦t

◆
, (31)

with

⌦ =
�!K(1 +K)(�+ !)

(! +K ! +K �)2
(32)

Using the e↵ective parameter ⇢ = !A/(!B + !A), which corresponds to the
steady state fraction of A-type cells, we can substitute K = ⇢/(1 � ⇢) and
! = !B, and arrive at the form used in the main text:

⌦ =
!B

⇢

1 + !B
�

(1 + !B
�⇢ )

2
(33)
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Figure 1: Rescaled clone size distribution. Clonal frequencies as a function
of rescaled clone size X = N/hNis, where hNis = (1 � P0)

�1
P

N>0 NPN is
the average size of surviving clones. Chosen parameters are � = !A = !B/3,
!B = � in the DH model, so that ⌦ = (8/25)�, and we choose r = 2/25
for the H model to mimic this (Note that in contrast to the main text, here
!B 6= !A). Black lines are numerical results from the DH model, orange lines
are numerical results from the H model (see main text), and dashed blue
lines are the analytical result for long times, exp(�X). (A) At short times
post-induction, ⌦t = 1.0 (B): At long times, ⌦t = 10.0.

 0.1
 0.2
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 0.4
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 0.6

 0.01  0.1  1  10

Ω
/λ

ω/λ

DH model numerical
analytical approximation

Figure 2: Theoretical prediction for the scaling parameter ⌦ as defined in Sec.
2, according to Eq. 32 (blue line), together with results for ⌦ from numerical
solution of the original Master equation, Eq. 2 (points, see Methods section)
for K = 1.
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By comparing with the numerical solution of the original Master equation,
Eq. 2, we show in Fig. 2, main text, that Eq. 31 approximates well the
clone size distribution of the DH model. In Fig. 2, main text, we used the
parameters !A = !B which led to almost identical solutions for both the
H and DH model. However, it turns out that this perfect match is due to
the special case !A = !B; in the case !A 6= !B a discrepancy between the
models becomes apparent at short times, t = 1/⌦, as shown in Fig. S1. At
late times, t = 10/⌦, nonetheless, both solutions coincide again and resemble
the analytical result, Eq. 31.

In Fig. S2 it is also shown that Eq. 32 matches well the numerical results
for ⌦ as obtained from solving the Master equation numerically.

3 Spatial regulation in lattice model

3.1 Imbalance in the hierarchical lattice model

For the DH model implemented on a lattice geometry (lattice DH model), no
fine-tuning of the parameters is required to achieve homeostasis. In that case
the constraint of fixed cell number acts in a same way as crowding feedback in
the non-spatial model to confer a stable state. Here we check whether this is
also the case for the lattice H model. For that purpose, we implemented the
lattice H model, Eq. 15, main text, with � 6= 0. In Fig. S3 the time course
of the cell type configuration is shown for a slight cell fate bias � = 0.01.
Even for such a small imbalance A-type cells take over the whole lattice, and
no homeostatic state of coexisting cell types is attained.

3.2 Coarsening

In this section we argue by general analytical considerations that for the
lattice H model the system always coarsens, characterized by a diverging
correlation length and the absence of a homeostatic state, in contrast to the
lattice DH model which attains a homeostatic (equilibrium) state with a
finite correlation length.

The lattice models as defined in the main text can be simplified as follows,
when the clonal identity of cells is neglected. We denote X as a randomly
chosen cell in the lattice, while Y is one of its 4 neighboring cells and X̄
is the opposite cell type of X (X̄ = B if X = A and vice versa). In this

10



t=5 t=50 t=500

Figure 3: Spatial distribution of cell types in the lattice H model, with a
symmetric division ratio r = 0.1 and a non-zero cell fate imbalance � = 0.01,
obtained by Monte Carlo simulations at di↵erent times t (time unit is 1/�).
Each pixel represents a cell in the lattice, blue pixel are A-cells, white pixels
are B-cells.

terminology the lattice H model reads

X + Y ! X +X with rate � r symmetric divisions (34)

X + Y ! Y +X with rate � (1� 2r)/4
asymmetric division
+ swap sites

(35)

and the DH model can be expressed as

X + Y ! Y +X with rate �/4
asymmetric division
+ swap sites

(36)

X $ X̄ with rates !B,!A state switching (37)

To clarify, the correspondence to the lattice models introduced in the main
text are the following:

• Event 34 describes symmetric divisions: cell divisions may only occur
at an AB pair site, viz. when the B-type cell is lost. Without loss
of generality we allow that cell division may happen both when the
A-cell is selected and when the B-cell of this pair is selected. This
means that cell division is executed only at half the normal rate, �/2,
to compensate for the doubled probability to choose a pair of cells to
update. Either of the two sites is selected with equal probability, thus
redefining the rules such that symmetric renewal occurs when the A
site is selected, AB ! AA, and symmetric di↵erentiation occurs when
the B site is selected, BA ! BB, is equivalent to symmetric divisions.
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• Asymmetric division allows two configurations of daughter cells, AB !
AB or AB ! BA. Events 35 and 36 correspond to the second option,
while in the first case the system configuration does not change.

• Event, 37 comprises the two switch events A ! B and B ! A, with
rates !B and !A respectively.

Note that whenX = Y , execution of processes 34, 35, 36 lead to no change
of configurations, which is consistent with the lattice update rule that cell
division only occurs when an A-cell is next to a B-cell. This simplification
is only possible since clonal identity is not considered, otherwise the chosen
update rule does explicitly depend on the values of X and Y .

The dynamics 34 - 37 are equivalent to paradigmatic models of statistical
physics. To see this, let us interpret the state of a cell at a given site as a
spin where A denotes " and B denotes #.

• Event 34 is equivalent to the dynamics of a voter model [46]. This
stochastic process exhibits coarsening with domain sizes growing on
average over time t as ⇠ t1/2 in one dimension and ⇠ t/ ln(t) in a
two-dimensional lattice.

• Events 35 and 36 correspond to the spin exchange dynamics under
Kawasaki spin update rules of an Ising model at infinite temperature.

• Event 37 corresponds to the spin-flip dynamics in a Glauber update
scheme of the Ising model at infinite temperature.

Hence, in this picture, the lattice H model corresponds to a voter model
with Kawasaki spin exchange dynamics. For that model, it was shown that
any domain front between "- and #-domains is stable (i.e. ergodic) if there
is no bias in the spin exchange dynamics [50]. This means that domain walls
evolve on large scales as in the voter model, so that domain sizes grow over
time. This is also consistent with studies on the combination of voter and
Kawasaki dynamics in 2 dimensions [44], that have shown that the correlation
length diverges and the system performs coarsening, even for large ratios of
Kawasaki dynamics. Thus for the H model on a lattice, non-homeostatic
coarsening and divergence of the correlation length prevails.

The DH model corresponds to the combination of Glauber (spin-flip)
and Kawasaki (spin-exchange) dynamics at infinite temperature. This is an
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implementation of a kinetic Ising model and leads to the stationary (equi-
librium) state the Ising model at infinite temperature, characterized by a
finite correlation length and a density of up-spins ⇢ = !A/(!A + !B). Thus,
no coarsening emerges and a homeostatic state is reached for the lattice DH
model.

3.3 Mobile vacancies in the lattice

Here we want to consider the model alternative where B-type cells may be
lost even if there is no adjacent dividing A-type cells. In that case the B-type
cell leaves a vacancy ; (B ! ;) when lost. We assume that this vacancy
may move in the lattice by exchanging sites with neighbors randomly, until
it is adjacent to an A-type cell which then divides to fill the vacancy. This
is defined by the following rules:

A; ��! XX, B; ��! ;B, B
��! ; (38)

where the identity of daughter cells after division, A; ! XX depends on
the model implementation. For the lattice H model, we have

XX =

8
>>><

>>>:

AA Pr. r

BA Pr. (1� 2r)/2

AB Pr. (1� 2r)/2

BB Pr. r

, (39)

for the lattice DH model

XX =

(
BA Pr. 1/2

AB Pr. 1/2
, (40)

and furthermore the cell fates switch reversibly:

A
!B��! B, B

!A��! A (41)

Here we consider the limit �,� ! 1, i.e. whenever a vacancy emerges
it immediately explores the lattice until finding an A-type cell that divides
and fills the vacancy with its progeny. With this choice of parameters, cell
loss and division are still coupled, but this coupling may be between A- and
B-type cells that are far from each other.
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t=5 t=50 t=500 t=5000

Figure 4: Spatial distribution of cell states in the two-dimensional lattice
model with vacancies (Eq. 38, at di↵erent times t = 5, 50, 500, and 5000 in
units 1/�. Results are obtained by Monte Carlo simulations for the lattice H
model, Eq. 39, and for the lattice DH model, Eq. 40. Each pixel represents
a cell in the lattice, blue pixel are A-cells, white pixels are B-cells. Top row:

lattice H model, r = 0.1, Bottom row: lattice DH model, !A,B = 0.1�.

For this model we show the time course of cell configuration in Fig. S4,
both for the lattice H model and the lattice DH model. We can see that the
same phenomenology as without holes prevails: in the lattice H model the
system coarsens without reaching a homeostatic state (as was also shown for
the same model in Ref. [44]), while for the DH model, the system is well
mixed and assumes quickly a homeostatic state.
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