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Abstract

This paper proposes the cross-quantilogram to measure the quantile dependence

between two time series. We apply it to test the hypothesis that one time series has

no directional predictability to another time series. We establish the asymptotic dis-

tribution of the cross-quantilogram and the corresponding test statistic. The limiting

distributions depend on nuisance parameters. To construct consistent confidence in-

tervals we employ a stationary bootstrap procedure; we establish consistency of this

bootstrap. Also, we consider a self-normalized approach, which yields an asymptoti-

cally pivotal statistic under the null hypothesis of no predictability. We provide simu-

lation studies and two empirical applications. First, we use the cross-quantilogram to

detect predictability from stock variance to excess stock return. Compared to existing

tools used in the literature of stock return predictability, our method provides a more

complete relationship between a predictor and stock return. Second, we investigate the

systemic risk of individual financial institutions, such as JP Morgan Chase, Morgan

Stanley and AIG.
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1 Introduction

Linton and Whang (2007) introduced the quantilogram to measure predictability in different

parts of the distribution of a stationary time series based on the correlogram of “quantile

hits”. They applied it to test the hypothesis that a given time series has no directional

predictability. More specifically, their null hypothesis was that the past information set of

the stationary time series {yt} does not improve the prediction about whether yt will be

above or below the unconditional quantile. The test is based on comparing the quantilo-

gram to a pointwise confidence band. This contribution fits into a long literature of testing

predictability using signs or rank statistics, including the papers of Cowles and Jones (1937),

Dufour et al. (1998), and Christoffersen and Diebold (2002). The quantilogram has several

advantages compared to other test statistics for directional predictability. It is conceptu-

ally appealing and simple to interpret. Since the method is based on quantile hits it does

not require moment conditions like the ordinary correlogram and statistics like the variance

ratio that are derived from it, Mikosch and Starica (2000), and so it works well for heavy

tailed series. Many financial time series have heavy tails, see, e.g., Mandelbrot (1963), Fama

(1965), Rachev and Mittnik (2000), Embrechts et al. (1997), Ibragimov et al. (2009), and

Ibragimov (2009), and so this is an important consideration in practice. Additionally, this

type of method allows researchers to consider very long lags in comparison with regression

type methods, such as Engle and Manganelli (2004).

There have been a number of recent works either extending or applying this method-

ology. Davis and Mikosch (2009) have introduced the extremogram, which is essentially

the quantilogram for extreme quantiles, and Davis et al. (2012) has provided the inference

methods based on bootstrap and permutation for the extremogram. See also Davis et al.

(2013). Li (2008, 2012) has introduced a Fourier domain version of the quantilogram while
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Hong (2000) has used a Fourier domain approach for test statistics based on distributions.

Further development in the Fourier domain approach has been made by Hagemann (2013)

and Dette et al. (2015). See also Li (2014) and Kley et al. (2016). The quantilogram has

recently been applied to stock returns and exchange rates, Laurini et al. (2008) and Chang

and Shie (2011).

Our paper addresses three outstanding issues with regard to the quantilogram. First,

the construction of confidence intervals that are valid under general dependence structures.

Linton and Whang (2007) derived the limiting distribution of the sample quantilogram under

the null hypothesis that the quantilogram itself is zero, in fact under a special case of that

where the process has a type of conditional heteroskedasticity structure. Even in that very

special case, the limiting distribution depends on model specific quantities. They derived a

bound on the asymptotic variance that allows one to test the null hypothesis of the absence of

predictability (or rather the special case of this that they work with). Even when this model

structure is appropriate, the bounds can be quite large especially when one looks into the

tails of the distribution. The quantilogram is also useful in cases where the null hypothesis of

no predictability is not thought to be true - one can be interested in measuring the degree of

predictability of a series across different quantiles. We provide a more complete solution to

the issue of inference for the quantilogram. Specifically, we derive the asymptotic distribution

of the quantilogram under general weak dependence conditions, specifically strong mixing.

The limiting distribution is quite complicated and depends on the long run variance of the

quantile hits. To conduct inference we propose the stationary bootstrap method of Politis

and Romano (1994) and prove that it provides asymptotically valid confidence intervals.

We investigate the finite sample performance of this procedure and show that it works well.

We also provide R code that carries out the computations efficiently.1 We also define a

self-normalized version of the statistic for testing the null hypothesis that the quantilogram

is zero, following Lobato (2001). This statistic has an asymptotically pivotal distribution,

1This can be found at http://www.oliverlinton.me.uk/research/software.
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under the null hypothesis, whose critical values have been tabulated so that there is no need

for long run variance estimation or even bootstrap.

Second, we develop our methodology inside a multivariate setting and explicitly consider

the cross-quantilogram. Linton and Whang (2007) briefly mentioned such a multivariate

version of the quantilogram but they provided neither theoretical results nor empirical results.

In fact, the cross-correlogram is a vitally important measure of dependence between time

series: Campbell, Lo, and MacKinlay (1997), for example, use the cross autocorrelation

function to describe lead lag relations between large stocks and small stocks. We apply the

cross-quantilogram to the study of stock return predictability; our method provides a more

complete picture of the predictability structure. We also apply the cross-quantilogram to

the question of systemic risk. Our theoretical results described in the previous paragraph

are all derived for the multivariate case.

Third, we explicitly allow the cross-quantilogram to be based on conditional (or re-

gression) quantiles (Koenker and Basset, 1978). Using conditional quantiles rather than

unconditional quantiles, we measure directional dependence between two time-series after

parsimoniously controlling for the information at the time of prediction.2 Moreover, we de-

rive the asymptotic distribution of the cross-quantilogram that are valid uniformly over a

range of quantiles.

The remainder of the paper is as follows: Section 2 introduces the cross-quantilogram

and Section 3 discusses its asymptotic properties. For consistent confidence intervals and

hypothesis tests, we define the bootstrap procedure and introduce the self normalized test

statistic. Section 4 considers the partial cross-quantilogram and gives a full treatment of its

behavior in large samples. In Section 5 we report results of some Monte Carlo simulations to

2Our analysis includes the cross-quantilogram based on unconditional quantiles as a special case. In this
case, the cross-quantilogram is shown to be a functional of the empirical copula introduced by Ruschendorf
(1976) and Deheuvels (1979) as some nonparametric measures of dependence, such as Spearman’s rho and
Kendall’s tau. In this special case, the asymptotic results for the empirical copula, which are found in Stute
(1984), Fermanian et al. (2004) and Segers (2012) among others, can apply for the cross-quantilogram.
Generally, however, the cross-quantilogram here differs from the empirical copula process and needs different
treatment for analyzing its properties.
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evaluate the finite sample properties of our procedures. In Section 6 we give two applications:

we investigate stock return predictability and system risk using our methodology. Appendix

contains all the proofs.

We use the following notation: The norm ‖ · ‖ denotes the Euclidean norm, i.e., ‖z‖ =

(
∑d

j=1 z
2
j )

1/2 for z = (z1, . . . , zd)
> ∈ Rd and the norm ‖ · ‖p indicates the Lp norm of a d× 1

random vector z, given by ‖z‖p = (
∑d

j=1E|zj|p)1/p for p > 0. Let 1[·] be the indicator

function taking the value one when its argument is true, and zero otherwise. We use R, Z

and N to denote the set of all real numbers, all integers and all positive integers, respectively.

Let Z+ = N ∪ {0}.

2 The Cross-Quantilogram

Let {(yt,xt) : t ∈ Z} be a strictly stationary time series with yt = (y1t, y2t)
> ∈ R2 and

xt = (x1t, x2t) ∈ Rd1 ×Rd2 , where xit = [x
(1)
it , . . . , x

(di)
it ]> ∈ Rdi with di ∈ N for i = 1, 2. We

use Fyi|xi(·|xit) to denote the conditional distribution function of the series yit given xit with

density function fyi|xi(·|xit), and the corresponding conditional quantile function is defined as

qi,t(τi) = inf{v : Fyi|xi(v|xit) ≥ τi} for τi ∈ (0, 1), for i = 1, 2. Let T be the range of quantiles

we are interested in evaluating the directional predictability. For simplicity, we assume

that T is a Cartesian product of two closed intervals in (0, 1), that is T ≡ T1 × T2, where

Ti = [τ i, τ i] for some 0 < τ i < τ i < 1.3

We consider a measure of serial dependence between two events {y1t ≤ q1,t(τ1)} and

{y2,t−k ≤ q2,t−k(τ2)} for an arbitrary pair of τ = (τ1, τ2)> ∈ T and for an integer k. In the

literature, {1[yit ≤ qi,t(·)]} is called the quantile-hit or quantile-exceedance process for i =

1, 2. The cross-quantilogram is defined as the cross-correlation of the quantile-hit processes

ρτ (k) =
E [ψτ1(y1t − q1,t(τ1))ψτ2(y2,t−k − q2,t−k(τ2))]√

E
[
ψ2
τ1

(y1t − q1,t(τ1))
]√

E
[
ψ2
τ2

(y2,t−k − q2,t−k(τ2))
] , (1)

3It is straightforward to extend the results to a more general case, e.g. the case for which T is the union
of a finite number of disjoint closed subsets of (0, 1)2.
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for k = 0,±1,±2, . . . , where ψa(u) ≡ 1[u < 0] − a. The cross-quantilogram captures serial

dependence between the two series at different conditional quantile levels. In the special

case of a single time series, the cross-quantilogram becomes the quantilogram proposed by

Linton and Whang (2007). Note that it is well-defined even for processes {(y1t, y2t)}t∈N with

infinite moments. Like the quantilogram, the cross-quantilogram is invariant to any strictly

monotonic transformation applied to both series, such as the logarithmic transformation.4

To construct the sample analogue of the cross-quantilogram based on observations {(yt,xt)}Tt=1,

we first estimate conditional quantile functions. In this paper, we consider the linear

quantile regression model proposed by Koenker and Bassett (1978) for simplicity and let

qi,t(τi) = x>itβi(τi) with a di×1 vector of unknown parameters βi(τi) for i = 1, 2. To estimate

the parameters β(τ) ≡ [β1(τ1)>, β2(τ2)>]>, we separately solve the following minimization

problems:

β̂i(τi) = arg min
βi∈Rdi

T∑
t=1

%τi
(
yit − x>itβi

)
,

where %a(u) ≡ u(a− 1[u < 0]). Let β̂(τ) ≡ [β̂1(τ1)>, β̂2(τ2)>]> and q̂i,t(τi) = x>it β̂i(τi) for i =

1,2. The sample cross-quantilogram is defined by

ρ̂τ (k) =

∑T
t=k+1 ψτ1(y1t − q̂1,t(τ1))ψτ2(y2,t−k − q̂2,t−k(τ2))√∑T

t=k+1 ψ
2
τ1

(y1t − q̂1,t(τ1))
√∑T

t=k+1 ψ
2
τ2

(y2,t−k − q̂2,t−k(τ2))
, (2)

for k = 0,±1,±2, . . . . Given a set of conditional quantiles, the cross-quantilogram consid-

ers dependence in terms of the direction of deviation from conditional quantiles and thus

measures the directional predictability from one series to another. This can be a useful de-

4When one is interested in measuring serial dependence between two events {q1,t(τ l1) ≤ y1t ≤ q1,t(τ
h
1 )}

and {q2,t−k(τ l2) ≤ y2,t−k ≤ q2,t−k(τh2 )} for arbitrary
[
τ l1, τ

h
1

]
and

[
τ l2, τ

h
2

]
, one can use an alternative version

of the cross-quantilogram that is defined by replacing ψτi(yit − qi,t(τi)) in (1) with

ψ[τ l
i ,τ

h
i ](yit − qi,t(

[
τ li , τ

h
i

]
)) = 1[qi,t(τ

l
i ) < yit < qi,t

(
τhi
)
]−
(
τhi − τ li

)
.

For example, if τ1 = [0.9, 1.0] and τ2 = [0.4, 0.6] , the alternative version measures dependence between an
event that y1t is in a high range and an event that y2,t−k is in a mid-range. In some cases, such an alternative
version could be easier to interpret and therefore be useful. The inference procedure provided in this paper
is also valid for the alternative version of the cross-quantilogram. See the working paper version of this paper
for an empirical application using the alternative version.
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scriptive device. By construction, ρ̂τ (k) ∈ [−1, 1] with ρ̂τ (k) = 0 corresponding to the case

of no directional predictability. The form of the statistic generalizes to the l dimensional

multivariate case and the (i, j)th entry of the corresponding cross-correlation matrices Γτ̄ (k)

is given by applying (2) for a pair of variables (yit, xit) and (yjt−k, xjt−k) and a pair of con-

ditional quantiles (q̂i,t(τi), q̂j,t−k(τj))) for τ̄ = (τ1, . . . , τl)
>

. The cross-correlation matrices

possess the usual symmetry property Γτ̄ (k) = Γτ̄ (−k)
>

when τ1 = · · · = τd.

Suppose that τ ∈ T and p are given. One may be interested in testing the null hypothesis

H0 : ρτ (1) = · · · = ρτ (p) = 0 against the alternative hypothesis that ρτ (k) 6= 0 for

some k ∈ {1, . . . , p}. This is a test for the directional predictability of events up to p lags

{y2,t−k ≤ q2,t−k(τ2) : k = 1, . . . , p} for {y1t ≤ q1,t(τ1)}. For this hypothesis, we can use the

Box-Pierce type statistic Q̂
(p)
τ = T

∑p
k=1 ρ̂

2
τ (k). In practice, we recommend to use the Box-

Ljung version Q̌
(p)
τ ≡ T (T + 2)

∑p
k=1 ρ̂

2
τ (k)/(T − k) which had small sample improvements

in our simulations.

On the other hand, one may be interested in testing a stronger null hypothesis, i.e. the

absence of directional predictability over a set of quantiles: H0 : ρτ (1) = · · · = ρτ (p) = 0,

∀τ ∈ T , against the alternative hypothesis that ρτ (k) 6= 0 for some (k, τ) ∈ {1, . . . , p} × T

with p fixed. In this case, we can use the sup-version test statistic

sup
τ∈T

Q̂(p)
τ = sup

τ∈T
T

p∑
k=1

ρ̂2
τ (k).

Note that the portmanteau test statistic Q̂
(p)
τ for a specific quantile is a special case of the

sup-version test statistic.

3 Asymptotic Properties

We next present the asymptotic properties of the sample cross-quantilogram and related test

statistics. Since these quantities contain non-smooth functions, we employ techniques widely

used in the literature on quantile regression, see Koenker and Bassett (1978) and Pollard
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(1991) among others.

Define yt,k = (y1t, y2,t−k)
>, xt,k = (x1t, x2,t−k), qt,k(τ) = [q1,t(τ1), q2,t−k(τ2)]> and q̂t,k(τ) =

[q̂1,t(τ1), q̂2,t−k(τ2)]> and let {yt,k ≤ qt,k(τ)} = {y1t ≤ q1(τ1|x1t), y2,t−k ≤ q2(τ2|x2t−k)} and

F
(k)
y|x(·|xt,k) = P (yt,k ≤ ·|xt,k) for t = k + 1, . . . , T and for some finite integer k > 0. We

use ∇G(k)(τ) to denote ∂/∂vE[F
(k)
y|x(vt,k|xt,k)] evaluated at vt,k = qt,k(τ), where vt,k =

[x>1tv1, x
>
2,t−kv2]> for vi ∈ Rdi (i = 1, 2). Let d0 = 1 + d1 + d2.

Assumption

A1. {(yt,xt)}t∈Z is strictly stationary and strong mixing with coefficients {αj}j∈Z+ that

satisfy
∑∞

j=0(j + 1)2s−2α
ν/(2s+ν)
j < ∞ for some integer s ≥ 3 and ν ∈ (0, 1). For each

i = 1, 2, E|x(j)
it |2s+ν <∞ for all j = 1, . . . , di, given xit = [x

(1)
it , . . . , x

(di)
it ]>.

A2. The conditional distribution function Fyi|xi(·|xit) has continuous densities fyi|xi(·|xit),

which is uniformly bounded away from 0 and ∞ at qi,t(τi) uniformly over τi ∈ Ti, for

i = 1, 2 and for all t ∈ Z.

A3. For any ε > 0 there exists a ν(ε) such that supτi∈Ti sups:|s|≤ν(ε) |fyi|xi(qi,t(τi)|xit) −

fyi|xi(qi,t(τi) + s|xit)| < ε for i = 1, 2 and for all t ∈ Z.

A4. For every k ∈ {1, . . . , p}, the conditional joint distribution F
(k)
y|x(·|xt,k) has the condi-

tional density f
(k)
y|x(·|xt,k), which is bounded uniformly in the neighborhood of quantiles

of interest, and also has a bounded, continuous first derivative for each argument uni-

formly in the neighborhood of quantiles of interest and thus∇G(k)(τ) exists over τ ∈ T .

A5. For each i = 1, 2, there exist positive definite matrices Mi and Di(τi) such that

(a) plimT→∞T
−1
∑T

t=1 xitx
>
it = Mi and (b) plimT→∞T

−1
∑T

t=1 fyi|xi(qi,t(τi)|xit)xitx>it =

Di(τi) uniformly in τi ∈ Ti.

Assumption A1 imposes the mixing rate used in Andrews and Pollard (1994) and a

moment condition on regressors, while allowing for the dependent variables to be processes
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with infinite moments. For a strong mixing process, ρτ (k) → 0 as k → ∞ for all τ ∈

(0, 1). Assumption A2 ensures that the conditional quantile function given xit is uniquely

defined while allowing for dynamic misspecification, or P (yit ≤ qi,t(τi)|Fit) 6= τi given some

information set Fit containing all “relevant” information available at t for i = 1, 2. In

the absence of dynamic misspecification, which is assumed in Hong et al. (2009) under

their null hypothesis, the analysis becomes substantially simple because each hit-process

{ψτi(y − qi,t(τi))} is a sequence of iid Bernoulli random variables. As Corradi and Swanson

(2006) discuss, however, results under correct dynamic specification crucially rely on an

appropriate choice of the information set; specification search for the information set based on

pre-testing may have a nontrivial impact on inference. Thus, Assumption A2 is appropriate

for the purpose of testing directional predictability given a particular information set xit.

Assumption A3 implies that the densities are smooth in some neighborhood of the quantiles

of interest. Assumption A4 ensures that the joint distribution of (x1t, x2t−k) is continuously

differentiable. Assumption A5 is standard in the quantile regression literature.

To describe the asymptotic behavior of the cross-quantilogram, we define a set of d0-

dimensional mean-zero Gaussian process {Bk(τ) : τ ∈ [0, 1]2}pk=1 with covariance-matrix

function for k, k′ ∈ {1, . . . , p} and for τ, τ ′ ∈ T , given by

Ξkk′(τ, τ
′) ≡ E[Bk(τ)B>

k′(τ
′)] =

∞∑
l=−∞

cov
(
ξl,k(τ), ξ

>

0,k′(τ
′)
)
,

where ξt,k(τ) = (1[yt,k ≤ qt,k(τ)], x>1t1[y1t ≤ q1,t(τ1)], x>2t1[y2t ≤ q2,t(τ2)])> for t ∈ Z. Define

B(p)(τ) = [B1(τ)
>
, . . . ,Bp(τ)

>
]
>

as the d0p-dimensional zero-mean Gaussian process with the

covariance-matrix function denoted by Ξ(p)(τ, τ ′) for τ, τ ′ ∈ T . We use `∞(T ) to denote the

space of all bounded functions on T equipped with the uniform topology and (`∞(T ))p to

denote the p-product space of `∞(T ) equipped with the product topology. Let the notation

“⇒” denote the weak convergence due to Hoffman-Jorgensen in order to handle the measur-

ability issues, although outer probabilities and expectations are not used explicitly in this
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paper for notational simplicity. See Chapter 1 of van der Vaart and Wellner (1996) for a

comprehensive treatment of weak convergence in non-separable metric spaces.

The next theorem establishes the asymptotic properties of the cross-quantilogram.

Theorem 1 Suppose that Assumptions A1-A5 hold for some finite integer p > 0. Then, in

the sense of weak convergence of the stochastic process in (`∞(T ))p we have:

√
T
(
ρ̂(p)
τ − ρ(p)

τ

)
⇒ Λ(p)

τ B(p)(τ), (3)

where ρ̂
(p)
τ ≡ [ρ̂τ (1), . . . , ρ̂τ (p)]

>
and Λ

(p)
τ = diag(λ

>
τ1, . . . , λ

>
τp) with

λτ,k =
1√

τ1(1− τ1)τ2(1− τ2)

 1

−∇G(k)(τ)[D−1
1 (τ1), D−1

2 (τ2)]>

 . (4)

Under the null hypothesis that ρτ (1) = · · · = ρτ (p) = 0 for every τ ∈ T , it follows that

sup
τ∈T

Q̂(p)
τ ⇒ sup

τ∈T
‖Λ(p)

τ B(p)(τ)‖2, (5)

by the continuous mapping theorem.

3.1 Inference Methods

3.1.1 The Stationary Bootstrap

The asymptotic null distribution presented in Theorem 1 depends on nuisance parameters.

We suggest to estimate the critical values by the stationary bootstrap of Politis and Romano

(1994). The stationary bootstrap is a block bootstrap method with blocks of random lengths.

The stationary bootstrap resample is strictly stationary conditional on the original sample.

Let {Li}i∈N denote a sequence of iid random block lengths having the geometric distri-

bution with a scalar parameter γ ≡ γT ∈ (0, 1): P ∗(Li = l) = γ(1 − γ)l−1 for each positive
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integer l, where P ∗ denotes the conditional probability given the original sample. We assume

that the parameter γ satisfies the following growth condition:

Assumption A6. T ν/2(2s+ν)(s−1)γ + (
√
Tγ)−1 → 0 as T →∞, where s and ν are defined in

Assumption A1.

We need the condition that γ = o(T−ν/2(2s+ν)(s−1)) for the purpose of establishing uniform

convergence over the subset T of [0, 1]2 , given the moment conditions on regressors under

Assumption A1. This condition can be relaxed when regressors are uniformly bounded

because γ = o(1) when s =∞.

Let {Ki}i∈N be a sequence of iid random variables, which have the discrete uniform

distribution on {k + 1, . . . , T} and are independent of both the original data and {Li}i∈N.

We set BKi,Li
= {(yt,k,xt,k)}Ki+Li−1

t=Ki
representing the blocks of length Li starting with the

Ki-th pair of observations. The stationary bootstrap procedure generates the bootstrap

samples {(y∗t,k,x∗t,k)}Tt=k+1 by taking the first (T − k) observations from a sequence of the

resampled blocks {BKi,Li
}i∈N. In this notation, when t > T , (yt,k,xt,k) is set to be (yjk,xjk),

where j = k + (t mod (T − k)) and (yk,k,xk,k) = (yt,k,xt,k), where mod denotes the modulo

operator.5

Using the stationary bootstrap resample, we estimate the parameter β(τ) by solving the

minimization problem:

β̂∗1(τ1) = arg min
β1∈Rd1

T∑
t=k+1

%τ1(y
∗
1t − x∗>1t β1) and β̂∗2(τ2) = arg min

β2∈Rd2

T−k∑
t=1

%τ2(y
∗
2t − x∗>2t β2).

Then the conditional quantile function given the stationary bootstrap resample, q∗i,t(τi) ≡

x∗>it βi(τi), is estimated by q̂∗i,t(τi) ≡ x∗>it β̂
∗
i (τi) for each i = 1, 2. Define β̂∗(τ) = [β̂∗>1 (τ1), β̂∗>2 (τ2)]>

and let q̂∗t,k(τ) = [q̂∗1,t(τ1), q̂∗2,t−k(τ2)]> and q∗t,k(τ) = [q∗1,t(τ1), q∗2,t−k(τ2)]>. We construct β̂∗(τ)

by using (T − k) bootstrap observations, while β̂(τ) is based on T observations, but the

5For any positive integers a and b, the modulo operation a mod b is equal to the remainder, on division
of a by b.

10



difference of sample sizes is asymptotically negligible given the finite lag order k.

The cross-quantilogram based on the stationary bootstrap resample is defined as follows:

ρ̂∗τ (k) =

∑T
t=k+1 ψτ1(y

∗
1t − q̂∗1,t(τ1))ψτ2(y

∗
2,t−k − q̂∗2,t−k(τ2))√∑T

t=k+1 ψ
2
τ1

(y∗1t − q̂∗1,t(τ1))
√∑T

t=k+1 ψ
2
τ2

(y∗2,t−k − q̂∗2,t−k(τ2))
.

We consider the stationary bootstrap to construct a confidence interval for each statistic

of p cross-quantilograms {ρ̂τ (1), . . . , ρ̂τ (p)} for a finite positive integer p and subsequently

construct a confidence interval for the omnibus test based on the p statistics. To maintain the

original dependence structure, we use (T−p) pairs of observations {[(yt,1,xt,1), . . . , (yt,p,xt,p)]}Tt=p+1

to resample the blocks of random lengths.

Given a vector cross-quantilogram ρ̂
(p)∗
τ , we define the omnibus test based on the sta-

tionary bootstrap resample as Q̂
(p)∗
τ = T (ρ̂

(p)∗
τ − ρ̂(p)

τ )
>

(ρ̂
(p)∗
τ − ρ̂(p)

τ ). The following theorem

shows the validity of the stationary bootstrap procedure for the cross-quantilogram. We use

the concept of weak convergence in probability conditional on the original sample, which is

denoted by “⇒∗”, see van der Vaart and Wellner (1996, p. 181).

Theorem 2 Suppose that Assumption A1-A6 hold. Then, in the sense of weak convergence

conditional on the sample we have:

(a)
√
T
(
ρ̂

(p)∗
τ − ρ̂(p)

τ

)
⇒∗ Λ

(p)
τ B(p)(τ) in probability;

(b) Under the null hypothesis that ρτ (1) = · · · = ρτ (p) = 0 for every τ ∈ T ,

sup
z∈R

∣∣∣∣P ∗(sup
τ∈T

Q̂(p)∗
τ ≤ z

)
− P

(
sup
τ∈T

Q̂(p)
τ ≤ z

)∣∣∣∣→p 0.

In practice, repeating the stationary bootstrap procedure B times, we obtain B sets

of cross-quantilograms and {ρ̂(p)∗
τ,b = [ρ̂∗τ,b(1), . . . , ρ̂∗τ,b(p)]

>}Bb=1 and B sets of omnibus tests

{Q̂(p)∗
τ,b }Bb=1 with Q̂

(p)∗
τ,b = T (ρ̂

(p)∗
τ,b − ρ̂

(p)
τ )

>
(ρ̂

(p)∗
τ,b − ρ̂

(p)
τ ). For testing jointly the null of no

directional predictability, a critical value, c∗Q,α, corresponding to a significance level α is

11



given by the (1− α)100% percentile of B test statistics {supα∈T Q̂
(p)∗
α,b }Bb=1, that is,

c∗Q,α = inf

{
c : P ∗

(
sup
τ∈T

Q̂
(p)∗
τ,b ≤ c

)
≥ 1− α

}
.

For the individual cross-quantilogram, we pick up percentiles (c∗1k,α, c
∗
2k,α) of the bootstrap

distribution of {
√
T (ρ̂∗τ,b(k)− ρ̂τ (k))}Bb=1 such that P ∗(c∗1k,α ≤

√
T (ρ̂∗τ,b(k)− ρ̂τ (k)) ≤ c∗2k,α) =

1 − α, in order to obtain a 100(1 − α)% confidence interval for ρτ (k) given by [ρ̂τ (k) +

T−1/2c∗1k,α, ρ̂τ (k) + T−1/2c∗2k,α].

In the following theorem, we provide a power analysis of the omnibus test statistic

supτ∈T Q̂
(p)
τ when we use a critical value c∗Q,α. We consider fixed and local alternatives.

The fixed alternative hypothesis against the null of no directional predictability is

H1 : ρτ (k) 6= 0 for some (τ, k) ∈ T × {1, . . . , p}, (6)

and the local alternative hypothesis is given by

H1T : ρτ (k) = ζ/
√
T for some (τ, k) ∈ T × {1, . . . , p}, (7)

where ζ is a finite non-zero constant. Thus, under the local alternative, there exists a p× 1

vector ζ
(p)
τ such that ρ

(p)
τ = T−1/2ζ

(p)
τ with ζ

(p)
τ having at least one non-zero element for some

τ ∈ T .

We consider the asymptotic power of a test for the directional predictability over a range

of quantiles with multiple lags in the following theorem; however, the results can be applied

to test for a specific quantile or a specific lag order. The following theorem shows that the

cross-quantilogram process has non-trivial local power against the
√
T -local alternatives.

Theorem 3 Suppose that Assumptions A1-A6 hold. Then: (a) Under the fixed alternative

in (6),

lim
T→∞

P

(
sup
τ∈T

Q̂(p)
τ > c∗Q,α

)
→ 1.

12



(b) Under the local alternative in (7)

lim
T→∞

P

(
sup
τ∈T

Q̂(p)
τ > c∗Q,α

)
= P

(
sup
τ∈T
‖Λ(p)

τ B(p)(τ) + ζ(p)
τ ‖2 ≥ cQ,α

)
,

where cQ,α = inf{c : P (supτ∈T ‖Λ
(p)
τ B(p)(τ)‖2 ≤ c)) ≥ 1− α}.

3.1.2 The Self-Normalized Cross-Quantilogram

We use recursive estimates to construct a self-normalized cross-quantilogram. The self-

normalized approach was proposed by Lobato (2001) and was recently extended by Shao

(2010) to a class of asymptotically linear test statistics.6 The self-normalized approach has

a tight link with the fixed-b asymptotic framework proposed by Kiefer et al. (2000).7 The

self-normalized statistic has an asymptotically pivotal distribution whose critical values have

been tabulated so that there is no need for long run variance estimation or even bootstrap.

As discussed in section 2.1 of Shao (2010), the self-normalized and the fixed-b approach

have better size properties, compared with the standard approach involving a consistent

asymptotic variance estimator, while it may be asymptotically less powerful under local

alternatives (see Lobato (2001) and Sun et al. (2008) for instance).

Given a subsample {(yt,xt)}st=1, we can estimate sample quantile functions by solving

minimization problems

β̂i,s(τi) = arg min
βi∈Rdi

s∑
t=1

%τi
(
yit − x>itβi

)
,

for i = 1, 2. Let q̂i,t,s(τi) = x>it β̂i,s(τi). We consider the minimum subsample size s larger than

[Tω], where ω ∈ (0, 1) is an arbitrary small positive constant. The trimming parameter, ω,

6Kuan and Lee (2006) apply the approach to a class of specification tests, the so-called M tests, which are
based on the moment conditions involving unknown parameters. Chen and Qu (2015) propose a procedure
for improving the power of the M test, by dividing the original sample into subsamples before applying the
self-normalization procedure.

7The fixed-b asymptotic has been further studied by Bunzel et al. (2001), Kiefer and Vogelsang (2002,
2005), Sun et al. (2008), Kim and Sun (2011) and Sun and Kim (2012) among others.
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is necessary to guarantee that the quantiles estimators based on subsamples have standard

asymptotic properties and plays a different role to that of smoothing parameters in long-run

variance estimators. Our simulation study suggests that the performance of the test is not

sensitive to the trimming parameter.

A key ingredient of the self-normalized statistic is an estimate of cross-correlation based

on subsamples:

ρ̂τ,s(k) =

∑s
t=k+1 ψτ1(y1t − q̂1,t,s(τ1))ψτ2(y2,t−k − q̂2,t−k,s(τ2))√∑s

t=k+1 ψ
2
τ1

(y1t − q̂1,t,s(τ1))
√∑s

t=k+1 ψ
2
τ2

(y2,t−k − q̂2,t−k,s(τ2))
,

for [Tω] ≤ s ≤ T . For a finite integer p > 0, let ρ̂
(p)
τ,s = [ρ̂τ,s(1), . . . , ρ̂τ,s(p)]

>
. We construct

an outer product of the cross-quantilogram using the subsample

V̂τ,p = T−2

T∑
s=[Tω]

s2
(
ρ̂(p)
τ,s − ρ̂(p)

τ

) (
ρ̂(p)
τ,s − ρ̂(p)

τ

)>
.

We can obtain the asymptotically pivotal distribution using V̂τ,p as the asymptotically ran-

dom normalization. For testing the null of no directional predictability, we define the self-

normalized omnibus test statistic

Ŝ(p)
τ = T ρ̂(p)>

τ V̂ −1
τ,p ρ̂

(p)
τ .

The following theorem shows that Ŝ
(p)
τ is asymptotically pivotal. To distinguish the process

used in the following theorem from the one used in the previous section, let {B̄(p)(·)} denote a

p-dimensional, standard Brownian motion on (`([0, 1]))p equipped with the uniform topology.

Theorem 4 Suppose that Assumptions A1-A5 hold. Then, for each τ ∈ T ,

Ŝ(p)
τ →d B̄(p)(1)

> (
V̄(p)

)−1
B̄(p)(1),

where V̄(p) =
∫ 1

ω
{B̄(p)(r)− rB̄(p)(1)}{B̄(p)(r)− rB̄(p)(1)}>dr.
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The joint test based on finite multiple quantiles can be constructed in a similar manner,

while the extension of the self-normalized approach to a range of quantiles is not obvious.

The asymptotic null distribution in the above theorem can be simulated and a critical value,

cS,α, corresponding to a significance level α is tabulated by using the (1−α)100% percentile

of the simulated distribution.8 In the theorem below, we consider a power function of the

self-normalized omnibus test statistic, P (Ŝ
(p)
τ > cS,α). For a fixed τ ∈ T , we consider a fixed

alternative

H1 : ρτ (k) 6= 0 for some k ∈ {1, . . . , p}, (8)

and a local alternative

H1T : ρτ (k) = ζ/
√
T for some k ∈ {1, . . . , p}, (9)

where ζ is a finite non-zero scalar. This implies that there exists a p-dimensional vector ζ
(p)
τ

such that ρ
(p)
τ = T−1/2ζ

(p)
τ with ζ

(p)
τ having at least one non-zero element.

Theorem 5 (a) Suppose that the fixed alternative in (8) and Assumptions A1-A5 hold.

Then,

lim
T→∞

P
(
Ŝ(p)
τ > cS,α

)
→ 1.

(b) Suppose that the local alternative in (9) is true and Assumptions A1-A5 hold. Then,

lim
T→∞

P
(
Ŝ(p)
τ > cS,τ

)
= P

({
B̄(p)(1) + (Λ(p)

τ ∆(p)
τ )−1ζ(p)

τ

}> (
V(p)

)−1 {
B̄(p)(1) + (Λ(p)

τ ∆(p)
τ )−1ζ(p)

τ

}
≥ cS,α

)
,

where ∆
(p)
τ is a d0p× d0p matrix with ∆

(p)
τ (∆

(p)
τ )

> ≡ Ξ(p)(τ, τ).

8We provide the simulated critical values in our R package.
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4 The Partial Cross-Quantilogram

We define the partial cross-quantilogram, which measures the relationship between two events

{y1t ≤ q1,t(τ1)} and {y2,t−k ≤ q2,t−k(τ2)}, while controlling for intermediate events between t

and t−k as well as whether some state variables exceed a given quantile. Let zt ≡ [ψτ3(y3t−

q3,t(τ3)), . . . , ψτl(ylt− ql,t(τl))]
>

be an (l− 2)× 1 vector for l ≥ 3, where qi,t(τi) = x>itβi(τi) for

τi and a di × 1 vector xit (i = 3, . . . , l), and zt may include the quantile-hit processes based

on some of the lagged predicted variables {y1,t−1, . . . , y1,t−k}, the intermediate predictors

{y2,t−1, . . . , y1,t−k−1} and some state variables that may reflect some historical events up to

t.9

For simplicity, we present the results for a single set of quantiles τ̄ = (τ1, . . . , τl)
>

and

a single lag k, although the results can be extended to the case of a range of quantiles and

multiple lags in an obvious way. To ease the notational burden in the rest of this section,

we consider the case for which a lag k = 0 without loss of generality and suppress the

dependence on k. Let ȳt = [y1t, . . . , ylt]
> and x̄t = [x>1t, . . . , x

>
lt ]
>.

We introduce the correlation matrix of the hit processes and its inverse matrix

Rτ̄ = E
[
ht(τ̄)ht(τ̄)

>
]

and Pτ̄ = R−1
τ̄ ,

where an l×1 vector of the hit process is denoted by ht(τ̄) = [ψτ1(y1t−q1,t(τ1)), . . . , ψτl(ylt−

ql,t(τl))]
>

. For i, j ∈ {1, . . . , l}, let rτ̄ ,ij and pτ̄ ,ij be the (i, j) element of Rτ̄ and Pτ̄ , re-

spectively. Notice that the cross-quantilogram is rτ̄ ,12/
√
rτ̄ ,11rτ̄ ,22, and the partial cross-

quantilogram is defined as

ρτ̄ |z = − pτ̄ ,12√
pτ̄ ,11pτ̄ ,22

.

9In principle, the intermediate predictors and state variables do not need to be transformed into quantile
hits. As emphasized earlier, however, one of the main advantages of considering qauntile hits is its applica-
bility to more general time series, being robust to the existence of moments. If needed, it is straightforward
to extend the results here to the case of the original variables in zt with additional moment conditions. We
thank an anonymous referee for pointing this out.
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The partial cross-correlation also has a form

ρτ̄ |z = δ

√
τ1(1− τ1)

τ2(1− τ2)
,

where δ is a scalar parameter defined in the following regression:

ψτ1(y1t − q1,t(τ1)) = δψτ2(y2t − q2,t(τ2)) + γ>zt + ut,

with a (l−2)×1 vector γ and an error term ut. Thus, testing the null hypothesis of ρτ̄ |z = 0

can be viewed as testing predictability between two quantile hits with respect to information

z̄ as in Granger causality test based on the regression form (Granger, 1969). By choosing

relevant variables z̄, one can use ρτ̄ |z for the purpose of testing Granger causality (Pierce and

Haugh, 1977). See also Hong et al. (2009) for testing Granger causality in tail distribution.

To obtain the sample analogue of the partial cross-quantilogram, we first construct a

vector of hit processes, ĥt(τ̄), by replacing the population conditional quantiles in ht(τ̄) by

the sample analogues {q̂1,t(τ1), . . . , q̂l,t(τl)}. Then, we obtain the estimator for the correlation

matrix and its inverse as

R̂τ̄ =
1

T

T∑
t=1

ĥt(τ̄)ĥt(τ̄)
>

and P̂τ̄ = R̂−1
τ̄ ,

which leads to the sample analogue of the partial cross-quantilogram

ρ̂τ̄ |z = − p̂τ̄ ,12√
p̂τ̄ ,11p̂τ̄ ,22

, (10)

where p̂τ̄ ,ij denotes the (i, j) element of P̂τ̄ for i, j ∈ {1, . . . , l}.

In Theorem 6 below, we show that ρ̂τ̄ |z asymptotically follows a normal distribution, while

the asymptotic variance depends on nuisance parameters as in the previous section. To ad-

dress the issue of the nuisance parameters, we may employ the stationary bootstrap or the
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self-normalization technique. For the bootstrap, we can use pairs of variables {(ȳt, x̄t)}Tt=1 to

generate the stationary bootstrap resample {(ȳ∗t , x̄∗t )}Tt=1 and then obtain the stationary boot-

strap version of the partial cross-quantilogram, denoted by ρ̂∗τ̄ |z, using the formula in (10).

When we use the self-normalized test statistics, we estimate the partial cross-quantilogram

ρτ̄ ,s|z based on the subsample up to s, recursively and then use

V̂τ̄ |z = T−2

T∑
s=[Tω]

s2
(
ρ̂τ̄ ,s|z − ρ̂τ̄ ,T |z

)2
,

to normalize the cross-quantilogram, thereby obtaining the asymptotically pivotal statistics.

To obtain the asymptotic results, we impose the following conditions on the conditional

distribution function Fyi|xi(·|xit) and its density function fyi|xi(·|xit) of each pair of additional

variables (yit, xit) for i = 1, . . . , l and on the pairwise joint distribution Fij(v1, v2|xit, xjt) ≡

P (yit ≤ v1, yjt ≤ v2|xit, xjt) for (v1, v2) ∈ R2.

Assumption A7. (a) {(ȳt, x̄t)}t∈Z is a strictly stationary and strong mixing sequence

satisfying the condition in Assumption A1; (b) The conditions in Assumption A2 and A3

hold for the Fyi|xi(·|xit) and fyi|xi(·|xit) at the relevant quantile for t = 1, . . . , T , for i =

1, . . . , l; (c) Fij(·|xit, xjt) satisfies the condition in Assumption A4 and there exists a vector

∇rGij ≡ ∂/∂brE[Fij(x
>
itb1, x

>
jtb2|xit, xjt)] evaluated at (b1, b2) = (βi(τi), βi(τj)) for (r, i, j) ∈

{1, 2}×{1, . . . , l}2 ; (d) There exist positive definite matrices Mi and Di(τi) as in Assumption

A5 for i = 1, . . . , l.

Assumption A7(a) requires the same weak dependence property as in Assumption A1.

Assumptions A7(b)-(c) ensure the smoothness of the marginal conditional distribution,

marginal density function and the joint distribution of each pair (yit, yjt) given (xit, xjt)

for 1 ≤ i, j ≤ l. Assumption A7(d) is used to derive a Bahadur representation of q̂it(τi) for

i = 1, . . . , l.

We now state the asymptotic properties of the partial cross-quantilogram and the related
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inference methods.

Theorem 6 (a) Suppose that Assumption A7 holds. Then,

√
T (ρ̂τ̄ |z − ρτ̄ |z)→d N(0, σ2

τ̄ |z),

for each τ̄ ∈ [0, 1]l, where σ2
τ̄ |z =

∑∞
l=−∞ cov(ξτ̄ l, ξτ̄0) with

ξτ̄ t = −
∑

1≤i,j≤l
i 6=j

pτ̄ ,1ipτ̄ ,2jψτi(yit− qi,t(τi))ψτj(yjt− qj,t(τj)) +
l∑

i=1

λ>τ̄ iDi(τi)
−1xitψτi(yit− qi,t(τi)),

and λτ̄ i =
∑

1≤j≤l
j 6=i

(pτ̄ ,1ipτ̄ ,2j + pτ̄ ,2ipτ̄ ,1j)∇1Gij.

(b) Suppose that Assumption A6 and A7 hold. Then,

sup
s∈R

∣∣P ∗ (ρ̂∗τ̄ |z ≤ s
)
− P

(
ρ̂τ̄ |z ≤ s

)∣∣→p 0,

for each τ̄ ∈ [0, 1]l.

(c) Suppose that Assumption A7 holds. Then, under the null hypothesis that ρτ̄ |z = 0, we

have √
T ρ̂τ̄ |z

V̂
1/2
τ̄ |z

→d B(1){∫ 1

ω
{B(1)− rB(r)}2dr

}1/2
,

for each τ̄ ∈ [0, 1]l.

We can show that the partial cross-quantilogram has non-trivial local power against a

sequence of
√
T -local alternatives, applying the similar arguments used in Theorem 3 and

Theorem 5, and thus we omit the details.
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5 Monte Carlo Simulation

We investigate the finite sample performance of our test statistics. We adopt the following

simple VAR model with covariates and consider two data generating processes for the error

terms.

y1t = 0.1 + 0.3y1,t−1 + 0.2y2,t−1 + 0.3z1t + u1t

y2t = 0.1 + 0.2y2,t−1 + 0.3z2t + u2t,

where zit ∼ iid χ2(3)/3 for i = 1, 2.

DGP1: (u1t, u2t)
> ∼ iid N (0, I2) where I2 is a 2×2 identity matrix. We let (u1t, u2t, z1t, z2t)

be mutually independent.

DGP2:  u1t

u2t

 =

 σ1t 0

0 1


 ε1t

ε2t


where (ε1t, ε2t)

> ∼ iid N (0, I2) and σ2
1t = 0.1+0.2u2

1,t−1+0.2σ2
1,t−1+u2

2,t−1.We let (ε1t, ε2t, z1t, z2t)

be mutually independent.

The sample cross-quantilogram defined in (2) adopts conditional quantiles q̂it(τi) =

x>it β̂i(τi). We first estimate β(τ) ≡ [β1(τ1)>, β2(τ2)>]> by quantile regression of the above

VAR model, where x1t = (1, y1,t−1, y2,t−1, z1t)
> and x2t = (1, y2,t−1, z2t)

> and then obtain the

sample cross-quantilogram using q̂it(τi) = x>it β̂i(τi).

Under DGP1, there is no predictability from the event {y2,t−k ≤ q2,t−k(τ2)} to the

event {y1t ≤ q1t(τ1)} for all quantiles τ1 and τ2, because Pr [y1t ≤ q1t(τ1) | y2,t−k, x2,t−k] =

Pr [u1t ≤ Φ−1(τ1)] = τ1 for all t ≥ 1 and τ1 ∈ (0, 1), where Φ denotes the standard normal

cdf.

Under DGP2, (u1t) is defined as the GARCH-X process, where its conditional vari-

ance is the GARCH(1,1) process with an exogenous covariate. The GARCH-X process is

20



commonly used for modeling volatility of economic or financial time series in the litera-

ture, see Han (2015) and references therein. Under DGP2, there exists predictability from

{y2,t−k ≤ q2,t−k(τ2)} to {y1t ≤ q1t(τ1)} through σ2
1t for all quantiles (τ1,τ2) ∈ (0, 1)2, except

the case τ1 = 0.5 because the conditional distribution of u1t given x1t is symmetric around

0.10

5.1 Results Based on the Bootstrap Procedure

We first examine the finite-sample performance of the Box-Ljung test statistics based on the

stationary bootstrap procedure. To save space, only the results for the case where τ1 = τ2

are reported here because the results for the cases where τ1 6= τ2 are similar. The Box-Ljung

test statistics Q̂
(p)
τ are based on ρ̂τ (k) for τi = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 or 0.95 and

k = 1, 2, . . . , 5. Tables 1 and 2 report empirical rejection frequencies of the Box-Ljung test

statistics based on the bootstrap critical values at the 5% level. The sample sizes considered

are T =500, 1,000 and 2,000. The number of simulation repetitions is 1,000. The bootstrap

critical values are based on 1,000 bootstrapped replicates. The tuning parameter γ is set to

be 0.01.11

In general, our simulation results in Tables 1-3 show that the test has reasonably good

size and power performance in finite samples. Table 1 reports the simulation results for the

DGP1, which show the size performance. The rejection frequencies are close to 0.05 in mid

quantiles, while the test tends to slightly under-reject in low and high quantiles.

Table 2 reports the simulation results for the DGP2, which show the power performance.

Except for the median, the rejection frequencies approach one as the sample size increases,

which shows that our test is consistent. As expected, the rejection frequencies are close to

10To see this, note that the conditional distribution of u1t given x1t has median zero because Pr(u1t ≤
0 | x1t) = Pr(σ1tε1t ≤ 0 | x1t) = Pr(ε1t ≤ 0 | x1t) = Pr(ε1t ≤ 0) = 0.5 and likewise Pr(u1t ≥ 0 | x1t) =
0.5. Therefore, letting Ft = (y2,t−k, x2,t−k), Pr (y1t < q1,t(0.5) | Ft) = Pr (u1t < 0 | Ft) = Pr (ε1t < 0 | Ft) =
0.5. This implies that there is no predictability from {y2,t−k ≤ q2,t−k(τ2)} to {y1t ≤ q1,t(τ1)} at τ1 = 0.5
under DGP2.

11Recall that 1/γ indicates the average block length. We tried different values for γ including one chosen
by the data dependent rule suggested by Politis and White (2004) and the results are still similar particularly
for a large sample. The details of the data dependent rule is explained in Section 6.
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0.05 at the median because there is no predictability at the median under the DGP2 (see

Footnote 10 for an explanation).

Next, we examine the finite-sample performance of the sup-version of the Box-Ljung test

statistic supτ∈T Q̂
(p)
τ over a range of quantiles.12 The simulation results in Table 3 show that

the sup-version test statistic supτ∈T Q̂
(p)
τ also has reasonably good finite sample performance,

though it tends to under-reject under DGP1. For DGP2, the rejection frequencies approach

one as the sample size increases.

5.2 Results for the Self-Normalized Statistics

We also examine the performance of the self-normalized version of Q̂
(p)
τ under the same setup

as above. We fix the trimming constant ω to be 0.1.13 The number of repetitions is 3,000.

The empirical sizes of the test are reported in Table 4, where the underlying process is

the VAR model with DGP1. The test generally under-rejects under the null hypothesis

(DGP1), while at the extreme quantiles (τ = 0.05 or 0.95) the test slightly over-rejects in

the small sample (T = 500). This finding is not very surprising because the self-normalized

statistic is based on subsamples and at the extreme quantiles there are effectively not enough

observations to compute the test statistic accurately.

Using the GARCH-X process of DGP2, we obtain empirical powers and present the

results in Table 5. With a one-period lag (p = 1), the self-normalized quantilogram at

τ1, τ2 ∈ {0.1, 0.2, 0.8, 0.9} rejects the null by about 23.0-30.0%, 64.3-68.3% and 91.7-94.0%

for sample sizes 500, 1,000 and 2,000, respectively. In general, the rejection frequencies

increase as the sample size increases, decline as the maximum number of lags p increases,

and are not sensitive to the choice of the trimming value. Our results suggest that the self-

normalized statistics may have lower power in finite samples compared with the test statistics

based on the stationary bootstrap procedure, see Lobato (2001) for a similar finding.

12Due to computational burden, we compute the Box-Ljung test statistic as a maximum over nine quantile
levels τi = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and 0.95.

13We also considered 0.03 and 0.05 for ω and the results are similar to those for ω = 0.1.
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6 Empirical Studies

6.1 Stock Return Predictability

We apply the cross-quantilogram to detect directional predictability from an economic state

variable to stock returns. The issue of stock return predictability has been very important

and extensively investigated in the literature; see Lettau and Ludvigson (2010) for an exten-

sive review. A large literature has considered predictability of the mean of stock return. The

typical mean return forecast examines whether the mean of an economic state variable is

helpful in predicting the mean of stock return (mean-to-mean relationship). Recently, Cene-

sizoglu and Timmermann (2008) considered whether the mean of an economic state variable

is helpful in predicting different quantiles of stock returns representing left tail, right tail

or shoulders of the return distribution. The cross-quantilogram adds one more dimension

to analyze predictability compared with the linear quantile regression, and so it provides a

more complete picture on the relationship between a predictor and stock returns. Moreover,

we can consider very large lags in the framework of the quantilogram.

We use daily data from 3 Jan. 1996 to 29 Dec. 2006 with sample size 2,717.14 Stock

returns are measured by the log price difference of the S&P 500 index and we employ stock

variance as the predictor. The stock variance is treated as an estimate of equity risk in the

literature. The risk-return relationship is an important issue in the finance literature; see

Lettau and Ludvigson (2010) for an extensive review. The cross-quantilogram can provide

a more complete relationship from risk to return, which cannot be examined using existing

methods. To measure stock variance, we use the realized variance given by the sum of

squared 5-minute returns.15 The autoregressive coefficient for stock variance is estimated to

be 0.68 and the unit root hypothesis is clearly rejected. The sample mean and median of

stock returns are 0.0003 and 0.0005, respectively.

14The working paper version of this paper provides the results using the monthly data previously analyzed
in Goyal and Welch (2008).

15The realized variance is obtained from ‘Oxford-Man Institute’s realised library’.
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In Figures 1-3, we provide the sup-type test statistic supτ∈T Q̂
(p)
τ , the cross-quantilogram

ρ̂τ (k) and the portmanteau test Q̂
(p)
τ (we use the Box-Ljung versions throughout) to detect

directional predictability from stock variance, representing risk, to stock return. In each

graph, we show the 95% bootstrap confidence intervals for no predictability based on 1,000

bootstrapped replicates. The tuning parameter 1/γ is chosen by adapting the rule suggested

by Politis and White (2004) (and later corrected in Patton et al. (2009)).16 Since it is for

univariate data, we apply it separately to each time series and define γ as the average value.

We first examine the sup-version Box-Ljung test statistic supτ∈T Q̂
(p)
τ and the results are

provided in Figure 1. We consider low and high ranges of quantiles. For the low range,

we set T = [0.1, 0.3] and τi = 0.1 + 0.02k for k = 0, 1, · · · , 10. For the high range, we set

T = [0.7, 0.9] and τi = 0.7 + 0.02k for k = 0, 1, · · · , 10. In each range, there are eleven

different values of τi and we let τ1 = τ2 in calculating ρ̂τ (k) for simplicity. Figure 1 clearly

shows that there exists predictability from stock variance to stock return in each range.

Next we investigate the cross-quantilogram ρ̂τ (k) and the portmanteau test Q̂
(p)
τ for

different quantile points in Figures 2(a)-3(b). For the quantiles of stock return q1(τ1), we

consider τ1 = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and 0.95. For the quantiles of stock variance

q2(τ2), we consider τ2 = 0.1 and 0.9. Figures 2(a) and 2(b) are for the case when the stock

variance is in the low quantile, i.e. τ2 = 0.1. The cross-quantilograms ρ̂τ (k) for τ1 = 0.05,

0.1, 0.2 and 0.3 are negative and significant for many lags. For example, in case of τ1 = 0.05,

it means that when risk is very low, it is less likely to have a large negative loss. On the

other hand, the cross-quantilograms for τ1 = 0.7, 0.8, 0.9 and 0.95 is positive and significant

for many lags. For example, in case of τ1 = 0.95, it means that when risk is very low, it

is less likely to have a large positive gain. However, the cross-quantilogram for τ1 = 0.5 is

mostly insignificant, which means that risk is not helpful in predicting whether stock return

is located below or above its median. Figure 2(b) shows that the Box-Ljung test statistics

are mostly significant except for τ1 = 0.5.

16Specifically, 1/γ̂ = (2Ĝ2/D̂SB)1/3T 1/3 where D̂SB = 2ĝ2(0). The definitions of ĝ and Ĝ are given on
page 58 of Politis and White (2004).
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Figures 3(a) and 3(b) are for the case when stock variance is in the high quantile, i.e. τ2 =

0.9. Compared to the previous case of τ2 = 0.1, the cross-quantilograms have similar trends

but much larger absolute values. For τ1 = 0.05, the cross-quantilogram ρ̂τ (1) is −0.193,

which implies that when risk is higher than its 0.9 quantile, there is an increased likelihood

of having a very large negative loss in the next day. For τ1 = 0.95, the cross-quantilogram

ρ̂τ (1) is 0.188, which implies that when risk is high (higher than its 0.9 quantile), there

is an increased likelihood of having a very large positive gain in the next day. The cross-

quantilogram for τ1 = 0.5 is mostly insignificant and the Box-Ljung test statistics in Figure

3(b) are mostly significant except for τ1 = 0.5.

The results in Figures 1-3 show that stock variance is helpful in predicting stock return

and detailed features depend on each quantile of stock variance and stock return. When

stock variance is in high quantile, the absolute value of the cross-quantilogram is higher

and the cross-quantilogram is significantly different from zero for larger lags. Our results

exhibit a more complete relationship between risk and return and additionally show how the

relationship changes for different lags.

6.2 Systemic Risk

The Great Recession of 2007-2009 has motivated researchers to better understand systemic

risk—the risk that the intermediation capacity of the entire financial system can be impaired,

with potentially adverse consequences for the supply of credit to the real economy. One

approach to measure systemic risk is measuring co-dependence in the tails of equity returns

of an individual financial institution and the financial system.17 Prominent examples include

the work of Adrian and Brunnermeier (2011), Brownlees and Engle (2012) and White et al.

(2012). Since the cross-quantilogram measures quantile dependence between time series, we

apply it to measure systemic risk.

17Bisias et al. (2012) categorize the current approaches to measuring systemic risk along the following lines:
1) tail measures, 2) contingent claims analysis, 3) network models, and 4) dynamic stochastic macroeconomic
models.
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We use the daily CRSP market value weighted index return as the market index return as

in Brownlees and Engle (2012). We consider returns on JP Morgan Chase (JPM), Morgan

Stanley (MS) and AIG as individual financial institutions. As in Brownlees and Engle

(2012), JPM, MS and AIG belong to the Depositories group, the Broker-Dealers group and

the Insurance group, respectively. We investigate the cross-quantilogram ρ̂τ (k) between

an individual institution’s stock return and the market index return for k = 60 and τ1 =

τ2 = 0.05. In each graph, we show the 95% bootstrap confidence intervals for no quantile

dependence based on 1,000 bootstrapped replicates.

The sample period is from 24 Feb. 1993 to 31 Dec. 2014 with sample size 5,505.18 The

data including the financial crisis from 2007 and 2009 might not be suitable to be viewed

as a strictly stationary sequence and hence may not fit into our theoretical framework.19

Nevertheless, we provide the empirical results because it would be practically interesting to

consider a sample period that includes the recent crisis and post-crisis.20

In Figure 4, each graph in the left column shows the cross-quantilogram from each individ-

ual institution to the market. The cross-quantilograms are positive and generally significant

for large lags. The cross-quantilogram from JPM to the market reaches its peak (0.146) at

k = 12 and declines steadily afterwards. This means that it takes about two weeks for the

systemic risk from JPM to reach its peak once JPM is in distress. From MS to the market,

the cross-quantilogram reaches its peak (0.127) at k = 2. From AIG to the market, the

cross-quantilogram reaches its peak (0.127) at k = 17. When AIG is in distress, the systemic

risk from AIG takes a longer time (about three weeks) to reach its peak. When an individual

financial institution is in distress, each institution makes an influence on the market in a

different way.

Each graph in the right column of Figure 4 shows the cross-quantilograms from the

18The stock return series of Morgan Stanley are available from 24 Feb. 1993. The stock return series of
individual financial institutions are obtained from Yahoo Finance.

19A rigorous treatment of nonstationary time series in our context is a challenging issue and will be
reported in a future work.

20The results for the sample period from 24 Feb. 1993 to 29 Dec. 2006 are also available from the authors
upon request.
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market to an individual institution. The cross-quantilogram for this case is a measure of an

individual institution’s exposure to system wide distress and therefore it is similar to the

stress tests performed by individual institutions. From the market to each institutions, the

cross-quantilogram at k = 1 is relatively low for JPM (0.062) and MS (0.073) while it is

higher for AIG (0.104). Overall, when the market is in distress, each institution is influenced

by its impact in a different way. But the cross-quantilogram reaches its peak at k = 2 for all

cases. The cross-quantilograms at k = 2 are 0.135, 0.131 and 0.139 for JPM, MS and AIG,

respectively.

As shown in Figure 4, the cross-quantilogram is a measure for either an institution’s

systemic risk or an institution’s exposure to system wide distress. Compared to existing

methods, one important feature of the cross-quantilogram is that it provides in a simple

manner how such a measure changes as the lag k increases. For example, White et al.

(2012) adopt an additional impulse response function within the multivariate and multi-

quantile framework to consider tail dependence for a large k. Moreover, another feature of

the cross-quantilogram is that it does not require any modeling. For example, the approach

by Brownlees and Engle (2012) is based on the standard multivariate GARCH model and it

requires the modeling of the entire multivariate distribution.

Next, we apply the partial cross-quantilogram to examine the systemic risk after con-

trolling for an economic state variable. Following Adrian and Brunnermeier (2011) and

Bedljkovic (2010), we adopt the VIX index as the economic state variable. Since the VIX

index itself is highly persistent and can be modeled as an integrated process, we instead use

the VIX index change, the first difference of the VIX index level, as the state variable. For

the quantile of the state variable, i.e. τ3 in (10), we let τ3 = 0.95 because a low quantile of

a stock return is generally associated with a rapid increase of the VIX index.

Figure 5 shows that the partial cross-quantilograms are still significant in some cases

even if their values are generally lower than the values of the cross-quantilograms in Figure

4. This indicates that there still remains systemic risk from an individual institution after
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controlling for an economic state variable. These significant partial cross-quantilograms will

be of interest for the management of the systemic risk of an individual financial institution.

7 Conclusion

We have established the limiting properties of the cross-quantilogram in the case of a finite

number of lags. Hong (1996) established the properties of the Box-Pierce statistic in the

case that p = pn →∞ : after a location and scale adjustment the statistic is asymptotically

normal, see also Hong et. al. (2009) for a related work. No doubt our results can be

extended to accommodate this case, although in practice the desirability of such a test is

questionable, and the chi-squared type limit in our theory may provide better critical values

for even quite long lags. The cross-quantilogram is easy to compute and the bootstrap

confidence intervals appear to represent modest enlargements of the Bartlett intervals in the

series that we examined. The statistic shows the cross dependence structure of the time

series in a granular fashion that is more informative than the usual methods.
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Appendix

In appendix, we use C, C1, C2, . . . to denote generic positive constants without further
clarification.

Appendix A. Asymptotic Results of Cross-Quantilogram

Lemma A1 Let {zt}t∈Z be a strict stationary, strong mixing sequence of Rd-valued random
variables for some integer d ≥ 1 with strong mixing coefficients {αj}j∈Z+ satisfying

∑∞
j=0(j+

1)2s−2α
ν/(2s+ν)
j for some integer s ≥ 2 and ν ∈ (0, 1). Suppose that E[z1] = 0 and ‖z1‖2s+ν <

∞. Then,

E
∥∥∥ T∑
t=1

zt

∥∥∥2s

≤ T sC
{
‖z1‖2s

2+ν + T 1−s ‖z1‖2s
2s+ν

}
.

Proof. See Supplemental Material.

We define the process indexed by τ ∈ T :

Vt,k(τ) :=
1√
T

T∑
t=k+1

{
1[yt,k ≤ qt,k(τ)]− E[F

(k)
y|x(qt,k(τ)|xt,k)]

}
.

Also, define a di × 1 vector of random variables indexed by τi ∈ Ti for each i = 1, 2:

Wi,T (τi) :=
1√
T

T∑
t=1

xitψτi (yit − qi,t(τi)) .

The below lemma shows the stochastic equicontinuity of the processes defined above, using
a similar argument in Bai (1996).

Proposition A1 Suppose Assumption A1-A5 hold. Let k ∈ {1, . . . , p} and define metrics
ρi(τi, τ

′
i) = |τ ′i − τi| for τi, τ

′
i ∈ Ti (i = 1, 2) and a metric ρ(τ, τ ′) =

∑2
i=1 ρi(τi, τ

′
i) for

τ, τ ′ ∈ T . Then,

(a) VT,k(τ) is stochastically equicontinuous on (T , ρ);

(b) Wi,T (τi) is stochastically equicontinuous on (Ti, ρi) for each i = 1, 2.

Proof. See Supplemental Material.

Because of the importance of the result, we present the central limit theorem for strong
mixing sequence in the lemma below. The proof can be found in Corollary 5.1 of Hall and
Heyde (1980) or Rio (1997, 2013) among others.
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Lemma A2 Suppose that the strict stationary sequence {zt}t∈Z satisfies the strong mixing

condition with E[z1] = 0 and E|z1|2+ς < ∞ for some ς ∈ (0,∞), while
∑∞

j=1 α
ς/(2+ς)
j <

∞. Then, limT→∞E[(T−1/2
∑T

t=1 zt)
2] = σ2 for some σ2 ∈ [0,∞). If σ2 > 0, then

σ−1T−1/2
∑T

t=1 zt →d N(0, 1).

Define a d0 × 1 vector BT,k(τ) = [VT,k(τ),W1,T (τ1)>,W2,T (τ2)>]> for τ ∈ T and k =
1, . . . , p. The following proposition shows the weak convergence of the process {BT,k(τ) : τ ∈
T }pk=1.

Proposition A2 Suppose Assumptions A1-A5 hold. Then,

[BT,1(·), . . . ,BT,p(·)]> ⇒ [B1(·), . . . ,Bp(·)]> .

Proof. Proposition A1 shows that [BT,1(·), . . . ,BT,p(·)]> is stochastic equicontinuous. Thus,
it remains to establish convergence of the finite dimensional distributions. By the Cramer-
Wold device, it suffices to show

J∑
j=1

θj

p∑
k=1

κ>k BT,k
(
τ (j)
)
→d N

(
0, σ2

θ,κ

)
,

for any {θj ∈ R}Jj=1, {κk ∈ Rd}pk=1, {τ (j) ∈ [0, 1]2}Jj=1, and J ≥ 1, where

σ2
θ,κ =

J∑
j=1

J∑
j′=1

θjθj′

p∑
k=1

p∑
k′=1

κ>k Ξk,k′(τ
(j), τ (j′))κk′ . (A-1)

The original time-series is a stationary sequence satisfying the strong mixing condition in
Assumption A1 and a measurable transformation involving lagged variables satisfies the same
mixing condition if the lag order is finite. Hence, the central limit theorem for strong-mixing
sequences in Lemma A2 shows that the convergence in distribution to the normal law with
the finite variance. Therefore, we establish the weak convergence.

Let v = (v1, v2) ∈ Rd1 × Rd2 and vt,k = (v1,t, v2,t−k)
> ∈ R2 with vi,t = x>itvi for i = 1, 2

and for t = 1, . . . , T . Define

VT,k(τ,v) :=
1√
T

T∑
t=k+1

{
1[yt,k ≤ qt,k(τ) + T−1/2vt,k]− E[F

(k)
y|x(qt,k(τ) + T−1/2vt,k|xt,k)]

}
,

and

Wi,T (τi, vi) :=
1√
T

T∑
t=1

xit
{

1[yit ≤ qi,t(τi) + T−1/2vi,t]− Fyi|xi(qi,t(τi) + T−1/2vi,t|xit)
}
.

Proposition A3 Suppose Assumption A1-A5 hold. Then,
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(a) supτ∈T supv∈VM |VT,k(τ,v)− VT,k(τ)| = op(1) for every M > 0;

(b) supτi∈Ti supvi∈Vi,M ‖Wi,T (τi, vi)−Wi,T (τi)‖ = op(1) for every M > 0 and i = 1, 2,

where VM = V1,M × V2,M with Vi,M = {vi ∈ Rdi : ‖vi‖ ≤M} for i = 1, 2.

Proof. See Supplemental Material.

Proposition A4 Suppose Assumption A1-A5 hold. Then, for i = 1, 2

√
T{β̂i(τi)− βi(τi)} = −D−1

i (τi)Wi,T (τi) + op(1),

uniformly in τ ∈ Ti.

Proof. See Supplemental Material.

The below lemma shows that the limiting behavior of the cross-quantilogram process
reflects the contributions of estimation errors due to the estimation of the conditional quantile
function.

Proposition A5 Suppose that Assumption A1-A5 hold. Then, for each k ∈ {1, . . . , p},

√
T {ρ̂τ (k)− ρτ (k)} =

VT,k(τ) +∇G(k)(τ)>
√
T{β̂(τ)− β(τ)}√

τ1(1− τ1)τ2(1− τ2)
+ op(1),

uniformly in τ ∈ T .

Proof. Let γ̂τ,k = T−1
∑T

t=k+1 ψτ1(y1t− q̂1,t(τ1))ψτ2(y2,t−k− q̂2,t−k(τ2)) and γτ,k = E[ψτ1(y1t−
q1,t(τ1))ψτ2(y2,t−k − q2,t−k(τ2))]. Using a similar argument in Lemma 2.1 of Arcones (1998),

we can show supτi∈Ti |T
−1/2

∑T
t=1 ψτi(yit − q̂i,t(τi))| = op(1) for i = 1, 2, because xit includes

a constant term. It follows that, uniformly in τ ∈ T ,

T−1

T∑
t=1

ψ2
τi

(yit − q̂i,t(τi)) = τi(1− τi) + op(1), for i = 1, 2, (A-2)

and

√
T (γ̂τ,k − γτ,k) = T−1/2

T∑
t=k+1

{
1[yt,k ≤ q̂t,k(τ)]− E

[
F

(k)
y|x(qt,k(τ)|xt,k)

]}
+ op(1).

Define VM = {v ≡ (v1, v2) ∈ Rd1 × Rd2 : maxi=1,2 ‖vi‖ ≤ M} for some M > 0 and let
vt,k = (x>1tv1, x

>
2,t−kv2)>. Then, Proposition A3 implies

T−1/2

T∑
t=k+1

{
1[yt,k ≤ qt,k(τ) + T−1/2vt,k]− E

[
F

(k)
y|x(qt,k(τ)|xt,k)

]}
= VT,k(τ) +

√
TE
[
F

(k)
y|x(qt,k(τ) + T−1/2vt,k|xt,k)− F (k)

y|x(qt,k(τ)|xt,k)
]

+ op(1),
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uniformly in (τ,v) ∈ T × VM for any M > 0. Also, the mean-value theorem implies√
TE[F

(k)
y|x(qt,k(τ) + T−1/2vt,k|xt,k) − F

(k)
y|x(qt,k(τ)|xt,k)] = ∇G(k)(τ)>v + o(1) uniformly in

(τ,v) ∈ T × VM . Thus, for any M > 0,

sup
(τ,v)∈T ×VM

|RT (τ,v)| = op(1), (A-3)

where

RT (τ,v) :=T−1/2

T∑
t=k+1

{
1[yt,k ≤ qt,k(τ) + T−1/2vt,k]− E

[
F

(k)
y|x(qt,k(τ)|xt,k)

]}
−
(
VT,k(τ) +∇G(k)(τ)>v

)
.

Let ε be an arbitrary positive constant. Proposition A2 and A4 imply that there exists a
constant M > 0 such that P (supτ∈T ‖β̂(τ)− β(τ)‖ > M/

√
T ) < ε for a sufficiently large T .

It follows that there exists an M > 0 such that

P

(
sup
τ∈T

∣∣∣RT (τ,
√
T{β̂(τ)− β(τ)})

∣∣∣> ε

)
< ε+ P

(
sup

(τ,v)∈T ×VM
|RT (τ,v)|> ε

)
,

for a sufficiently large T . Thus, (A-3) yields

√
T (γ̂τ,k − γτ,k) = VT,k(τ) +∇G(k)(τ)>

√
T{β̂(τ)− β(τ)}+ op(1),

uniformly in τ ∈ T . This together with (A-2) yields the desired result.

Proof of Theorem 1. For each i = 1, 2, Proposition A4 yields an asymptotic linear
approximation,

√
T{β̂i(τi)− βi(τi)} = −D−1

i (τi)Wi,T (τi) + op(1) uniformly in τi ∈ Ti, which
with Proposition A5 shows that

√
T {ρ̂τ (k)− ρτ (k)} = λ>τ,kBT,k(τ)+op(1) uniformly in τ ∈ T .

For a finite p > 0, we have

√
T
(
ρ̂(p)
τ − ρ(p)

τ

)
= Λ(p)

τ B(p)
T (τ) + op(1), (A-4)

uniformly in τ ∈ T . The desired result is obtained from Proposition A2 with the continuous
mapping theorem.

Appendix B. Stationary Bootstrap

A positive integer valued, possibly infinite random variable µ is said to be a stopping
time with respect to a filtration {Fn, n ≥ 1} if {µ = n} ∈ Fn, ∀n ∈ N. Given random block
lengths {Li}i∈N under the stationary bootstrap, define N = inf{i ∈ N : L1 + · · ·+ Li ≥ n}.
Then, N is a stopping time with respect to {σ(L1, . . . , Li) : 1 ≤ i ≤ n}. In the following
lemma, we present a moment inequality using ideas found in the literature on the sopped
random walk process. See Gut (2009) for a comprehensive treatment.

Lemma B1 Let {zt}t∈Z be a strict stationary, strong mixing sequence of Rd-valued random
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variables for some integer d ≥ 1 with strong mixing coefficients {αj}j∈Z+ satisfying
∑∞

j=0(j+

1)2s−2α
ν/(2s+ν)
j for some integer s ≥ 2 and ν ∈ (0, 1). Suppose that ‖z1‖2s+ν < ∞ and a

stationary bootstrap resample, {z∗t }Tt=1, from {zt}Tt=1 satisfies Assumption A6 with the sample
size T > 0. Define Sk,l =

∑k+l−1
t=k zt and S∗k,l =

∑k+l−1
t=k z∗t . Then,

E
∥∥S∗1,T − E∗S∗1,T∥∥2s ≤ C

{
(Tγ)s

∞∑
l=1

πlE
∥∥S̃1,l

∥∥2s
+ E

∥∥S̃1,T

∥∥2s
}
,

where S̃k,l =
∑k+l−1

t=k (zt − Ezt) for k, l ∈ N.

Proof. See Supplemental Material.

Lemma B2 Suppose that the same conditions assumed in Lemma B1 hold. Then,

E
∥∥S∗1,T − E∗S∗1,T∥∥2s ≤ T sC

(
‖z1‖2s

2+ν + γs−1‖z1‖2s
2s+ν

)
,

for a sufficiently large T .

Proof. See Supplemental Material.

We now turn to the asymptotic results of cross-quantilogram based on the stationary
bootstrap. Define

V∗T,k(τ) :=
1√
T

T∑
t=k+1

{
1[y∗t,k ≤ q∗t,k(τ)]− 1[yt,k ≤ qt,k(τ)]

}
and

W∗i,T (τi) :=
1√
T

T∑
t=k+1

{
x∗itψτi

(
y∗it − q∗i,t(τi)

)
− xitψτi (yit − qi,t(τi))

}
for each i = 1, 2. The lemma below shows the stochastic equicontinuity of the processes,
V∗T,k(·) and W∗i,T (·), unconditional on the original sample.

Proposition B1 Suppose Assumption A1-A6 hold. Let k ∈ {1, . . . , p} and define metrics
ρi(·, ·) for i = 1, 2 and a metric ρ(·, ·) as in Proposition A1. Then,

(a) V∗T,k(τ) is stochastically equicontinuous on (T , ρ);

(b) W∗i,T (τi) is stochastically equicontinuous on (Ti, ρi) for each i = 1, 2.

Proof. See Supplemental Material.

Let B∗T,k(τ) = [V∗T,k(τ),W∗1,T (τ1)>,W∗2,T (τ2)>]> for (k, τ) ∈ {1, . . . , p} × T and define

B(p)∗
T,k (τ) := [B∗T,1(τ), . . . ,B∗T,p(τ)]>. As a norm that introduces the topology of (`∞(T ))pd0 ,

we use supτ∈T ‖ · ‖ defined on (`∞(T ))pd0 , so that supτ∈T ‖f(τ)‖ for any f ∈ (`∞(T ))pd0 .

A.5



Let BL1 be the set of all Lipschitz continuous, real-valued functions on (`∞(T ))pd0 with
a Lipschitz constant bounded by 1. We prove the following proposition by modifying the
argument used in Theorem 2 of Galvao et. al. (2014), where the approach of van der Vaart
and Wellner (1996, Theorem 2.9.6) is extended for the dependent process but their setup
differs from the one here.

Proposition B2 Suppose Assumptions A1-A6 hold. Then,

sup
h∈BL1

∣∣∣E∗[h(B(p)∗
T )

]
− E

[
h(B(p))

]∣∣∣→p 0.

Proof. Let δ > 0. Given the compact set T in [0, 1]2, there exists a finite partition

{T (j)}Jj=1 such that max1≤j≤J supτ ′,τ ′′∈T (j) ‖τ ′′−τ ′‖ ≤ δ. Pick up τ (j) ≡ (τ
(j)
1 , τ

(j)
2 )> ∈ T (j) for

j = 1, . . . , J and let Πδ be a map from T to {τ (j)}Jj=1 so that Πδ(τ) = τ (j) if τ ∈ T (j). Define

B(p)∗
T ◦Πδ and B(p) ◦Πδ as the stochastic processes on T , given by B(p)∗

T ◦Πδ(τ) = B(p)∗
T (Πδ(τ))

and B(p) ◦ Πδ(τ) = B(p)(Πδ(τ)) for τ ∈ T . It follows from the triangle inequality that, for
any h ∈ BL1,∣∣∣E∗[h(B(p)∗

T )
]
− E

[
h(B(p))

]∣∣∣ ≤ ∣∣∣E∗[h(B(p)∗
T )

]
− E∗

[
h(B(p)∗

T ◦ Πδ)
]∣∣∣ (A-5)

+
∣∣∣E∗[h(B(p)∗

T ◦ Πδ)
]
− E

[
h(B(p) ◦ Πδ)

]∣∣∣ (A-6)

+
∣∣E[h(B(p) ◦ Πδ)

]
− E

[
h(B(p))

]∣∣ . (A-7)

It suffices to show that (A-5) - (A-7) are op(1) uniformly in h ∈ BL1.
We first consider (A-5). We have

E

[
sup
h∈BL1

∣∣∣E∗[h(B(p)∗
T )

]
− E∗

[
h(B(p)∗

T ◦ Πδ)
]∣∣∣] ≤ E

[
sup
h∈BL1

∣∣∣h(B(p)∗
T )− h(B(p)∗

T ◦ Πδ)
∣∣∣] .

Let I∗T,δ,ε := 1[supτ∈T ‖B
(p)∗
T (τ) − B(p)∗

T ◦ Πδ(τ)‖ > ε] for ε > 0. Proposition B1 implies that

limδ↓0 limT→∞E[I∗T,δ,ε] < ε for every ε > 0. Also suph∈BL1
|h(B(p)∗

T ) − h(B(p)∗
T ◦ Πδ)| ≤ 2

because the range of a function h is [−1, 1]. It follows that

lim
δ↓0

lim
T→∞

E

[
sup
h∈BL1

∣∣∣h(B(p)∗
T )− h(B(p)∗

T ◦ Πδ)
∣∣∣ · I∗T,δ,ε] ≤ 2ε.

Since suph∈BL1
|h(B(p)∗

T )− h(B(p)∗
T ◦ Πδ)| ≤ supτ∈T ‖B

(p)∗
T (τ)− B(p)∗

T ◦ Πδ(τ)‖, we have

E

[
sup
h∈BL1

∣∣∣h(B(p)∗
T )− h(B(p)∗

T ◦ Πδ)
∣∣∣ · (1− I∗T,δ,ε)] ≤ ε.

Thus, limδ↓0 limT→∞E[suph∈BL1
|h(B(p)∗

T )−h(B(p)∗
T ◦Πδ)|] ≤ 3ε. An application of the Markov

inequality yields that (A-5) is op(1) uniformly in h ∈ BL1.
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Next we shall show that suph∈BL1
|E∗[h(B(p)∗

T ◦ Πδ)] − E[h(B(p) ◦ Πδ)]| →p 0 for any

δ > 0. It suffices to show that {B(p)∗
T (τ (j))}Jj=1 →d {B(p)(τ (j))}Jj=1 conditional on the

original sample, for almost every sequence. To this end, we use the Cramer-Wold device
and consider

∑J
j=1 θj

∑p
k=1 κ

>
k B∗T,k

(
τ (j)
)

for some {θj ∈ R}Jj=1 and {κk ∈ Rd}pk=1. Let

v∗t =
∑J

j=1 θj
∑p

k=1 κ
>
k ξ
∗
t,k(τ

(j)) and vt =
∑J

j=1 θj
∑p

k=1 κ
>
k ξt,k(τ

(j)), where ξt,k(·) is defined in
Section 3 and ξ∗t,k(·) is its bootstrap counterpart. Then, we can write

J∑
j=1

θj

p∑
k=1

κ>k B∗T,k
(
τ (j)
)

= T−1/2

T∑
t=k+1

(v∗t − vt).

As discussed in Proposition A2, {vt}t∈N is a stationary time-series satisfying Assumption 1.
As shown in p. 1237 of Kunsch (1989), the moment and strong-mixing assumption imposed
on the original time series implies the condition imposed on the forth joint cumulant in (8)
of Politis and Romano (1994). Hence, Theorems 1 and 2 of Politis and Romano (1994)
imply that the bootstrap estimate of the variance converges to σ2

θ,κ in probability, where σ2
θ,κ

is defined in (A-1), and that we obtained the distribution convergence conditional on the
original sample.

Finally, consider (A-7). The process B(p) is uniformly continuous on T , which with the
dominated convergence theorem yields that limδ↓0 suph∈BL1

∣∣E[h(B(p) ◦ Πδ)
]
− E

[
h(B(p))

]∣∣ =
0. Hence, we obtain the desired conclusion.

For v = (v1, v2) ∈ Rd1 ×Rd2 , let v∗t,k = (v∗1,t, v
∗
2,t−k)

> with v∗i,t = x∗>it vi for i = 1, 2. Define

V∗T,k(τ,v) := T−1/2

T∑
t=k+1

{
1[y∗t,k ≤ q∗t,k(τ) + T−1/2v∗t,k]− 1[yt,k ≤ qt,k(τ) + T−1/2vt,k]

}
,

and

W∗i,T (τi, vi) := T−1/2

T∑
t=k+1

{
x∗itψτi

(
y∗it − q∗i,t(τi)− T−1/2v∗i,t

)
− xitψτi

(
yit − qi,t(τi)− T−1/2vi,t

)}
.

Proposition B3 Suppose Assumption A1-A6 hold. Then,

(a) supτ∈T supv∈VM |V
∗
T,k(τ,v)− V∗T,k(τ)| = op(1) for every M > 0;

(b) supτi∈Ti supvi∈Vi,M ‖W
∗
i,T (τi, vi)−W∗i,T (τi)‖ = op(1) for every M > 0 and i = 1, 2,

where VM = V1,M × V2,M with Vi,M = {vi ∈ Rdi : ‖vi‖ ≤M} for i = 1, 2.

Proof. See Supplemental Material.

Proposition B4 Suppose Assumption A1-A6 hold. Then, for i = 1, 2,

√
T{β̂∗i (τi)− βi(τi)} = −D−1

i (τi)
1√
T

T∑
t=k+1

x∗itψτi(y
∗
it − q∗i,t(τi)) + op(1),
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uniformly in τi ∈ Ti.

Proof. A similar argument used in Proposition A4 completes the proof and thus the details
are omitted.

Proposition B5 Suppose that Assumption A1-A6 hold. Then, for each k ∈ {1, . . . , p},

√
T {ρ̂∗τ (k)− ρ̂τ (k)} =

V∗T,k(τ) +∇G(k)(τ)>
√
T{β̂∗(τ)− β̂(τ)}√

τ1(1− τ1)τ2(1− τ2)
+ op(1),

uniformly in τ ∈ T .

Proof. Let γ̂∗τ,k = T−1
∑T

t=k+1 ψτ1(y
∗
1t− q̂∗1,t(τ1))ψτ2(y

∗
2,t−k− q̂∗2,t−k(τ2)). Using a similar argu-

ment used to show Lemma 2.1 of Arcones (1998), we can show supτi∈Ti |T
−1/2

∑T
t=1 ψτi(y

∗
it−

q̂∗i,t(τi))| = op(1) for i = 1, 2. It follows that

T−1

T∑
t=k+1

ψ2
τi

(y∗it − q̂∗it(τi)) = τi(1− τi) + op(1), for i = 1, 2,

and

√
T
(
γ̂∗τ,k − γ̂τ,k

)
= T−1/2

T∑
t=k+1

{
1[y∗t,k ≤ q̂∗t,k(τ)]− 1[yt,k ≤ q̂t,k(τ)]

}
+ op(1),

uniformly in τi ∈ Ti and τ ∈ T , respectively. As in Proposition A5, we can show

1√
T

T∑
t=k+1

{
1[yt,k ≤ q̂t,k(τ)]−E

[
F

(k)
y|x(qt,k(τ)xt,k)

]}
= VT,k(τ)+∇G(k)(τ)>

√
T{β̂(τ)−β(τ)}+oP (1),

uniformly in τ ∈ T . A similar argument used in Proposition A5 together with Proposition
B3 and A3 yields that, uniformly in τ ∈ T ,

1√
T

T∑
t=k+1

{
1[y∗t,k ≤ q̂∗t,k(τ)]− E

[
F

(k)
y|x(qt,k(τ)|xt,k)

] }
= VT,k(τ)∗ + VT,k(τ)

+∇G(k)(τ)>
√
T{β̂∗(τ)− β(τ)}+ op(1).

It follows that
√
T (γ̂∗τ,k − γ̂τ,k) = V∗T,k(τ) +∇G(k)(τ)>

√
T{β̂∗(τ) − β̂(τ)} + op(1) uniformly

in τ ∈ T . Thus, we obtained the desired result.

Proof of Theorem 2. (a) Define the processes Ĝ(p)∗
T (τ) :=

√
T (ρ̂

∗(p)
τ − ρ̂(p)

τ ) and G(p)(τ) :=

Λ
(p)
τ B(p)(τ) for τ ∈ T and for an integer p > 0. Let B̃L1 denote the set of all Lipschitz

continuous, real-valued functions on (`∞(T ))p with a Lipschitz constant bounded by 1. It
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suffices to show that
sup
h∈B̃L1

∣∣E∗[h(G(p)∗
T )

]
− E

[
h(G(p))

]∣∣→p 0.

Let G(p)∗
T (τ) := Λ

(p)
τ B(p)∗

T (τ). We can write

sup
h∈B̃L1

∣∣E∗[h(Ĝ(p)∗
T )

]
− E

[
h(G(p))

]∣∣ ≤ sup
h∈B̃L1

∣∣E∗[h(Ĝ(p)∗
T )

]
− E∗

[
h(G(p)∗

T )
]∣∣

+ sup
h∈B̃L1

∣∣E∗[h(G(p)∗
T )

]
− E

[
h(G(p))

]∣∣.
Propositions A4 and B4 imply that

√
T{β̂∗i (τi)−β̂i(τi)} = −D−1

i (τi)W∗1,T (τi)+op(1) uniformly
in τi ∈ Ti for each i = 1, 2. It follows from Proposition B3 that

√
T {ρ̂∗τ (k)− ρ̂τ (k)} = λ>τ,kB∗T,k(τ) + op(1),

uniformly in τ ∈ T , where λτ,k is defined in (4). This leads to

sup
τ∈T

∥∥Ĝ(p)∗
T (τ)−G(p)∗

T (τ)
∥∥ = op(1).

This implies that suph∈B̃L1
|h(Ĝ(p)∗

T )−h(G(p)∗
T )| = op(1), because suph∈B̃L1

|h(Ĝ(p)∗
T )−h(G(p)∗

T )| ≤
supτ∈T ‖Ĝ

(p)∗
T (τ) − G(p)∗

T (τ)‖. It follows from the dominated convergence theorem that

limT→∞E suph∈B̃L1
|E∗[h(Ĝ(p)∗

T )]−E∗[h(G(p)∗
T )]| = 0. An application of the Markov inequal-

ity shows that suph∈B̃L1
|E∗[h(Ĝ(p)∗

T )]− E∗[h(G(p)∗
T )]| = op(1).

Under Assumption A4 and A5, Λ
(p)
τ is bounded uniformly in τ ∈ T , we have

sup
h∈B̃L1

∣∣E∗[h(G(p)∗
T )

]
− E

[
h(G(p))

]∣∣ ≤ C1 sup
g∈BL1

∣∣E∗[g(B(p)∗
T )

]
− E

[
g(B(p))

]∣∣,
where the right-hand side is negligible in probability from Proposition B2. Hence, we obtain
the desired result.

(b) From the continuous mapping theorem, the result in (a) of this theorem yields the
desired result. See Theorem 10.8 of Kosorok (2007) for a general argument.

Proof of Theorem 3. As shown in (A-4), under both fixed and local alternatives,

√
T
(
ρ̂(p)
τ − ρ(p)

τ

)
= Λ(p)

τ B(p)
T (τ) + op(1)

uniformly in τ ∈ T , and it follows from Theorem 1 that Λ
(p)
τ B(p)

T (τ) = OP (1) uniformly in
τ ∈ T .

(a) Under the fixed alternative, there is some τ ∈ T such that ρ
(p)
τ is some non-zero

constant and then
√
T ρ̂

(p)
τ = Λ

(p)
τ B(p)

T (τ) +
√
Tρ

(p)
τ + op(1) uniformly in τ ∈ T . This im-

plies that, under the fixed alternative, supτ∈T Q̂
(p)
τ = T supτ∈T ‖ρ

(p)
τ ‖2(1 + op(1)). Thus,

supτ∈T Q̂
(p)
τ →p ∞ under the fixed alternative, whereas the critical value c∗Q,τ is bounded in
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probability from Theorem 2. Therefore, limT→∞ P (supτ∈T Q̂
(p)
τ > c∗Q,τ ) = 1. Therefore, our

test is shown to be consistent under the fixed alternative.
(b) Under the local alternative, we can write ρ

(p)
τ = ζ

(p)
τ /
√
T , where ζ

(p)
τ is a p-dimensional

constant vector, at least one of elements is non-zero. Thus, we have

Q̂(p)
τ = ‖Λ(p)

τ B(p)
T (τ) + ζ(p)

τ ‖2 + oP (1),

uniformly in τ ∈ T . From Theorem 1 and the continuous mapping theorem,

sup
τ∈T

Q̂(p)
τ ⇒ sup

τ∈T
‖Λ(p)

τ B(p)(τ) + ζ(p)
τ ‖2.

Also, Theorem 2 implies supτ∈T Q̂
(p)∗
τ ⇒∗ supτ∈T ‖Λ

(p)
τ B(p)(τ)‖2 in probability. Thus, the

desired result follows.

Appendix C. Self-Normalized Cross-Quantilogram

Lemma C1 Let {zt}t∈Z be a strict stationary, strong mixing sequence of Rd-valued random
variables for some integer d ≥ 1 with strong mixing coefficients {αj}j∈Z+ satisfying

∑∞
j=0(j+

1)2s−2α
ν/(2s+ν)
j for some integer s ≥ 2 and ν ∈ (0, 1). Suppose that E[z1] = 0 and ‖z1‖2s+ν <

∞. Then,

E

[
sup
r∈[0,1]

∥∥∥ [Tr]∑
t=1

zt

∥∥∥2s
]
≤ CT s

(∥∥z1

∥∥2s

2+ν
+ T 1−s∥∥z1

∥∥
2s+ν

)
.

Proof. The desired result follows from Theorem 6.3 and Annexes C of Rio (2013) as in
Lemma A1.

We define the process indexed by r ∈ [0, 1]

V̄T,k,τ (r) :=
1√
T

[Tr]∑
t=k+1

{
1[yt,k ≤ qt,k(τ)]− E[F

(k)
y|x(qt,k(τ)|xt,k)]

}
,

and

W̄i,T,τi(r) :=
1√
T

[Tr]∑
t=1

xit {1[yit ≤ qi,t(τi)]− τi} ,

for each i = 1, 2. The following proposition shows the stochastic equicontinuity of the
processes defined above.

Proposition C1 Suppose Assumption A1-A5 hold. Let k ∈ {1, . . . , p} and define metrics
ρ̄(r, r′) = |r′ − r| for r, r′ ∈ [0, 1]. Then,

(a) V̄T,k,τ (r) is stochastically equicontinuous on ([0, 1], ρ̄).
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(b) W̄i,T,τi(r) is stochastically equicontinuous on ([0, 1], ρ̄) for each i = 1, 2.

Proof. See Supplemental Material.

Define a d0 × 1 vector B̄T,k,τ (r) = [V̄T,k,τ (r), W̄1,T,τ1(r)
>, W̄2,T,τ2(r)

>]>. for r ∈ [0, 1]
and k = 1, . . . , p. The following proposition shows the weak convergence of the process
{B̄T,k,τ (r) : r ∈ [0, 1]}pk=1.

Proposition C2 Suppose Assumptions A1-A5 hold. Then,[
B̄T,1,τ (·), . . . , B̄T,p,τ (·)

]> ⇒ [
B̄1,τ (·), . . . , B̄p,τ (·)

]>
.

Proof. Proposition C1 establishes the stochastic equicontinuity of
[
B̄T,1,τ (·), . . . , B̄T,p,τ (·)

]>
and it suffices to show convergence of the finite dimensional distributions. Since the finite
dimensional convergences can be shown by a similar argument used in Proposition A2, we
omit the details.

For v = (v1, v2) ∈ Rd1 ×Rd2 , we define

V̄T,k,τ (r,v) :=
1√
T

[Tr]∑
t=k+1

{
1[yt,k ≤ qt,k(τ) + T−1/2vt,k]− E

[
F

(k)
y|x
(
qt,k(τ) + T−1/2vt,k|xt,k

)]}
,

and

W̄i,T,τi(r, vi) :=
1√
T

[Tr]∑
t=k+1

xit
{

1[yit ≤ qi,t(τi) + T−1/2vi,t]− Fyi|xi
(
qi,t(τi) + T−1/2vi,t|xit

)}
.

Proposition C3 Suppose Assumption A1-A5 hold. Then,

(a) supω≤r≤1 supv∈VM |V̄T,k,τ (r,v)− V̄T,k,τ (r)| = op(1) for every M > 0;

(b) supω≤r≤1 supvi∈Vi,M ‖W̄i,T,τi(r, vi)− W̄i,T,τi(r)‖ = op(1) for every M > 0 and for i = 1, 2,

where VM = V1,M × V2,M with Vi,M = {vi ∈ Rdi : ‖vi‖ ≤M} for i = 1, 2.

Proof. See Supplemental Material.

Proposition C4 Suppose Assumption A1-A5 hold. Then, for i = 1, 2 and for each τi ∈ Ti,
√
T{β̂i,[Tr](τi)− βi(τi)} = −D−1

i (τi)r
−1W̄i,T,τi(r) + op(1),

uniformly in r ∈ [ω, 1].

Proof. The proof follows the line of Proposition A4 with Proposition C3(b). Hence, we
omit the details.
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Proposition C5 Suppose Assumption A1-A5 hold. Then, for each (k, τ) ∈ {1, . . . , p}× T ,

√
T
{
ρ̂τ,[Tr](k)− ρτ (k)

}
=
r−1V̄T,k,τ (r) +∇G(k)(τ)>

√
T{β̂[Tr](τ)− β(τ)}√

τ1(1− τ1)τ2(1− τ2)
+ op(1),

uniformly in r ∈ [ω, 1], where β̂[Tr] = (β̂>1,[Tr], β̂
>
2,[Tr])

>.

Proof. A similar argument used in Proposition A5 with Proposition C3(a) yields the desired
result and thus we omit the detail.

Proof of Theorem 4. Proposition C4 and C5 imply that, for each (k, τ) ∈ {1, . . . , p}× T ,

√
T
{
ρ̂τ,[Tr](k)− ρτ (k)

}
= r−1λ>τ,kB̄T,k,τ (r) + op(1),

uniformly in r ∈ [ω, 1]. It follows that
√
T (ρ̂

(p)
τ,[Tr] − ρ

(p)
τ ) = r−1Λ

(p)
τ B̄(p)

T,τ (r) + op(1) uniformly

in r ∈ [ω, 1]. This implies

[Tr]√
T

(
ρ̂

(p)
τ,[Tr] − ρ̂

(p)
τ,T

)
= Λ(p)

τ

{
B̄(p)
T,τ (r)− rB̄

(p)
T,τ (1)

}
+ op(1),

uniformly in r ∈ [ω, 1]. From Proposition C2, {Λ(p)
τ (B̄(p)

T,τ (r) − rB̄
(p)
T,τ (1)) : r ∈ [ω, 1]} weakly

converges to {Λ(p)
τ (B̄(p)

τ (r) − rB̄(p)
τ (1)) : r ∈ [ω, 1]}, which is equivalent in distribution to

a p × 1 vector of the Brownian bridge process {∆(p)
τ (B̄(p)(r) − rB̄(p)(1)) : r ∈ [ω, 1]} with

∆
(p)
τ (∆

(p)
τ )> ≡ Ξ(p)(τ, τ),and thus it follows from the continuous mapping theorem that(√

T ρ̂
(p)
τ,T , V̂τ,p

)
→d

(
∆(p)
τ B̄(p)(1),∆(p)

τ V̄(p)(∆(p)
τ )>

)
.

Thus, we obtain Ŝ
(p)
τ →d B̄(p) (1)> (V̄(p))−1B̄(p)(1). This completes the proof.

Proof of Theorem 5. Under both fixed and local alternative, the argument used in
Theorem 4 gives √

T
(
ρ̂

(p)
τ,[Tr] − ρ

(p)
τ

)
= r−1Λ(p)

τ B̄(p)
T,τ (r) + op(1),

thereby yielding V̂τ,p ⇒ (Λ
(p)
τ ∆

(p)
τ )V̄(p)(Λ

(p)
τ ∆

(p)
τ )

>
.

(a) Under the fixed alternative, we have
√
T ρ̂

(p)
τ,T = Λ

(p)
τ B̄(p)

T,τ (1) +
√
Tρ

(p)
τ + op(1), where

the right-hand side diverges in probability as T →∞. Since the critical value we use is finite
in probability from Theorem 4, we obtain the desired result.

(b) Under the local alternative,
√
T ρ̂

(p)
τ,T = Λ

(p)
τ B̄(p)

T,τ (1) + ξ
(p)
τ + op(1). It follows that

Ŝ(p)
τ →d

{
B̄(p)(1) + (Λ(p)

τ ∆(p)
τ )−1ξ(p)

τ

}> (
V̄(p)

)−1 {
B̄(p)(1) + (Λ(p)

τ ∆(p)
τ )−1ξ(p)

τ

}
.

This completes the proof.
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Appendix D. Partial Cross-Quantilogram

For 1 ≤ i, j ≤ l, let 1ij = 1[yit ≤ qi,t(τi), yjt ≤ qj,t(τj)] and define

VT,ij =
1√
T

T∑
t=1

(1ij − E [1ij]) and Wi,T =
1√
T

T∑
t=1

xitψτi (yit − qi,t(τi)) .

Proof of Theorem 6. We first consider (a). The correlation matrix Rτ̄ is symmetric and
R̂−1
τ̄ − R−1

τ̄ = −R̂−1
τ̄ (R̂τ̄ − Rτ̄ )R

−1
τ̄ . It follows that vec(P̂τ̄ − Pτ̄ ) = −Pτ̄ ⊗ P̂τ̄vec(R̂τ̄ − Rτ̄ ),

which implies
√
T (p̂τ̄ ,12 − pτ̄ ,12) = −

l∑
i=1

l∑
j=1

pτ̄ ,1ip̂τ̄ ,2j
√
T (r̂τ̄ ,ij − rτ̄ ,ij).

Following the line of proof of Theorem 1, we can show P̂τ̄ = Pτ̄ + op(1) and also have√
T (r̂τ̄ ,ii − rτ̄ ,ii) = op(1) for i = 1, . . . , l, from argument in Lemma 2.1 of Arcones (1998).

Thus, we have

√
T (p̂τ̄ ,12 − pτ̄ ,12) = −

∑
1≤i,j≤l
i 6=j

pτ̄ ,1ipτ̄ ,2j
√
T (r̂τ̄ ,ij − rτ̄ ,ij) + op(1).

Proposition A5 implies

√
T (r̂τ̄ ,ij − rτ̄ ,ij) = VT,ij +∇1G

>
ij

√
T{β̂i(τi)− βi(τi)}

+∇2G
>
ij

√
T{β̂j(τj)− βj(τj)}+ op(1),

for 1 ≤ i, j ≤ l with i 6= j. Since VT,ij = VT,ji and ∇2Gij = ∇1Gji for 1 ≤ i, j ≤ l,

√
T (p̂τ̄ ,12 − pτ̄ ,12) = −

∑
1≤i,j≤l
i 6=j

pτ̄ ,1ipτ̄ ,2jVT,ij −
l∑

i=1

λ>τ̄ i
√
T{β̂i(τi)− βi(τi)}+ op(1),

where λτ̄ i is defined in Theorem 6. Proposition A4 implies

√
T (p̂τ̄ ,12 − pτ̄ ,12) = −

∑
1≤i,j≤l
i 6=j

pτ̄ ,1ipτ̄ ,2jVT,ij +
l∑

i=1

λ>τ̄ iDi(τi)
−1Wi,T + op(1).

The asymptotic normality can be established by using the central limit theorem for mix-
ing random vectors. The proofs of (b) and (c) are similar to those of Theorems 2 and 4,
respectively, and thus we omit the details.
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Appendix E. Tables and Figures

Table 1. (size) Empirical rejection frequency of the Box-Ljung test statistic Q̂
(p)
τ based on

the bootstrap procedure
(VAR with DGP1 and the nominal level 5%)

Quantiles (τ1 = τ2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95

500 1 0.051 0.025 0.037 0.045 0.040 0.043 0.043 0.033 0.047
2 0.017 0.032 0.043 0.072 0.068 0.060 0.057 0.036 0.012
3 0.011 0.022 0.051 0.073 0.066 0.055 0.050 0.032 0.010
4 0.007 0.022 0.047 0.062 0.059 0.057 0.046 0.026 0.008
5 0.009 0.025 0.035 0.052 0.051 0.052 0.054 0.027 0.006

1000 1 0.033 0.030 0.037 0.048 0.047 0.039 0.037 0.052 0.042
2 0.018 0.037 0.045 0.051 0.043 0.046 0.052 0.041 0.015
3 0.011 0.031 0.049 0.056 0.044 0.054 0.045 0.028 0.006
4 0.013 0.027 0.049 0.053 0.041 0.055 0.041 0.022 0.008
5 0.007 0.022 0.044 0.040 0.044 0.040 0.036 0.021 0.006

2000 1 0.038 0.034 0.040 0.034 0.034 0.048 0.050 0.034 0.054
2 0.028 0.025 0.043 0.035 0.045 0.051 0.050 0.035 0.024
3 0.023 0.033 0.031 0.045 0.050 0.045 0.042 0.029 0.018
4 0.017 0.023 0.042 0.052 0.038 0.036 0.038 0.025 0.016
5 0.009 0.025 0.038 0.038 0.035 0.035 0.034 0.019 0.014

Notes: The first and second columns report the sample size T and the number of lags p for the Box-

Ljung test statistics Q̂
(p)
τ , respectively. The rest of columns show empirical rejection frequencies

based on bootstrap critical values at the 5% significance level. The tuning parameter γ is set to be

0.01.
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Table 2. (power) Empirical rejection frequency of the Box-Ljung test statistic Q̂
(p)
τ based

on the bootstrap procedure
(VAR with DGP2 (GARCH-X process))

Quantiles (τ1 = τ2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95

500 1 0.361 0.701 0.722 0.383 0.042 0.383 0.713 0.684 0.362
2 0.303 0.610 0.584 0.257 0.063 0.231 0.589 0.589 0.300
3 0.270 0.541 0.491 0.202 0.053 0.174 0.467 0.515 0.246
4 0.230 0.451 0.403 0.172 0.058 0.126 0.378 0.447 0.208
5 0.203 0.393 0.344 0.134 0.060 0.115 0.314 0.386 0.177

1000 1 0.751 0.948 0.942 0.638 0.048 0.619 0.951 0.952 0.760
2 0.708 0.916 0.912 0.425 0.046 0.431 0.908 0.932 0.712
3 0.651 0.877 0.845 0.322 0.052 0.315 0.849 0.897 0.651
4 0.589 0.838 0.784 0.255 0.048 0.250 0.778 0.854 0.596
5 0.537 0.801 0.716 0.203 0.042 0.190 0.714 0.809 0.563

2000 1 0.969 0.999 0.999 0.905 0.044 0.923 0.999 0.998 0.974
2 0.965 1.000 0.999 0.808 0.053 0.817 0.999 1.000 0.979
3 0.959 1.000 0.997 0.688 0.053 0.673 0.998 1.000 0.967
4 0.944 1.000 0.990 0.585 0.047 0.573 0.994 0.999 0.957
5 0.930 1.000 0.982 0.510 0.037 0.485 0.987 0.997 0.938

Notes: Same as Table 1.
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Table 3. Empirical Rejection Frequencies of the sup-version of the Box-Ljung test statistic
supτ∈T Q̂

(p)
τ based on the bootstrap procedure

(VAR with DGP1/DGP2 and the nominal level 5%)
T p DGP1 (size) DGP2 (power)

500 1 0.004 0.624
2 0.007 0.460
3 0.008 0.356
4 0.008 0.265
5 0.009 0.221

1000 1 0.004 0.976
2 0.011 0.946
3 0.006 0.895
4 0.003 0.825
5 0.007 0.765

2000 1 0.012 1.000
2 0.015 1.000
3 0.020 1.000
4 0.020 1.000
5 0.017 0.999

Notes: The first and second columns report the sample size T and the number of lags p for the sup-

version of the Box-Ljung test statistic supτ∈T Q̂
(p)
τ , respectively. The sup-version test statistic is the

Box-Ljung test statistic maximized over nine quantiles τi= 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9and

0.95. The third and fourth columns show empirical rejection frequencies based on bootstrap critical

values at the 5% significance level. The tuning parameter γ is set to be 0.01.
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Table 4. (size) Empirical Rejection Frequencies of the Self-Normalized Statistics
(VAR with DGP1 and the nominal level: 5%)

Quantiles (τ1 = τ2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95

500 1 0.043 0.000 0.000 0.007 0.003 0.013 0.007 0.000 0.047
2 0.090 0.010 0.007 0.003 0.003 0.003 0.000 0.003 0.127
3 0.130 0.007 0.000 0.007 0.003 0.000 0.003 0.000 0.143
4 0.150 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.167
5 0.187 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.177

1000 1 0.010 0.013 0.010 0.013 0.020 0.003 0.007 0.003 0.007
2 0.023 0.007 0.000 0.007 0.000 0.003 0.003 0.007 0.037
3 0.040 0.003 0.010 0.000 0.007 0.003 0.007 0.000 0.047
4 0.043 0.000 0.007 0.000 0.007 0.003 0.003 0.000 0.047
5 0.047 0.000 0.007 0.000 0.000 0.000 0.003 0.000 0.053

2000 1 0.013 0.030 0.017 0.017 0.033 0.013 0.020 0.017 0.027
2 0.007 0.000 0.007 0.007 0.027 0.010 0.027 0.017 0.020
3 0.017 0.000 0.003 0.003 0.013 0.010 0.003 0.003 0.013
4 0.013 0.000 0.003 0.000 0.010 0.007 0.003 0.000 0.013
5 0.010 0.003 0.003 0.000 0.007 0.003 0.000 0.000 0.017

Notes: The first and second columns report the sample size T and the number of lags p for the

test statistics Q̂
(p)
τ , respectively. The rest of columns show empirical rejection frequencies given

simulated critical values at 5% significance level. The trimming value ω is set to be 0.1.

Table 5. (power) Empirical Rejection Frequencies of the Self-Normalized Statistics
(VAR with DGP2: GARCH-X process)

Quantiles (τ1 = τ2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95

500 1 0.067 0.230 0.297 0.077 0.007 0.150 0.300 0.253 0.050
2 0.030 0.070 0.113 0.033 0.000 0.037 0.113 0.077 0.010
3 0.047 0.010 0.043 0.010 0.000 0.017 0.023 0.020 0.023
4 0.063 0.007 0.023 0.000 0.000 0.010 0.013 0.003 0.050
5 0.120 0.003 0.007 0.003 0.000 0.003 0.003 0.000 0.080

1000 1 0.347 0.643 0.683 0.313 0.010 0.323 0.673 0.663 0.317
2 0.153 0.523 0.527 0.177 0.020 0.180 0.543 0.463 0.157
3 0.063 0.300 0.347 0.090 0.010 0.097 0.377 0.283 0.063
4 0.033 0.210 0.223 0.050 0.000 0.037 0.243 0.153 0.017
5 0.047 0.097 0.133 0.030 0.000 0.023 0.127 0.097 0.020

2000 1 0.757 0.917 0.923 0.663 0.030 0.693 0.940 0.920 0.707
2 0.577 0.873 0.917 0.513 0.013 0.540 0.883 0.863 0.577
3 0.427 0.787 0.860 0.400 0.007 0.397 0.800 0.810 0.390
4 0.270 0.680 0.807 0.323 0.017 0.297 0.740 0.680 0.250
5 0.197 0.567 0.700 0.223 0.003 0.213 0.680 0.590 0.163

Notes: Same as Table 4.
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Figure 1. Sup-version Box-Ljung test statistic supτ∈T Q̂
(p)
τ for each lag p to detect directional

predictability from stock variance to stock return. For the low range, we set T = [0.1, 0.3]and

τi= 0.1 + 0.02kfor k = 0, 1, . . . , 10.We let τ1= τ 2for ρ̂τ (k).For the high range, we set T = [0.7, 0.9]
and τi= 0.7 + 0.02k for k = 0, 1, . . . , 10. The dashed lines are the 95% bootstrap confidence in-

tervals centred at the null hypothesis.
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Figure 2(a). The sample cross-quantilogram ρ̂τ (k) for τ2= 0.1 to detect directional predictability

from stock variance to stock return. Bar graphs describe sample cross-quantilograms and lines are

the 95% bootstrap confidence intervals centred at zero.
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Figure 2(b). Box-Ljung test statistic Q̂
(p)
τ for each lag p and quantile τ using ρ̂τ (k) with τ2= 0.1.

The dashed lines are the 95% bootstrap confidence intervals centred at zero.
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Figure 3(a). The sample cross-quantilogram ρ̂τ (k) with τ2= 0.9 to detect directional predictability

from stock variance to stock return. Same as Figure 1(a).
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Figure 3(b). Box-Ljung test statistic Q̂
(p)
τ for each lag p and quantile τ using ρ̂τ (k) with τ2= 0.9.

Same as Figure 1(b).
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Figure 4. The sample cross-quantilogram ρ̂τ (k). Bar graphs describe sample cross-quantilograms

and lines are the 95% bootstrap confidence intervals centred at zero.
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Figure 5. The sample partial cross-quantilogram ρ̂τ̄ |z(k). Bar graphs describe sample partial

cross-quantilograms and lines are the 95% bootstrap confidence intervals centred at zero.
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