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Abstract 

Technological advances in experimental neuroscience are generating vast quantities of data, 

from the dynamics of single molecules to the structure and activity patterns of large 

networks of neurons. How do we make sense of these voluminous, complex, disparate and 

often incomplete data? How do we find general principles in the morass of detail?  

Computational models are invaluable and necessary in this task and yield insights that 

cannot otherwise be obtained. However, building and interpreting good computational 

models is a substantial challenge, especially so in the era of large datasets.  Fitting detailed 

models to experimental data is difficult and often requires onerous assumptions, while 

more loosely constrained conceptual models that explore broad hypotheses and principles 

can yield more useful insights. 

  



Introduction 

By nature, experimental biologists collect and revere data, including the myriad details that 

characterize the particular system they are studying.  At the same, as the onslaught of data 

increases, it is clear that we need tools that allow us to crisply extract understanding from 

the data that we can now generate.  How do we find the general principles hiding among 

the details, and how do we understand which details are critical features of a process, and 

which details can be approximated or ignored while still permitting insight into an important 

biological question?  Intelligent model building coupled to disciplined data analyses will be 

required to progress from data collection to understanding. 

Computational models differ in their objectives, limitations and requirements. Conceptual 

models examine the consequences of broad assumptions. These kinds of models are useful 

for conducting rigorous thought experiments: one might ask how noise impacts latency in a 

forced choice between multiple alternatives [1], or how network topology determines the 

fusion and rivalry of visual percepts [2]. While conceptual models must be constrained by 

data in the sense that they cannot violate known facts about the world, they do not strive to 

assimilate or reproduce detailed experimental measurements. Phenomenological data-

driven models aim to capture details of empirically observed data in a parsimonious way. 

For example, reduced models of single neurons [3,4] can often capture the behavior of 

neurons, but with simplified dynamics and few parameters. These kinds of models are 

useful for understanding 'higher level' functions of a neural system, be it a dendrite, a 

neuron or a neural circuit [5**] that, in the appropriate context, are independent of low-

level details. Used carefully, they can tell us biologically relevant things about how nervous 

systems work without needing to constrain large numbers of parameters.  Detailed data-

driven or “realistic” models attempt to assimilate as much experimental data as are 

available and account for detailed observations at the same time. Successful examples 

might include detailed structural models of ion channels that capture voltage-sensing and 

channel gating [6], or carefully parameterized models of biochemical signaling cascades 

underlying long-term potentiation [7].  With notable exceptions, models of this kind are 

often the least satisfying, as they can be most compromised by what hasn’t been measured 

or characterized [8**]. 



How should we approach computational modelling in the era of ‘big data’?  The non-linear 

and dynamic nature of biological systems is a key obstacle for building detailed models 

[8**,9**] even when large amounts of data are available. For example, even well-

characterized neural circuits such as crustacean CPGs that have full connectivity diagrams 

have not, to date, been successfully modelled in a level of detail that incorporates all of 

what is known about the synaptic physiology, intrinsic properties and circuit architecture 

[10]. As a consequence, there is still a big role for conceptual models that tell investigators 

what kinds of processes may underlie the data [11], or, more importantly, what potential 

mechanisms one should rule out [12,13*]. 

Relating data to models 

The Hodgkin-Huxley [14] model stands almost alone in its level of impact and in the way it 

achieved a more-or-less complete fit of the data. In hindsight their success came from 

extraordinarily good biological intuition about how action potentials are generated and a 

clever choice of experimental preparation. Their model revealed fundamental principles of 

how a ubiquitous phenomenon – the spike, or action potential – resulted from few 

processes, namely two voltage-dependent membrane currents mediated by separate ionic 

species. 

By contrast, the success of subsequent attempts to fit and model the biophysics of more 

complex neuronal conductances, neurons and circuits has been less dramatic – although 

insight into the roles of specific currents in neuronal dynamics has certainly been achieved 

[6,14,15,16*,17,18]. Understanding why this is the case requires investigators to step back 

and view the problem in a general setting. Biological systems are assembled from many 

component enzymes, signaling molecules and cellular structures. Modelling these 

components and their interactions produces complex nonlinear dynamical systems with 

multiple parameters for each component. For example, even if one specifies quite rigidly the 

desired output of a neuronal network, the underlying parameters that can give rise to these 

properties is weakly constrained as multiple solutions to neuronal and network dynamics 

are found [19,20]. Subsequent work, informed by this general finding, explored families of 

models with parameters scattered over plausible ranges [21,22,23,24*]. Although these 

studies abandoned the idea of finding unique fits to data, they nonetheless revealed 



important principles about how specific combinations of conductances contribute to 

neuronal and network behavior [22,23], and how temperature-robust neuronal function 

might emerge in cold-blooded animals that experience significant changes in temperature 

[21,24*]. 

There are fundamental reasons why it is challenging to fit large numbers of parameters in 

biological models [9**,25]. First, the models are typically nonlinear, so the relation between 

the parameters and the output can be complicated and many-valued. Averages of measured 

parameters can give rise to non-observed behavior [26] and models can be exquisitely 

sensitive to measured parameters [27,28,29,30]. The value of averaging as a means of 

combating experimental noise might thus be obviated by the possibility that the average 

values are not valid parameter combinations themselves. Second, biological systems have 

degenerate pathways and components, meaning that properties and functions of 

structurally distinct components overlap. While this confers robustness to the systems 

themselves, it means that models can be remarkably insensitive to many combinations of 

parameters [5**,21,22,23,27,29,30,31]. This ‘sloppy’ property of biological systems is well-

documented in systems biology [8**] and neuroscientists may benefit from a wider 

appreciation of the tribulations and successes of model building in this sister field [32]. 

Sloppiness (Figure 1) means that models with large numbers of parameters exhibit relatively 

few sensitive directions in local regions of parameter space, although these directions are 

not generically aligned with parameter axes. Instead, the sensitive (and insensitive) 

directions are comprised of mixtures of parameters (Figure 1c), meaning that performance 

of a detailed model will be severely compromised by poor measurement, or ignorance of 

even a single parameter [8**]. A recent, elegant modelling study of oculomotor integration 

[5**] revealed a handful of sensitive directions in the high-dimensional parameter space of 

a complex neuronal circuit model (Figure 1d). The model permitted fresh insight into the 

trade-offs between structural and functional properties of a circuit and did so by 

constraining model behavior rather than measured parameters. As this study illustrates, 

useful insight into circuit function can be obtained from phenomenological matching of the 

overall model behavior to experimental data, provided the non-sloppy, or ‘stiff’, parameter 

combinations are identified [33]. 



A third reason for the difficulty of the ‘fitting problem’ arises because  biological systems are 

intrinsically variable [34]. This variability is well-appreciated in the context of single neuron 

parameters, where neurons with highly stereotyped properties exhibit surprisingly large 

variability in their membrane conductance expression [20,35,36,37,38]. High variability is 

present wherever one looks , whether it is the synaptic connectivity of well-defined neural 

circuits [39,40,41,42] or the behavior of entire animals [43]. As a consequence, the number 

of valid, distinct parameter sets – should they be accessible – can equal the number of 

biological repeats of an experiment. This kind of variability is not noise; it represents 

genuinely different parameter combinations that the biological system has found. For this 

reason, understanding the regulatory logic of the nervous system is of fundamental 

importance [44**]. 

In an age when increasingly voluminous and complex datasets are demanding 

interpretation, these fundamental model-fitting problems are sobering. However, there are 

direct means of taming these difficulties by exploiting the resolution and high-

dimensionality of the data themselves. An elegant analysis of the requirements for fitting a 

multicompartment model [31] showed that if one could access, at high temporal resolution, 

the membrane voltage of each compartment in a neuron, then one can recover the 

densities of multiple voltage-gated conductances – providing the identity and kinetics of the 

conductances are known. At the time this study was published, such measurements seemed 

impractical. Nearly ten years later, we are on the verge of being able to make such 

measurements thanks to new molecular tools and improved microscopy. 

Advances in statistical methods and fitting algorithms are accompanying advances in data 

collection. Many of these exploit fast computers and numerical methods such as Monte 

Carlo sampling to solve complex statistical inference problems, such as inferring synaptic 

inputs from noisy physiological traces [45,46*]. Knowledge of the general properties of the 

system permits ill-posed problems to be regularized, allowing noisy or incomplete data to 

yield informative measurements [47*,48]. Statistical inference has other important roles 

aside from making biological parameter values accessible. Oftentimes, inference can be 

performed in a way that incorporates important assumptions – such as the presence of 

interneuronal connections in a network – thus embedding a modelling question in the data 

analysis task. Such statistical modelling approaches can yield valuable hidden information, 



such how common noise sources may explain population activity in the retina [49**] and 

how the statistics of complex multiunit activity can encode aversive and appetitive taste 

[50,51*](Figure 2). 

Alternative strategies for fitting data, including evolutionary algorithms [52,53] and dynamic 

state estimation [29] have also been developed to exploit multiple, time-series 

measurements. In spite of the sophistication of current data analysis techniques and the 

increasing richness and quality of data, any model that is constrained by data is only as 

sound as the necessary assumptions upon which it rests: even incorrect models can fit the 

data. 

Conceptual models as tools for explaining data and asking “what if?” 

The mammalian prefrontal cortex (PFC) is one of the most complex and mysterious 

structures in neuroscience. Single-unit activity from tens to hundreds of neurons reveals a 

diverse and puzzling array of activity profiles during behavioral tasks, with no obvious 

relation to external variables. Faced with a snapshot of data from a miniscule and only 

loosely identified population of neurons, a recent study was nonetheless successful in 

shedding light on how behavioral output can be represented in this brain region 

[54**](Figure 3). The role of the computational model in this study was not to fit and explain 

the data in painstaking detail – far too many unknowns exist for this to be practical even if 

the fitting problem could be solved. Instead, the authors appealed to the general properties 

of an abstract, recurrent neural network to explain ‘how’ such a structure could represent 

the external world in its internal state. In spite of the gulf between the unknown and 

complex properties of the PFC and the simpler and more abstract nature of the model, a 

striking agreement was evident in the way population activity evolved during a decision. 

Similarly, a wealth of neurophysiological and behavioral data is emerging from models of 

motor sequence learning and navigation. For example, the brain structures involved in bird 

song learning are still being mapped and characterized. Nonetheless, deep insights into the 

nature of reinforcement learning [55] and temporal sequence learning [56**] have emerged 

from modelling studies that focused on conceptual, rather than detailed features of 

experimental data. Similarly, the power of C elegans in linking circuit dynamics to behavior 

was recently demonstrated in a combined experimental and modelling study of chemotaxis 



[57*]. Notably, this study used phenomenological models to characterize single neuron 

dynamics that informed a behavioral model of active sensing. 

Conceptual models are not confined to ‘high level’ neurophysiological phenomena such as 

decision making and learning. Low level, mechanistic phenomena such as how protein 

synthesis impinges on synaptic plasticity can be studied using computational models 

without attempting to parameterize every molecule involved. A recent study by O’Donnell 

and Sejnowski [58*] shows that memory generalization can emerge from diffusion of 

plasticity proteins in dendritic trees. Similarly, a coarse model of activity dependent ion 

channel regulation has recently helped explain physiologically important expression 

patterns in the mRNA of ion channels in identified neurons, while accounting for cell-to-cell 

variability [44**,59]. Building more realistic and detailed molecular models is becoming 

more feasible as imaging and subcellular biochemistry are providing more data to constrain 

these models [60], but there will always be a role for conceptual models – especially in 

gaining intuition and in situations where data-fitting is impractical for reasons we have 

already discussed. 

A skeptic might worry that conceptual models can be adjusted ad-hoc, or post-hoc, to agree 

with data and thus be consistent with any finding. If this were the case, conceptual models 

would only make vacuous statements about the world and not generate new 

understanding. However, many conceptual models can be falsified, and can stimulate 

important, fruitful research programs in experimental neuroscience.  For example, the 

oscillatory interference model of grid cell formation was proposed very soon after the 

discovery of grid cells [61]. The power of the oscillatory interference model was that it used 

a simple mechanism – interference – and combined it with a well-documented 

phenomenon – theta oscillations – to account for a puzzling observation. However, recent 

work [62*], motivated by tension between this model and a rival theory, the continuous 

attractor model [63], found compelling evidence for the latter. It is important to note how 

much has been learned in the wake of these modelling attempts, irrespective of whether 

they are correct. Deeper understanding of intrinsic cellular properties, network dynamics 

and robustness of alternative coding schemes [64] have all descended from simple 

conceptual models. 



Exploring an artificial model universe comes with its own risks. If exploration is done 

without reality-checking assumptions, it is easy to fall into the trap of building irrelevant 

models. There are infinitely many models consistent with any one piece of experimental 

data, so it is important to avoid just-so explanations that can arise when a model spuriously 

matches an observed phenomenon. Well-conceived models rest on underlying principles 

that ensure the model does not only work under idiosyncratic circumstances. Sometimes 

this can be done formally; for example, physiological models of central pattern generating 

neurons and networks can be reduced to the underlying family of dynamical systems, 

permitting an understanding of intrinsic neuronal dynamics and network interactions that is 

model-independent [4,65]. In other cases, strong biological intuition and close contact with 

the experimentalist, or experimental preparation can combat fragile or spurious modelling 

results. 

All experimentalists have, on occasion, seen a piece of new data, and said, “Of course!”  

There is a sense of recognition that comes from seeing the answer to a previously puzzling 

question. The best computational models are equally illuminating: an idea or a principle is 

revealed and recognized as part of the path to understanding a biological conundrum. 

Principled model building will be ever more important in the era of big data, as it is only 

principled model construction and evaluation that will allow us to understand which details 

are important for what functions of the brain. 
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Figure Legends 

 

Figure 1 

In high-dimensional biological models there are often many parameter combinations that 

can co-vary without significant effect on the behavior of the model, known as sloppy 

parameter combinations [8**]. (A) Elliptical level sets in the deviation of model output from 

a nominal value (computed from the Hessian, or second derivative) shows a direction in 

which parameter variation does not change model behavior (sloppy direction) and an 

orthogonal direction in which the model is sensitive (stiff). The major and minor axes of 

these ellipses (and thus the relative sensitivity to the stiff/sloppy directions) are determined 

by the eigenvalues, 𝜆𝑖, and the projections of these onto the parameter axes (Ө1, Ө2) 

parameter axes are denoted by P1 and I1, respectively. (B) Eigenvalues computed for 17 

different systems biology models [8**], including detailed models of circadian 

transcriptional circuits and yeast metabolism (a-q) are spread evenly across many orders of 

magnitude. Only the first few eigenvectors have significant effects on the behavior of the 

model, thus only a few parameter directions determine model behavior. (C) The alignment 

of the ‘error ellipsoids’ I/P relative to model parameters shows that most eigenvectors tend 

to be composed of many underlying parameters (tend to be skewed). Thus, while there are 

relatively few stiff directions in parameter space that change model behavior, these 



directions usually have contributions from many experimentally measurable parameters. (D, 

left) A computational model of an oculomotor circuit [5**] shows similar sensitivity to only 

four or five parameter combinations (D, right) to the systems biology models (A-C). The 

sensitive directions, projected onto the underlying parameter axes (presynaptic input 

weights) have substantial contributions from all parameters. Figures (A-C) reproduced from 

[8**], (D) Reproduced from [5**]. 

 

Figure 2 

A Markov Models describing the statistics of transitions in multiunit network activity in 

sensory (taste) cortex [50,51*] during delivery of one of four tastes (water – W, salt – Na, 

sugar – Suc, acid – CA). (A) Baseline activity before tastes were presented was disorganized: 

all transitions are possible. After taste presentation the networks entered one state in a 

probabilistic way, determined by the stimulus. Each state is characterized by distinct 

combinations of neural firing patterns (raster plots in (B)). The network can remain in the 

early state or advance to the late state. (B) Spiking data across four trials illustrates how the 

same network of neurons leaves a baseline state to enter an early state, which entirely 

depends on the stimulus, then advances to the late state after a certain amount of time. 

Each color represents a state that can be distinguished from all other states by the network 

firing activity. Thus given only spiking data the taste stimulus can be inferred based on the 

state of the network. An important feature of this statistical model is that the variable 

latencies of discrimination ‘decision’ events is evident, something that is lost if activity is 

averaged over trials. Figure reproduced from [50]. 



 

Figure 3 

A conceptual/phenomenological model [66] of recurrent networks such as the pre-frontal 

cortex (PFC) can account for the observed data even when precise understanding of the 

underlying, anatomy and detailed mechanisms is lacking. The experimental task involves a 

monkey looking at moving, colored dots and reporting the perceived direction of 

movement, or the color, depending on a context cue. Here, the same physiological data 

regarding the color and motion are fed into the network, along with a context cue, and the 

model reliably selects the correct choice. Thus without knowing the precise 

molecular/network mechanisms of the PFC the authors were still able to postulate how such 

a network might work and create testable hypotheses. Figure reproduced from [54**]. 
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