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ABSTRACT
Background It is unknown whether lesions in human
TB are hypoxic or whether this influences disease
pathology. Human TB is characterised by extensive lung
destruction driven by host matrix metalloproteinases
(MMPs), particularly collagenases such as matrix
metalloproteinase-1 (MMP-1).
Methods We investigated tissue hypoxia in five
patients with PET imaging using the tracer [18F]-
fluoromisonidazole ([18F]FMISO) and by
immunohistochemistry. We studied the regulation of
MMP secretion in primary human cell culture model
systems in normoxia, hypoxia, chemical hypoxia and by
small interfering RNA (siRNA) inhibition.
Results [18F]FMISO accumulated in regions of TB
consolidation and around pulmonary cavities,
demonstrating for the first time severe tissue hypoxia in
man. Patlak analysis of dynamic PET data showed
heterogeneous levels of hypoxia within and between
patients. In Mycobacterium tuberculosis (M.tb)-infected
human macrophages, hypoxia (1% pO2) upregulated
MMP-1 gene expression 170-fold, driving secretion and
caseinolytic activity. Dimethyloxalyl glycine (DMOG), a
small molecule inhibitor which stabilises the transcription
factor hypoxia-inducible factor (HIF)-1α, similarly
upregulated MMP-1. Hypoxia did not affect
mycobacterial replication. Hypoxia increased MMP-1
expression in primary respiratory epithelial cells via
intercellular networks regulated by TB. HIF-1α and
NF-κB regulated increased MMP-1 activity in hypoxia.
Furthermore, M.tb infection drove HIF-1α accumulation
even in normoxia. In human TB lung biopsies, epithelioid
macrophages and multinucleate giant cells express
HIF-1α. HIF-1α blockade, including by targeted siRNA,
inhibited TB-driven MMP-1 gene expression and
secretion.
Conclusions Human TB lesions are severely hypoxic
and M.tb drives HIF-1α accumulation, synergistically
increasing collagenase activity which will lead to lung
destruction and cavitation.

INTRODUCTION
Mycobacterium tuberculosis (M.tb) is solely a
pathogen of humans and infects one-third of the
global population, killing 1.5 million people each
year.1 Drug resistance in TB is increasing and there
are relatively few new drugs on the horizon. Novel
approaches to therapy require an understanding of
the immunopathology of TB. Lung tissue destruc-
tion is a hallmark of pulmonary TB2 and is key for

transmission of infection. Reduced tissue oxygen-
ation has been noted in animal models of TB,3 4

but hypoxia in human disease has not been investi-
gated although it may have a significant effect on
the host response. The pathology of human TB is
different from most animal models.2 Furthermore,
although extensive lung damage is found in TB, the
effect of hypoxia on proinflammatory tissue
destruction in TB has not been explored.
Matrix metalloproteinases (MMPs) are emerging

as key proteases causing TB immunopathology.
Recent evidence implicates MMPs, particularly col-
lagenases such as matrix metalloproteinase-1
(MMP-1), as key in driving tissue destruction
during pulmonary TB.5–7 Since MMPs may cause
uncontrolled proteolytic destruction, MMP activity
is tightly regulated at the transcriptional level, by
cleavage of the proenzyme to an active form and
by specific tissue inhibitors of metalloproteinases
(TIMPs) which negatively regulate protease activity.
Regulation of MMPs by hypoxia in TB has not
been studied.
The cellular response to hypoxia is orchestrated

by hypoxia-inducible factor (HIF)-1, a heterodi-
meric transcription factor considered a master regu-
lator of the host response to oxygen deprivation.8 9

In addition to regulating oxygen homeostasis,
emerging evidence implicates HIF-1 in infectious

Key messages

What is the key question?
▸ Is there functionally important hypoxia within

human pulmonary TB lesions?

What is the bottom line?
▸ Human TB lesions are severely hypoxic, and

hypoxia exacerbates matrix metalloproteinase
(MMP)-mediated inflammatory tissue
destruction.

Why read on?
▸ This study uses PET-CT to demonstrate for the

first time that human lung lesions are severely
hypoxic and demonstrates that hypoxia, at the
level seen in humans, potently upregulates
matrix metalloproteinase-1 (MMP-1), a
collagenase central to both cavity formation
and spread of infection.
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and inflammatory diseases.10 HIF-1 is comprised of two subu-
nits: oxygen-responsive HIF-1α and constitutively expressed
HIF-1β. In normoxia, HIF-1α is hydroxylated by prolyl-4-
hydroxylase proteins (PHDs),11 12 allowing binding of the von
Hipple–Lindau protein which targets HIF-1α for proteosomal
degradation.13 Under hypoxic conditions, PHD activity declines,
resulting in HIF-1α accumulation and HIF-1 heterodimer stabil-
isation.14 This HIF-1 complex binds to promoter regions of
hypoxia-inducible genes, upregulating an array of genes, includ-
ing those involved in cell survival, angiogenesis, apoptosis,
erythropoiesis, glucose metabolism and pH regulation.11 HIF is
responsive to a variety of stimuli, with the inflammatory tran-
scription factor NF-κB being of particular importance in modu-
lation of HIF expression.9 The complex interaction between
HIF-1α and NF-κB signifies a synergistic link between hypoxia
and immune responses, indicating a potential role of hypoxia in
driving TB immunopathology.

In this study, we show for the first time that lesions in pulmon-
ary TB infection are severely hypoxic in man. There is heterogen-
eity both within and between lesions in the extent of hypoxia. In
primary human monocyte-derived macrophages (MDMs) and
normal human bronchial epithelial cells (NHBEs), hypoxia syner-
gistically upregulates HIF-1α-dependent MMP-1 (collagenase)
gene expression and secretion during M.tb infection. In addition,
M.tb stabilises HIF-1α even in the absence of hypoxia. HIF-1α
accumulation is necessary for MMP-1 secretion and HIF-1α is
highly expressed in macrophages in human TB granulomas.

METHODS
Full methods are provided in the online supplement.

Patient recruitment
Patients were recruited from Imperial College Healthcare NHS
Trust with a confirmed microbiological diagnosis of TB, either

Figure 1 [18F] fluoromisonidazole
([18F]FMISO) PET-CT demonstrates
increased tracer uptake within TB
lesions. (A) [18F]FMISO PET-CT images.
Transverse, coronal and sagittal slices
through the [18F]FMISO
target-to-background (TBR) and CT
images of Patient 2. Top row, CT
images show consolidation and a
pulmonary cavity in the right upper
lobe with a smaller, non-cavitating
lesion in the left lung. Middle row,
[18F]FMISO TBR map demonstrates
intense uptake of tracer in the right
upper lobe lesion and the liver, the
site of metabolism of [18F]FMISO.
Bottom row, coregistered CT and TBR
images. (B) TBR values greater than
unity were found for at least one
lesion in all patients (each individual
bar represents one region of interest,
ROI).
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on acid-fast smear and/or M.tb culture. All patients had abnor-
mal plain chest radiographs and had received less than 2 weeks
of anti-TB therapy. Informed consent was obtained from all
study participants.

18F-MISO PET-CT scans
PET-CT scans were performed on a Siemens mCT (Siemens
Medical, Erlangen, Germany) at the Department of Nuclear
Medicine Charing Cross Hospital, Imperial College NHS Trust,
London. [18F]fluoromisonidazole ([18F]FMISO) was synthesised
in the Wolfson Brain Imaging Centre, University of Cambridge.
Patient scanning protocol and data analysis are described in the
online supplement.

M.tb culture
M.tb H37Rv was cultured in Middlebrook 7H9 medium as pre-
viously described.15

Cell culture experiments
Monocyte-derived primary human macrophages were infected
with M.tb H37Rv as described.15 Primary NHBEs (Lonza,
Slough, UK) were cultured and stimulated with conditioned
media from Mtb-infected monocytes (CoMTb) and A549 cells
transiently transfected as described.16

Hypoxia workstation
A custom-designed hypoxia workstation was commissioned for
the biological safety level 3 facility (Coy Laboratories, USA).

Casein zymography
Casein zymography was performed as previously described.15

Real-time PCR
Macrophages were lysed using Tri-Reagent (Sigma-Aldrich,
Dorset, UK), and total RNA was extracted using PureLink RNA
Mini Kit (Invitrogen, Paisley, UK). RNA was reverse transcribed
using QuantiTect Reverse Transcriptase Kit (Qiagen,
Manchester, UK). Quantitative PCR reactions were performed
in an ABI Prism 7700 (Applied Biosystems, Paisley, UK).

Measurement of MMP and TIMP concentrations
Total MMP and TIMP secretion in cell culture supernatants was
measured by ELISA (R&D Systems, Abdingdon, UK) or on the
Luminex200 platform using MMP Luminex multiplex array
(R&D Systems) according to the manufacturer’s instructions.
The minimum level of detection for MMP-1 was 10 pg/mL.

HIF-1α western analysis
Western blotting was performed using anti-HIF1α Ab (BD
Biosciences, UK) and goat anti-mouse IgG horseradish

Figure 2 Severe hypoxia is present
within human pulmonary TB lesions.
(A) Patlak Ki images from dynamic
PET-CT scanning for Patient 2
demonstrate intense retention of [18F]
fluoromisonidazole ([18F]FMISO) in the
right upper lobe of the lung (middle
row). Coregistered PET-CT images
(bottom row) confirm localisation of
hypoxia to the region of the right
upper lobe cavity. (B) Regional Ki
values demonstrate heterogeneous
trapping of [18F]FMISO within and
between patients. The hypoxia
threshold (0.00037/min) was
determined from the mean+3 SDs of
the Ki values in the normoxic lateral
muscle background regions across the
patient group. (C) Time–activity
measurements of five regions of
interest (ROIs) from Patient 3
demonstrate high tissue levels
compared with peripheral blood
values.
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peroxidase (HRP)-conjugate secondary Ab ( Jackson
ImmunoResearch). Loading control was performed using the
rabbit-anti-β-actin Ab and goat anti-mouse IgG HRP-conjugate
secondary Ab ( Jackson ImmunoResearch). Luminescence was
detected with the enhanced chemiluminescence (ECL) system
(Amersham, UK) according to the manufacturer’s protocol.

Confocal microscopy
Primary human MDMs were infected with M.tb H37RV in
Permanox plastic chamber slides (Thermo Fisher Scientific, UK).
MMP-1 staining was performed using anti-MMP-1 primary Ab
(Abcam, UK) and goat anti-mouse secondary Ab (Abcam)
according to the manufacturers’ instructions. Nuclei were visua-
lised using 4’,6-diamidino-2-phenylindole (DAPI).

siRNA
MDMs were transfected using DharmaFECT 3 transfection
reagent with either non-targeting (NT) control small interfering
RNA (siRNA) or HIF-1α siRNA smartpool (Dharmacon, Fisher
Scientific, Loughborough, UK), according to the supplier’s
instructions.

Immunohistochemistry
HIF-1α immunohistochemistry was performed on formalin-
fixed, paraffin-embedded lung biopsies from six patients with
culture-proved M.tb infection and six non-infected control

samples. Immunohistochemistry staining was performed using
Bond III fully automated staining system with the Bond Polymer
Refine Detection system and associated reagents (Leica
Microsystems, Newcastle-Upon-Tyne, UK). HIF-1α was detected
using HIF1-α antibody (Abcam AB1).

Statistics
Statistical analysis was performed using GraphPad PRISM 6.
Data were analysed with Kruskal–Wallis for comparison
between three or more groups and Dunn’s test for pairwise
comparisons. A p value of 0.05 was considered significant. For
all experiments, bars represent mean values±SD from a
minimum of two independent experiments performed in
triplicate.

RESULTS
Regions of severe hypoxia are present in human pulmonary
TB lesions
To investigate hypoxia in patients with TB, we performed
PET-CT scans in patients who had acid-fast bacilli identified in
respiratory specimens that were subsequently culture confirmed
to be M.tb (patient demographics and microbiology are in
online supplementary table S1). The average duration of pul-
monary symptoms was 2.4 months and all patients were HIV
negative (patient laboratory data are presented in online supple-
mentary table S2). To investigate hypoxia, we used the

Figure 3 Hypoxia increases
Mycobacterium tuberculosis
(M.tb)-driven matrix
metalloproteinase-1 (MMP-1)
expression and secretion by human
monocyte-derived macrophages
(MDMs). (A) Hypoxia (1% pO2)
increases MMP-1 gene expression in
primary human MDMs infected with
M.tb at 24 h. (B) Hypoxia increases
intracellular MMP-1 accumulation on
confocal microscopy at 72 h in MDMs
infected with M.tb (MOI=1) compared
with normoxia or control uninfected
cells. (C) Mtb infection increases
MMP-1 secretion by infected MDMs
greater than LPS (100 ng/mL) in both
normoxia and hypoxia analysed 72 h
after infection. (D) MMP-1 activity is
increased in M.tb-infected but not
control human macrophages analysed
by casein zymography, and hypoxia
further increases caseinolytic activity.
(E) Stabilisation of hypoxia-inducible
factor (HIF)-1α by dimethyloxalyl
glycine (DMOG) (range 0.05–0.5 mM)
significantly increases MMP-1 secretion
analysed by ELISA and proteolytic
activity measured by zymography in a
dose-dependent manner. N=21% O2;
5% CO2, H=1% O2; 5% CO2.
****p<0.0001, ***p<0.001,
**p<0.01, *p<0.05. LPS,
lipopolysaccharide.
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hypoxia-specific tracer [18F]FMISO, which has been used to
study tumour biology.17 [18F]FMISO is selectively trapped in
severely hypoxic regions (pO2<10 mm Hg).18–20 PET-CT scans
in five patients demonstrated extensive uptake of [18F]FMISO in
radiologically abnormal areas of the lung, as assessed by [18F]
FMISO target-to-background (TBR) (figure 1A), with the lateral
muscle used as a background representing normoxic tissue. TBR
values significantly greater than unity were found in one or
more lesions in all patients (figure 1B).

To provide a more specific measure of hypoxia than TBR,
Patlak Ki mapping was applied, which demonstrated the
presence of severe hypoxia within areas of consolidation and
in the regions immediately surrounding pulmonary cavities
(see figure 2A and online supplementary table S3). All patients
had Ki values greater than the hypoxia threshold in at least
one region of interest (ROI) (figure 2B). Heterogeneous levels
of hypoxia were seen within patients with the exception of
Patient 2, who demonstrated evidence of severe hypoxia in all
ROIs. Finally, time–activity curves demonstrated significantly
higher levels of [18F]FMISO within ROIs compared with per-
ipheral blood (figure 2C). Together, these data demonstrate for
the first time the presence of severe hypoxia within TB lesions
in man.

Hypoxia increases M.tb-driven MMP-1 expression in human
macrophages
Next, the effect of hypoxia (1% pO2) on gene expression and
secretion of MMP-1 was investigated. Hypoxia significantly
increased MMP-1 gene expression in M.tb-infected human
MDMs compared with infection in normoxia (21% pO2), result-
ing in a 170-fold increase in MMP-1 mRNA accumulation at 24
h (figure 3A, p<0.0001 by Kruskal–Wallis test). Increased
MMP-1 accumulation under hypoxic conditions in M.tb-infected
MDMs was confirmed by confocal microscopy (figure 3B). In
both normoxia and hypoxia, M.tb was a more potent stimulus to
MMP-1 secretion than lipopolysaccharide (LPS) (figure 3C,
p<0.05 and p<0.01, respectively). Casein zymography demon-
strated that the increased MMP-1 secretion in hypoxia was pro-
teolytically active (figure 3D).

Next, we used dimethyloxalyl glycine (DMOG) to block
prolyl hydroxylase activity, thereby stabilising HIF-1α and acti-
vating the HIF-1 pathway. Consistent with findings in 1% pO2,
DMOG significantly increased MMP-1 secretion in M.tb-infected
macrophages, causing a dose-dependent increase in secretion and
caseinolytic activity (figure 3E). Hypoxia caused no difference in
M.tb CFU 72 h post-infection (data not shown), demonstrating
that intracellular replication of M.tb was not altered.

Figure 4 Hypoxia upregulates matrix metalloproteinase-1 (MMP-1) in human respiratory epithelial cells. (A) Hypoxia increases MMP-1 secretion
from normal human bronchial epithelial (NHBE) cells stimulated with control medium or conditioned media from Mtb-infected monocytes (CoMTb)
incubated in 21%, 5% or 1% oxygen. (B) Dimethyloxalyl glycine (DMOG) (range 0.1–0.25 mM) drives dose-dependent MMP-1 secretion from
CoMTb-stimulated NHBE cells. (C) In silico analysis of the MMP-1 promoter reveals putative hypoxic response element (HRE)-binding sites as well as
consensus NF-κB-binding and AP-1-binding sites. (D) Relative luminescence following transfection of A549 respiratory epithelial cells with either
WT-MMP-1 promoter or a series of MMP-1 promoter deletion constructs in normoxia (solid bars) or hypoxia (shaded bars). The effect of hypoxia in
increasing promoter activity is absent in constructs −1551, −1194 and −517. (E) IKK-β inhibition in hypoxia with SC-514 in CoMTb-stimulated cells
resulted in a dose-dependent decrease in MMP-1 secretion. (F) Site-directed mutagenesis of the NF-κB-binding site at −2878 to −2886 bp
decreases MMP-1 promoter activity in response to CoMTb in normoxia (solid bars) or hypoxia (shaded bars). **p<0.01, *p<0.05. AP-1, activated
protein-1; IKK-β, inhibitor of nuclear factor kappa-B kinase subunit beta; WT, wild type.
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Hypoxia increases M.tb-dependent MMP-1 expression in
respiratory epithelial cells
Next, we investigated the effect of hypoxia on respiratory epi-
thelial cell MMP-1 secretion, as stromal cell networks are
important sources of MMPs in TB.16 CoMTb stimulation of
primary NHBEs in hypoxia (5% and 1% pO2) increased
MMP-1 secretion (figure 4A; p<0.05). Lactate dehydrogenase
(LDH) release assay showed that hypoxia did not increase cell
cytotoxicity (see online supplementary figure S1). Such MMP-1
secretion is potentially open to modification by small molecules,
since stabilisation of HIF-1α by DMOG also increased MMP-1
secretion in CoMTb-stimulated NHBEs in a dose-dependent
manner (figure 4B, p<0.01). In addition, 0.25 mM DMOG
increased NHBE cell MMP-9 secretion and proteolytic activity
on gelatin zymography (see online supplementary figure S2).

There were similar findings in the A549 respiratory epithelial
cell line (see online supplementary figure S3). In silico analysis
of the MMP-1 promoter sequence demonstrated numerous puta-
tive hypoxia response elements which are HIF-1-binding sites, as
well as known NF-κB and activated protein-1 (AP-1)-binding
sites (figure 4C). A549 cells were transiently transfected with
either full-length MMP-1 promoter-reporter genes or truncation
constructs and stimulated with CoMTb in the presence or
absence of hypoxia. In normoxia, deletions upstream of −2941
resulted in increased MMP-1 promoter activity indicating the
presence of inhibitory elements (figure 4D). Deletions down-
stream of −2941 bp from the transcriptional start site reduced
MMP-1 promoter activity. The presence of hypoxia resulted in
increased MMP-1 promoter activity, compared with normoxia,
in deletion constructs upstream of −1551. To investigate
whether NF-κB regulated MMP-1 expression in hypoxia, inhibi-
tor of nuclear factor kappa-B kinase subunit beta (IKK-β) activity
was inhibited by SC-514. IKK-β inhibition significantly
decreased MMP-1 secretion in a dose-dependent manner in nor-
moxia and this effect was more pronounced in hypoxia (figure
4E). Site-directed mutagenesis of the NF-κB-binding site
between −2878 and −2886 bp in the MMP-1 promoter reduced
MMP-1 promoter activity observed in hypoxia (figure 4F;
p<0.01 by Kruskal–Wallis).

M.tb stabilises HIF-1α, driving MMP-1 expression, and
HIF-1α is expressed in TB patient granulomas
Next, we investigated whether M.tb directly affected HIF-1α
accumulation independently of the stimulus from hypoxia. In
respiratory epithelial cells, DMOG and CoMTb stimulation of
A549 cells independently upregulated HIF-1α. Concurrent
exposure to DMOG and stimulation by CoMTb resulted in
maximal accumulation of HIF-1α (figure 5A). In human
MDMs, M.tb infection in normoxia induced stabilisation and
accumulation of HIF-1α peaking at 24 h (figure 5B). Hypoxia
and M.tb infection synergistically drove prolonged and increased
HIF-1α accumulation in MDMs compared with cells exposed to
either stimulus alone, with HIF-1α accumulation detectable
from 4 h after infection (figure 5C). M.tb infection did not
induce HIF-2 accumulation either in normoxia or hypoxia (data
not shown).

To investigate whether HIF-1α regulated MMP-1 expression
during TB infection, we inhibited the activity of HIF-1α in nor-
moxia and hypoxia. The inhibitor LW6 caused a trend to
decreased M.tb-driven MMP-1 secretion in human MDMs in
normoxia, but in hypoxia there was a significant dose-dependent
decrease in MMP-1 secretion (figure 5D; p<0.05). To confirm
this observation, further studies were performed with HIF-1α
siRNA. Western blot analysis demonstrated that targeted but not

NT siRNA decreased HIF-1α protein in M.tb-infected MDMs in
normoxia and hypoxia (figure 6A). HIF-1α siRNA decreased
MMP-1 mRNA accumulation (figure 6B; p<0.0001) and
protein secretion (figure 6C) in both normoxic and hypoxic
conditions (p<0.05). NT siRNA did not suppress MMP-1 gene
expression or protein secretion.

To investigate the relevance of HIF-1α to TB granulomas in
patients, we performed immunohistochemical analysis of lung
biopsy specimens from patients with a confirmed diagnosis of

Figure 5 Mycobacterium tuberculosis (M.tb) infection drives
hypoxia-inducible factor (HIF)-1α accumulation in normoxia. (A) In
A549 cells, conditioned media from Mtb-infected monocytes (CoMTb)
stimulation and dimethyloxalyl glycine (DMOG) (0.25 mM) result in
early HIF-1α stabilisation. Preincubating A549 cells with DMOG
(0.25 mM) and subsequent stimulation with CoMTb markedly increase
HIF-1α accumulation, peaking at 6 h. (B) M.tb infection increases
HIF-1α accumulation and stabilisation in normoxia in primary human
monocyte-derived macrophages (MDMs), peaking at 24 h. (C)
Combined infection with M.tb and exposure to hypoxia cause greater
HIF-1α accumulation than either stimulus alone, peaking at 4 h and
persisting until 24 h. (D) Inhibition of HIF-1α by LW6 (range 50–
100 mM) results in decreased matrix metalloproteinase-1 (MMP-1)
secretion in M.tb-infected MDMs in hypoxia (hatched bars). **p<0.01.
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TB. Epithelioid macrophages and Langerhans giant cells were
immunoreactive for HIF-1α staining within TB granulomas
(figure 6D i,ii) compared with uninfected control lung tissue
(figure 6D iii), demonstrating that TB infection causes HIF-1α
accumulation.

DISCUSSION
In this first detailed study of hypoxia in human TB, we demon-
strate the presence of severe hypoxia within areas of lung con-
solidation and around pulmonary cavities in human TB.
Hypoxia increases gene expression and secretion of MMP-1, a
key collagenase that causes tissue destruction and immuno-
pathology in pulmonary TB. In addition, M.tb infection directly
drives HIF-1α accumulation, which is further increased in
hypoxia to synergistically activate immunopathogenic signalling
pathways.

We demonstrated hypoxia in human TB using [18F]FMISO
PET-CT scanning for the first time in patients with an infec-
tious disease. Hypoxia has not previously been found in man
although reported in animal models of TB, all of which have
somewhat different pathology to human disease.3 4 Until now,
the investigation of hypoxia and TB has focused primarily on
pathogen responses to oxygen restriction, controlled by the
two-component regulation system dosR/dosS (or dosR
regulon).21 22 Direct assessment of hypoxia in vivo typically
involves the utilisation of polarographic oxygen electrodes
which can provide absolute measurements of tissue oxygen-
ation at the sampling location. However, this procedure is tech-
nically demanding and suffers from a number of limitations,
including invasiveness, high susceptibility to sampling errors
and the fact that only easily accessible locations can be

interrogated.23 [18F]FMISO PET-CT scans define regions of
hypoxia without the need for invasive probes, as previously
shown in tumour biology24 and cerebral ischaemia.25 Since
high tracer uptake, as quantified by standardised uptake value
or TBR, may represent high tracer delivery to a ROI rather
than tracer trapping under hypoxic conditions, we determined
the influx rate of [18F]FMISO into the trapped tissue compart-
ment (Ki) so as to more specifically identify tissue hypoxia.
The maximum TB lesion Ki value (0.005/min) is equal to the
highest Ki value in an [18F]FMISO study of head and neck
cancers by Wang et al,26 which puts the degree of hypoxia in
this study into context. Our data reveal that heterogeneity
exists both within individual TB lesions and between lesions,
consistent with the concept of multiple TB microenvironments
existing within a single patient.

The finding of hypoxia within lung lesions directed our cellu-
lar experiments. MMP-1 gene expression and secretion were sig-
nificantly increased in M.tb-infected human macrophages in
hypoxia compared with normoxia and MMP-1 was functionally
active. However, hypoxia had no effect on mycobacterial
growth in our experiments. Diverse lines of investigation are
implicating MMP-1 as a key protease in TB pathology. MMP-1
causes collagen destruction in M.tb-infected transgenic mice6

and M.tb infection upregulates MMP-1 more potently than M.
bovis BCG in human macrophages.15 In presensitised rabbits,
MMP-1 has been shown to have a causal role in pulmonary
cavitation.27 Specifically, the development of cavities within
areas of dense consolidation has been associated with MMP-1/
TIMP imbalance and high intracavitary bacterial burden. In
human TB granulomas, MMP-1 expression is upregulated
606-fold compared with uninfected lung.28 Similarly, MMP-1

Figure 6 Hypoxia-inducible factor
(HIF)-1α is necessary for matrix
metalloproteinase-1 (MMP-1) gene
expression and secretion during
Mycobacterium tuberculosis (M.tb)
infection. (A) HIF-1α western blot at
24 h demonstrates suppression of
HIF-1α protein by HIF-1α siRNA in
monocyte-derived macrophages
(MDMs) in both normoxia and
hypoxia, with no knockdown observed
with non-targeting (NT) siRNA. (B)
HIF-1α siRNA decreases MMP-1 gene
expression at 24 h in M.tb-infected
MDMs incubated in hypoxia. (C)
HIF-1α siRNA causes a significant
decrease in MMP-1 secretion at 48 h
under conditions of normoxia (solid
bars) and hypoxia (hatched bars). No
significant change in MMP-1 gene
expression or secretion is seen with NT
siRNA. (D) Lung biopsies from patients
with pulmonary TB (i, ii) are
immunoreactive for HIF-1α compared
with uninfected control biopsies (iii).
HIF-1α staining is pronounced within
macrophages and multinucleated giant
cells (arrow, ii). Scale bars, 100 mm.
****p<0.0001, *p<0.05. siRNA, small
interfering RNA.
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was the most potently upregulated gene in macrophages from
patients who developed TB compared with those with latent
disease.29 The effect of hypoxia was mimicked by chemically
targeting the pathway with DMOG, which suggests that it may
be possible to therapeutically manipulate the excess inflamma-
tory response in TB using small molecules.

Hypoxia-dependent, monocyte-driven upregulation of
MMP-1 gene expression in human respiratory epithelial cells
required the transcription factor NF-κB. NF-κB and HIF-1α
interact to regulate innate immunity and inflammation.9 10

NF-κB critically regulates MMP activity in TB infection of the
central nervous system,30 but has not been investigated in the
context of hypoxia-driven MMP expression in TB infection.
NF-κB is both directly affected by hypoxia and modulates
HIF-1α expression as well as being regulated by prolyl hydroxy-
lases.31 The precise nature of the interaction between HIF-1α,
prolyl hydroxylases and NF-κB in TB is currently being investi-
gated by our group.

M.tb caused significant accumulation of HIF-1α in direct
infection and via a networking effect even in the absence of
hypoxia, with a synergistic increase in HIF-1α expression in
hypoxia or following treatment with DMOG. To our knowl-
edge, this is the first time that hypoxia-independent HIF-1α sta-
bilisation has been observed in any mycobacterial infection,
although similar effects have been reported in other infec-
tions.32 33 Interestingly, recent gene expression profiling in per-
ipheral whole blood demonstrated significant upregulation of
HIF-1α gene expression in patients with TB compared with
controls.34 Our findings are consistent with the demonstration
of activation of HIF-1α signalling pathways following infection
in a zebrafish model of TB infection.35 We showed expression
of HIF-1α within TB granulomas, localising the activity to
epithelioid macrophages and multinucleate giant cells, which we
have previously shown are key in secretion of several MMPs.15

We demonstrate that HIF-1α regulates MMP-1 expression in
TB. Since the chemical inhibitor LW6 can lack specificity, we
used targeted siRNA to confirm this finding. Consistent with
our data in TB, hypoxia and HIF-1α regulate MMP-driven
tissue destruction in hypoxic fibroblasts within rheumatoid
synovium.36

In summary, we show for the first time that human TB lesions
are severely hypoxic. Hypoxia increases MMP-1 gene expres-
sion and secretion during M.tb infection, and M.tb infection
independently increases HIF-1α activity even under conditions
of normoxia. Taken together, our data suggest the M.tb drives a
HIF-1α-dependent proinflammatory tissue destructive cascade
that may lead to cavitation and promote disease transmission,
representing a potential future therapeutic target in the era of
increasing drug-resistant TB.
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