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Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport the-
ories. We here present a formulation of local equilibrium for interfaces that extends the thermodynamics of the
“dividing surface,” as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By
identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom,
we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The
model is verified under stringent conditions by employing high-precision nonequilibrium molecular dynamics
simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is de-
termined using the surface tension as a “thermometer,” and can be significantly different from the temperatures
of the adjacent phases. Our findings lay new foundations for nonequilibrium interfacial thermodynamics.
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I. INTRODUCTION

Interfacial effects can be of paramount importance for
transport and thermal processes in heterogeneous systems,
and their account is central to several areas of physics (sur-
face and colloid science, capillarity, optics), chemistry (het-
erogeneous reaction, adsorption), biology (membrane traffick-
ing, transduction) and engineering (materials science, interfa-
cial rheology) [1–6]. Consequently, many efforts have been
made in the last century to build a rigorous, thermodynami-
cally admissible description of interfaces at equilibrium and
at nonequilibrium [1–3, 5]. Broadly, we may separate the
strategies used so far into two complementary categories: the
smooth - or diffuse - interface approach, and the sharp inter-
face approach [3–5].

The diffuse interface model examines continuous profiles
of local densities and compositions, that exhibit large but
bounded gradients from one phase to the other across an in-
terfacial layer of finite thickness. The corresponding ground-
work for models was laid by van der Waals [6–8] in terms
of gradient theories, and further implemented by Korteweg
[9] and Cahn and Hilliard [10]. The associated equations can
be integrated numerically, and many interfacial systems have
been investigated using the resulting popular “phase field”
models [11–13]. It is however challenging to experimentally
access the resolution required for measuring smooth profiles
of thermodynamic quantities in the vicinity of the interface.
Hence, the validation of the aforementioned continuous ap-
proaches by experiments is often done indirectly, by relying
on the observations of mesoscopic patterns of structures and
dynamics that are strongly influenced by interfacial effects
[14–17]. Nevertheless, the diffuse interface model is, by na-
ture, not well adapted for assessing macroscopic phenomena,
at which scale the boundaries of bulk phases are better mod-
eled by sharp interfaces [3, 5].
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The precursors to this strictly two-dimensional model can
be attributed to Gibbs [18], who first carried out the thermo-
dynamic description of what he named the “dividing surface”.
His description relies on so-called excess densities, which are
thermodynamic extensive quantities assigned to the interface,
considered itself as a 2D autonomous thermodynamic system
[3, 6], and whose temperature and chemical potential are the
ones shared with the bulk phases in equilibrium. Other inten-
sive parameters for the interface, such as its surface tension or
bending rigidity, can be derived from microstructural models
[19–24]. Their study is the attention of interfacial rheology
[5], where Gibbs’ description is indeed of central importance:
most interfacial constitutive equations are established in the
sharp interface framework, and two-dimensional equivalents
of bulk models, such as the Boussinesq, Maxwell or Voigt re-
lations, are routinely used to describe interfacial rheometry
[1, 3, 5]. Apart from rheology, the compliance of Gibbs ad-
sorption isotherms [25], or the description of the Marangoni
effect [26] may also be seen as celebrations of Gibbs’ model
of interfacial thermodynamics. But it is the ubiquitous use of
surface boundary conditions in transport theories that gives an
even more compelling reason for the fundamental role and ap-
peal of a sharp interface approach. Yet all these applications
have mostly nonequilibrium settings, where thermodynamic
fields may not be uniform across the system, and for which
Gibbs’ description is, therefore, not suited.

To study a nonequilibrium dividing surface, one may ex-
ploit the relation between the sharp and diffuse treatments of
an interface. The excess quantities used by Gibbs can indeed
be defined from the density profiles considered with a smooth
interface. However, due to additional gradient terms and in-
trinsic anisotropies in the interfacial region, the local free en-
ergy is irremediably biased from its bulk thermodynamic def-
inition. This matter greatly challenges the central paradigm
of nonequilibrium thermodynamics: the local equilibrium as-
sumption, and the corresponding local definition of intensive
quantities [6, 27]. Several attempts have been made to ad-
dress the local equilibrium of interfaces [27–36]. However,
reconciling the diffuse and sharp interface approaches into a
thermodynamically admissible description is ultimately con-
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fronted to two fundamental problems: first, how to locate the
Gibbs dividing surface in the interfacial region of the smooth
density profiles; second, how to define an interfacial tempera-
ture and chemical potential in nonequilibrium [37]. The first
issue is a well-known and striking paradox: thermodynam-
ics of interfaces cannot depend on the observer’s choice of
a surface even though the extensive excess densities strongly
depend on this choice. Solving the second issue, although not
encountered at equilibrium, is of utmost importance: it is a
central requirement for extending local equilibrium models to
interfaces, and to thus develop 2D nonequilibrium thermody-
namics.

We recently suggested a consistent description of two-
dimensional interfaces that addresses these issues using (i)
a formalism based on gauge transformations associated with
changing the location of the dividing surface, and (ii) the sur-
face tension as the interfacial thermometer [37]. After briefly
explaining our model for a single-component biphasic fluid,
we employ extensive, high-precision nonequilibrium molecu-
lar dynamics simulations of a vapor-liquid system to validate
our description.

II. THEORY

Let us consider a single-component system with two phases
separated by a planar dividing surface. Calling x the coordi-
nate normal to the interface, we write u(x), s(x) and ρ(x) the
continuous densities of internal energy, entropy and mass, re-
spectively. To calculate the excess mass density ρs, we sep-
arate the variations ρα(x) and ρ β(x) of ρ(x) in each phase α
and β (let α be for smaller x) outside the interfacial layer.
Upon choosing the precise location xs of the plane dividing
the phases within the interfacial region, we then define the
“sharpened” density profile ρα, β(x, xs) = ρα(x)Θ(xs − x) +

ρ β(x)Θ(x − xs), with the step function Θ(x) = 1 for x ≥ 0,
0 otherwise. The sharpening procedure thus requires the ex-
trapolation of ρα(x) and ρ β(x) over the interfacial region (in
equilibrium, ρα and ρ β are constant and their extrapolation is
trivial). The excess mass density is then

ρs(xs) =

∫ [
ρ(x) − ρα, β(x, xs)

]
dx , (1)

and similarly for us and ss, the excess densities of internal
energy and entropy, respectively (see Fig. 2). Hence, all the
excess densities depend on xs, chosen a priori arbitrarily. This
degree of freedom is the one “apparently” lost with phase co-
existence, upon invoking the Gibbs phase rule. The first issue
is to ensure that interfacial thermodynamics is independent of
the observer’s choice for a dividing surface, even though the
excess densities depend on it.

When in contact with nonequilibrium bulk phases, inter-
faces quickly relax to states that can locally be described by
the same set of variables as equilibrium interfaces, with the
same thermodynamic relations between these variables. This
rationale for the interfacial local equilibrium leads us to hy-
pothesize a generalization of Euler and Gibbs-Duhem rela-

tions for the nonequilibrium interface,

us = T s ss + γ + µs ρs , (2a)
0 = ss dT s + dγ + ρs dµs , (2b)

where the temperature T s and the chemical potential µs must
now be defined for the autonomous interface with surface ten-
sion γ. The second issue is then to ascribe the intensive quan-
tities T s and µs to such a 2D object.

We recently used the formalism of gauge transformation to
address the two problems emphasized above [37]. The gauge
is the choice of xs, and the gauge transformation xs → xs + `
offsets xs by a small displacement ` towards the phase β and
changes the densities to the new values, us → us + `∆u,
ss → ss + `∆s and ρs → ρs + `∆ρ. Here, we have called
∆u = u β − uα, ∆s = s β − sα and ∆ρ = ρ β − ρα the jumps of
the corresponding bulk densities across the interface, assumed
to be independent of the gauge xs. The intensive properties
of the interface, T s, µs and γ, must be gauge-invariant ob-
servables, and only one of them sets the state of the interface.
Since γ can be extracted unambiguously at both equilibrium
and nonequilibrium (see later), we suggested to use the sur-
face tension as the thermometer of the interface: γ(T ) is first
tabulated at equilibrium, where T is the uniform bulk temper-
ature, and then T s is deduced from the value of γ in nonequi-
librium. We then recommended that the interfacial chemical
potential follows µs = µ(T s) from the equilibrium chemi-
cal potential. To address the ambiguity in the choice of xs,
we expressed the condition that the Euler and Gibbs-Duhem
equations must be gauge-invariant by ∆u = T s ∆s + µs ∆ρ and
0 = ∆s dT s + ∆ρ dµs, respectively. These equations are equiv-
alent to the Clapeyron’s relationships

d(µs/T s)
d(1/T s)

=
∆u
∆ρ

, (3a)

−
dµs

dT s =
∆s
∆ρ

, (3b)

which, if indeed proven to be generalizable to nonequilibrium,
would allow us to write Eqs. (2) into the equivalent forms:

us(T s, ρs) − ρs ∆u
∆ρ

=
d(γ/T s)
d(1/T s)

, (4a)

ss(T s, ρs) − ρs ∆s
∆ρ

= −
dγ
dT s . (4b)

We call these two equations (4) the “structural relationships”
of the interface, for reasons that we now discuss.

In the gauge for which ρs = 0, defining the “equimolar
dividing surface” (see Sec. IV A), Eqs. (4) simplify to high-
light the role of the surface tension in our description: it is
the thermodynamic potential of the interface, whose entropy
and energy are obtained by separating the entropic and ener-
getic contribution of γ using its temperature dependence (see
further discussions on that point in Sec. IV D). Hence, γ char-
acterizes the inherent structure of the interface. The additional
terms arising in ss and us upon a different choice of gauge are
given in terms of the chemical potential µs, which rather char-
acterizes coexistence. Our reasoning to define T s from γ relies
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on the structural autonomy of the interface: the interfacial re-
gion is not merely a transition zone for particles escaping one
phase to join the other. Such non-autonomous interpretation
of the interface would correlate its thickness with the travel-
ing distance required by a particle for encountering enough
collisions so as to join a well established phase. In the vapor-
liquid system investigated in the next sections, this correlation
does not exist: the width ω of the interfacial region increases
with temperature, whereas the width of the Knudsen layer of
evaporation scales as the mean free path in the vapor, which
decreases with the temperature.

We finish this section by noting that Öttinger and Venerus
[38] recently suggested the following gauge invariance condi-
tion for the Euler equation: ∆u+ 1

2 (∆v)2/(∆ 1
ρ
) = T s ∆s+µs ∆ρ,

where ∆v = v β − vα is the difference between the velocity
fields of each phase, and ∆ 1

ρ
= 1

ρ β
− 1

ρα
. The additional term

originates from possible flows in the bulk phases, which in-
duce a transfer of kinetic energy between phases upon chang-
ing the gauge. Here, only Eq. (3a) is modified to d(µs/T s)

d(1/T s) =
∆u
∆ρ
− 1

2 vα · v β by this correction, provided with the conserva-
tion of momentum at an immobile interface ραvα = ρ βv β (this
is the only scenario investigated here). In our study however,
this correction is negligible. In fact, the negligibility of kinetic
energy effects might also be required to obtain consistency of
the gauge invariance condition of Ref. 38 with the momentum
balance at the interface derived in that paper.

In general, only the fields of thermodynamic densities a
that are defined in a fixed reference (such as a = ρ, s,
M = ρv the momentum density, or e = u + 1

2ρv2 the total en-
ergy density) have surface excess densities that strictly gauge-
transform as as → as + `∆a. Along the same lines, Legen-
dre transformations of these densities do not normally gauge-
transform because their variations lead to forbidden changes
of intensive, gauge-invariant variables. For example, with the
static approximation us → us + `∆u, the excess Helmholtz
free energy f s = us − T sss gauge-transforms according to
f s → f s + `(∆u− T s∆s), but not according to f s → f s + `∆ f .

III. NONEQUILIBRIUM SYSTEMS

We now employ nonequilibrium simulations to validate
our thermodynamics description of the interface, Eqs. (2) and
their gauge-invariance, by verifying Clapeyron’s Eqs. (3) and
the local equilibrium Eqs. (4) with our proposed definitions
for T s and µs. Details of the numerical methods are given
in the appendix. Briefly, we simulated a one-component
Lennard-Jones fluid with both liquid and vapor phases in
coexistence, (α, β) = (g, l), by using molecular dynamics
(Fig. 1A). Nonequilibrium situations were created for two fun-
damentally different transport processes: we studied systems
with a heat flux or with a mass flux through the planar in-
terface. The heat flux is imposed by tuning the temperatures
of two thermostated regions in the vapor and the liquid. A
mass flux is created by removing particles from one phase and
simultaneously inserting them in the other phase, at a given
swapping rate. The temperature gradients investigated here
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FIG. 1. (A) The simulations’ unit cell is 213 × 21 × 21 (in Lennard-
Jones unit; shown here truncated in the vapor region), periodically
repeats in the y, z-directions and contains 16192 particles interacting
through a spline-interpolated Lennard-Jones potential [39]. The re-
flecting boundaries in the x-direction (red in the vapor; blue in the
liquid) and the blue volume are thermostated via velocity rescaling
(see the appendix). (B) Equilibrium surface tension as a function of
temperature; the data points follow the curve γ(T ) = γ0(1 − T/Tc)ν,
where Tc is the critical temperature. (C) Equilibrium chemical po-
tential as a function of temperature, fitted with the formula µ(T ) =

µ0 + aT log T + bT . Uncertainties in (B) and (C) are below 2% of the
range of reported values.

are in the range 106−108 K/m, and the speeds associated with
the mass fluxes about 10 m/s (see the appendix). In what fol-
lows, all quantities are given in Lennard-Jones units and cal-
culated for the system’s steady state.

The surface tension γ of the interface was calculated by
integrating the difference between the pressure components
normal and tangential to the interface [20]. In all the cases
investigated here, the anisotropy of the pressure tensor is lo-
calized at the interface, and a spatial integration of the com-
ponents’ difference does not depend on the position of the di-
viding surface. The surface tension is thus gauge-invariant.
At equilibrium, an excellent fit of γ(T ) is γ0(1 − T/Tc)ν, with
γ0 = 2.2452, ν = 1.26 and Tc = 1.1192 (Fig. 1B) [31]. The fit
serves as the calibration rule to extract the interface tempera-
ture T s = Tc[1− (γ/γ0)1/ν] from the surface tension calculated
in nonequilibrium situations.

Other specific atomistic expressions are time-averaged over
steady state configurations to obtain x-dependent profiles of
thermodynamic quantities. Fig. 2A and 2B show typical pro-
files of ρ(x) and u(x), respectively, in a nonequilibrium situ-
ation. Along with the stress tensor, ρ and u are mechanical
quantities whose atomistic expressions are exact in the inter-
facial region. The chemical potential µ(x) is obtained by the
Widom insertion method [40, 41]. In equilibrium, the uniform
potential can be fitted by µ(T ) = µ0 + aT log T + bT with µ0 =

−7.6510, a = −4.9849 and b = 4.4042 (Fig. 1C). In each bulk
phase, the entropy density is calculated from the other profiles
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by invoking the Euler equation, s(x) =
u(x)
T (x) +

p(x)
T (x)−

µ(x)ρ(x)
T (x) , with

p(x) the isotropic pressure and T (x) the kinetic temperature.
We note that our simulations are significantly more pre-

cise than previous works on nonequilibrium vapor-liquid sys-
tems [31, 39]. High-precision was required to discern small
gauge changes and was achieved by two means. First, for
each simulation, 80 times more data were acquired as com-
pared to Ref. 31. Second, we eliminated any possible diffu-
sion of the liquid film in the x-direction by “sticking” it to the
thermostated wall instead of using the more common periodic
boundaries (see the appendix).

IV. RESULTS AND DISCUSSIONS

A. Excess Densities

To calculate the sharpened profile ρg,l(x, xs), we fit the bulk
variations of ρ(x) with linear functions of x (Figs. 2A and 2B).
The resulting lines deviates from the actual profile over the
interfacial width ω (ω ∼ 10 in Fig. 2), which is the mini-
mum coarse-graining scale in the sharp interface approach.
Higher order extrapolations may indeed be used [28] without
significantly changing the results presented here, as long as
these functions do not capture variation at length scales below
ω. We observe that ρs(xs) and us(xs) depend linearly on xs

(Fig. 2C), such that we may write

ρs(xs) = ∆ρ (xs − xs
ρ) , (5a)

us(xs) = ∆u (xs − xs
u) , (5b)

with ∆ρ = ρl − ρg and ∆u = ul − ug. Here xs
ρ is the location of

the “equimolar” interface such that ρs(xs
ρ) = 0, and xs

u is the
“equienergetic” interface for which us(xs

u) = 0. Importantly,
there exist a non-negligible difference between xs

ρ and xs
u (see

inset of Fig. 2C). The linearity of ρs and us with xs indicates
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FIG. 2. (A-B) Profiles of mass (A) and internal energy (B) densities
in the vicinity of the interface subjected to a heat flux; uncertainties
are below 0.5% of the observed ranges. (C) The corresponding ex-
cess densities ρs and us, calculated from (A) and (B), respectively, as
the shaded area between the profiles (colored curves) and their sharp-
ened extrapolations (black lines) for various positions xs of the divid-
ing surface (see Eq. (1)); uncertainties are below 1% of the range of
values in this panel.
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FIG. 3. Kinetic temperature profiles in the vicinity of the interface
subjected to a heat flux (A) or a mass flux (B). The red and blue lines
are linear extrapolation of the bulk profiles and used to define the liq-
uid and vapor interfacial temperatures, as shown by the dashes and
compared with T s (green dash). The shaded area indicates the inter-
facial region, with the equimolar and equienergetic dividing surfaces
shown by the green lines.

that ∆ρ and ∆u do not significantly depend on the interface
location, meaning that they are gauge-invariant. We initially
inferred this approximation in our theoretical arguments. It
comes from the fact that the bulk densities do not vary signif-
icantly over distances comparable to ω, even in the extreme
conditions of nonequilibrium investigated here. Hence, ρg(xs)
varies by only a few percent when moving xs by 10, as op-
posed to ρs(xs), which can even change sign when moving the
interface by ∼ 1.

We also observe slow variations of s(x) in the bulk phases,
allowing us to extract, without calculating ss, the interfacial
jump ∆s = sl − sg directly from sl(x) and sg(x) and indepen-
dently of any extrapolated location chosen within the inter-
facial region. One may wish to write ss using an expression
similar to Eqs. (5), but an eventual “equientropic” gauge xs

s,
for which ss(xs

s) = 0, would inconveniently depend on the ref-
erence entropy. Augmenting this reference by S0 translates ss

by −S0ρ
s, µs by S0T s and ∆s by −S0∆ρ. We thus prefer to

express the explicit gauge dependence of ss by also separating
its reference-dependent component. Without loss of general-
ity, we write

ss(xs) = ∆s (xs − xs
ρ) + ψ(T s) , (5c)

where ψ(T s) = ss(xs
ρ) is a gauge-invariant thermodynamic

function of the temperature only, and that does not depend
on the reference entropy.

B. Temperature Profiles

Although the temperature calculated from the kinetic en-
ergy has the classical interpretation in both bulk phases, its
meaning in the interfacial region is, admittedly, questionable.
Nevertheless, Fig. 3 illustrates the conspicuous difficulty of
defining a gauge-invariant interfacial temperature from such
profile, since it exhibits sharp variations near the interface
[42]. The profiles of temperatures, linearly extrapolated from
the bulk phases, intercept neither at a definable location, nor
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at the interfacial temperature T s advocated here. Therefore, a
systematic macroscopic description of the system must allow
discontinuous temperatures across its interface.

The equimolar and equienergetic dividing surfaces are
shown in Fig. 3 to help outlining the interfacial region. For
the mere purpose of illustrating our following arguments, T g

and T l, the vapor and liquid temperatures at the interface, are
extracted at xs = xs

ρ (Fig. 3); but this choice has no effect on
any of the conclusions in the present study.

C. Clapeyron’s Relationships

Equipped with equilibrium and nonequilibrium values of
∆ρ, ∆s and ∆u, we can now check the validity of the nonequi-
librium Clapeyron’s relationships, Eqs. (3). To do so, we de-
fine the two coexistence temperatures, T coex

u and T coex
s that are

solutions of Eqs. (3a) and (3b), respectively, for the observed
jump ratios. These temperatures are uniquely defined using
the fit µ(T ). If T = T coex

u = T coex
s , then T is the best tempera-

ture choice for the interface to verify the Clapeyron’s relation-
ships. Figures 4A and 4B report the relative deviations of T s

from T coex
u (Fig. 4A) and T coex

s (Fig. 4B) at equilibrium (where
T s is the system’s uniform temperature) and at nonequilibrium
(where T s is set by γ). It also presents the deviations of the
vapor and liquid temperatures T g and T l. Our definition T s

consistently returns values that are, within the uncertainties,
equal to the coexistence temperatures. In contrast, the vapor
and liquid temperatures at the interface deviate from T coex

u and
T coex

s , and thus appear as inappropriate choices for the surface
temperature.

We observe that T s neither correlates with the magnitudes
of the heat or the mass fluxes, which quantify how far from
equilibrium the system is being pushed, nor with the temper-
ature jump ∆T = T l − T g. Hence, discontinuities in temper-
ature may also exist for moderate fluxes across the interface
[43–45]. We verified however that despite the apparent scat-
ter of the bulk temperatures in Fig. 4A, ∆ 1

T is proportional to
the fluxes through the Kapitza resistances, which are indeed
monotonic functions of T s (data not shown) [46]. Neverthe-
less, our description does not require to regard the fluxes as
independent variables of the interfacial thermodynamics [47].

D. Structural Relationships

We now assess the validity of the structural relationship
Eq. (4a), which can be expressed in terms of the gauge dif-
ference

∆u (xs
ρ − xs

u) = γ(T s) − T sγ ′(T s) , (6)

by using Eqs. (5) and γ ′ =
dγ
dT . We proceed as before by

defining a structural temperature T stru
u as the unique solution

of Eq. (6), and verify that the relative deviations of our choice
of T s from T stru

u vanishes (within uncertainties) for all situa-
tions investigated here (Fig. 4C). This agreement is remark-
able, both in equilibrium and nonequilibrium, despite the fact
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perature T coex

s that verifies Eq. (3b), and from the temperature T stru
u

that verifies Eq. (4a). On the right side of each panel, the grey chart
shows the corresponding box-and-whisker diagram in each thermo-
dynamics situation investigated here.

that Eq. (6) initially results from macroscale thermodynamic
arguments and that xs

u − xs
ρ is of the order of the molecular

distances, that is, much smaller than ω.
In a similar manner, we can use Eqs. (5a) and (5c) to express

the structural relationship Eq. (4b) as

ψ(T s) = −γ ′(T s) . (7)

The direct validation of this equality requires a way to cal-
culate ss that does not rely on thermodynamic relationships
(which would inevitably assume a priori the local equilib-
rium of the interface). Although we could not implement
such a method, we note that we have already proved γ(T s) =

us + T sγ ′(T s) (from Eq. (6)) and ss = ψ(T s) (from Eq. (5c))
in the equimolar gauge. This choice of gauge precludes any
mass variation for the interface, and γ then accounts for the
Helmholtz free energy excess density of the interface as the
amount of work per unit area that can be collected from it.
Consequently, for xs = xs

ρ, we can write γ(T s) = us − T sss

which identifies ψ(T s) = −γ ′(T s), thus proving Eq. (7). Note
that γ ′(T s) is a gauge-invariant quantity that does not de-
pend on the reference entropy, in accord with the requirements
for ψ(T s). We have now validated Eqs. (2) and their gauge-
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invariance for a nonequilibrium vapor-liquid system where the
interface has its temperature and chemical potential solely set
by its surface tension.

V. CONCLUSIONS

For a single-component fluid with vapor-liquid coexisting
phases, the surface tension γ(T ) is the only observable re-
quired to establish the complete state of the planar interface:
under constant γ, the interface will have the same intrinsic
structure as in equilibrium, even if it is separating nonequi-
librium phases. Stemming from this intuitive concept, and by
relying on gauge transformation arguments, we were able to
verify the local equilibrium approximation for a 2D thermo-
dynamic system. The precise location of the corresponding
dividing surface may be chosen by convenience, without al-
tering the thermodynamics.

We expect that these findings will help the development of
interfacial nonequilibrium thermodynamics, even if they here
concern a rather idealized situation. To extend the applica-
bility of our model, future studies should notably consider
multicomponent systems, curved interfaces [38] and other co-
existing phases. Nevertheless, our definition of the interface
temperature, using the surface tension as the thermometer, al-
ready offers a new and practical asset to experimentalists. For
a typical monoatomic fluid such as argon (see the appendix),
the liquid and vapor temperatures may differ from the surface
temperature by a few degrees in nonequilibrium settings. Not
only such differences should indeed be detectable using con-
ventional instrumentations, they also may have heavy conse-
quences when establishing constitutive models of interfaces.
Notably, in a mass-conversion process such as condensation
(or evaporation), the surface temperature can even be higher
(or lower) than the surrounding bulk temperatures.

Appendix: Numerical Methods

We simulated a fluid of particles interacting through the
smoothed Lennard-Jones spline potential, expressed at a sep-
arating distance r by

φ(r) =


4ε

[(σ
r
)12
−

(σ
r
)6] if 0 < r < rs ,

ζ1(r − rc)3 + ζ2(r − rc)2 if rs ≤ r ≤ rc ,
0 otherwise .

The cutoff radius is rc = 2.5 × σ to account for the long-
range Lennard-Jones potential, while the spline cutoff rs =
48
67 rc and the spline coefficients ζ1 = 0.099194 × ε/σ3 and
ζ2 = −0.16346 × ε/σ2 are chosen such that the potential and
its first derivative are continuous. Typical values of σ and ε
for a monoatomic Lennard-Jones system, made of argon-like
particles [35], areσ = 3.822×10−10 m and ε = 1.654×10−21 J,
with a particle’s mass m = 6.690 × 10−26 kg. In the main text,
we set σ = 1, m = 1, τ =

(mσ2

ε

)1/2
= 1 and θ = ε

kB
= 1

to define the Lennard-Jones units of length, mass, time and
temperature respectively.

We placed 16192 particles in a simulation box with dimen-
sions Lx = 213σ and Ly = Lz = 21σ along the x, y and z-axis,
respectively. We used periodic boundary conditions in the y
and z directions. At x = 0 (in the vapor) and x = Lx (in the
liquid), we used thermostated reflecting boundary conditions:
particles hitting those surfaces were reflected according to a
Maxwell distribution to impose a specific temperature. The
liquid thermostat was complemented by rescaling accordingly
the velocities of the particles in the volume Lx − 6σ < x < Lx
(see Fig. 1A).

Newton’s evolution equations used to obtain the trajectories
{ri(t)} of the particles were integrated using the velocity Verlet
algorithm with a time step of δt = 0.0005τ. A small force of
magnitude 0.005 ε

σ
in the x direction was further applied in the

liquid thermostat to pin the liquid phase at the surface x = Lx.
The system was preconditioned for 3 × 106 δt, upon which a
steady liquid film coexisting with its vapor formed (Fig. 1A).

To simulate a system with an imposed heat flux, we set
the vapor thermostat to a higher temperature than the liq-
uid one. To create a mass flux, a liquid particle i located
in Lx − 6σ < x < Lx was instantaneously translated by
−(Lx − 6σ) in the x direction with a tunable probability after
each Verlet time step. The attempt to insert the particle was
accepted with probability min

{
1, exp

[
−

Φi(t)
kBT

]}
, where, calling

ri j(t) = |ri j(t)| = |ri(t) − r j(t)|, Φi(t) =
∑

j,i φ
(
ri j(t)

)
is the total

interaction energy of the particle at its new location (this step
was necessary to avoid singularities in case the particle was
placed too close to another one; for this reason, simulating
evaporation - requiring particles reinsertion in the liquid - is
prohibitively more time-consuming). We evolved the system
for another 6×106 δt under the new constraints to generate the
corresponding nonequilibrium stationary state. Table I gives
the set of thermostats’ temperatures and swapping probabili-
ties of the 17 nonequilibrium simulations performed here.

We binned the simulation box into 426 layers of thickness
σ/2 in the x-direction. We calculated the instantaneous mass
density in layer k, ρk(t) = mnk(t)/Vb, where Vb = σLyLz/2 is
the volume of a bin and the instantaneous number of particles
in layer k at time t is nk(t) =

∑
i 1ki(t), with 1ki(t) the following

indicator function: 1ki(t) = 1 if the particle i is in layer k at
time t and 1ki(t) = 0 otherwise. The corresponding discrete
mass density profile is then defined at the position xk of the
layer k by ρ(xk) = ρk, where a indicates the time average of
the process a(t) (calculated over 50 × 106 δt in equilibrium,
80 × 106 δt in nonequilibrium).

Similarly, the instantaneous internal energy density uk(t)
in layer k at time t is given by uk(t) = ηk(t) +

1
2Vb

∑∑
i, j 1ki(t)φ

(
ri j(t)

)
, where ηk(t) = m

2Vb

∑
i 1ki(t)

[
vi(t) −

vk
]2 is the instantaneous, non-convected kinetic energy. Here,

vi(t) = ṙi(t) and v(xk) = vk indicates the mean speed of the
fluid in layer k, obtained by time-averaging the instantaneous
velocity vk(t) = 1

nk(t)
∑

i 1ki(t)vi(t) of the particles in layer k.
The final profile of the internal energy density is given by
u(xk) = uk. There is an ambiguity in defining the instanta-
neous value of the internal energy of a layer, due to the po-
tential energy contribution: if two interacting particles are in
different layers, there are various ways of distributing their
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TABLE I. Nonequilibrium simulation conditions (thermostats’ tem-
peratures and swapping probabilities) in Lennard-Jones units.

Type # Vapor
thermostat

Liquid
thermostat

Swapping
frequency

Heat
flux

1 1.025 0.830 0
2 1.025 0.840 0
3 1.050 0.750 0
4 1.125 0.890 0
5 1.150 0.850 0
6 1.200 0.870 0
7 1.250 0.850 0
8 1.300 0.920 0
9 1.300 0.980 0

10 1.350 0.900 0

Mass
flux

11 0.740 0.740 0.00080
12 0.740 0.740 0.00135
13 0.790 0.790 0.00135
14 0.870 0.870 0.00080
15 0.890 0.890 0.00080
16 0.940 0.940 0.00080
17 0.970 0.970 0.00025

potential energy between the two layers. Hence, the potential
energy may be attributed to the layer in which the center of
mass of the pair particles falls, it may be distributed propor-
tionally between the layers, or each layer may be given one
half of the potential energy. The latter choice corresponds to
the formula given in the text. We found however that the vari-
ations associated with different choices in the definition of the
local internal energy were orders of magnitude smaller than
other sources of error.

The kinetic temperature profile is calculated as T (xk) =
2m
3kB

ηk
ρk

, and the pressure as p(xk) = pk with pk(t) = 2
3ηk(t) +

1
6Vb

∑∑
i, j 1ki(t)ri j · Fi j, where Fi j = −

ri j

ri j

dφ
dr

∣∣∣
r=ri j

is the force
acting on particle i due to particle j.

The surface tension γ of the interface was calculated by
summing the difference between the components of the pres-
sure that are normal and parallel to the interface, γ =

− 1
4LxLy

∑∑
i, j

(
ri j · Fi j − 3n · ri jFi j · n

)
, where n is the unit

vector normal to the interface [20]. Figure 1B shows the vari-
ations of γ as a function of T at equilibrium.

The chemical potential µ in the system was obtained with
the Widom insertion method [40, 41]. We first write the sum
µ = µid + µex, where µid = − 3

2
kBT
m log T

θ
+ kBT

m log ρσ3

m is the
chemical potential of an ideal gas with mass density ρ, at tem-
perature T , and µex the additional term that takes intermolec-
ular interactions into account and that is calculated with the
insertion method. The latter consists in inserting a Lennard-
Jones particle in the system, say at a position rk in the layer k
and calculating µex,k(t) = − kBT

m ln
〈
exp

[
−

Φk(t)
kBT

]〉
, where 〈...〉 in-

dicates an average over all possible trial insertions at this loca-
tion [41]. We attempted 12 randomly generated trial insertions
in each bin every time-step, from which we calculated the in-
stantaneous values µex,k(t). We then performed a time-average
to get µex(xk) = µex,k, and finally µ(xk) = µid(xk) + µex(xk),
where µid inherits its x-dependency from the spatial variations
of T (x) and ρ(x). At equilibrium, µ is uniform across the sys-
tem, and Fig. 1C shows its values as a function of T in that
case.

Each simulation was run on 16 processors (2.5-GHz
4×quad-core AMD Opteron 8380) simultaneously on the Bru-
tus cluster of the ETH Zurich (http://www.cluster.ethz.ch),
and took approximately 3 weeks.
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[38] H. C. Öttinger and D. C. Venerus, AIChE J. 60, 1424 (2014).
[39] S. Kjelstrup, D. Bedeaux, I. Inzoli, and J.-M. Simon, Energy

33, 1185 (2008).
[40] B. Widom, J. Chem. Phys. 39, 2808 (1963).
[41] D. Frenkel and B. Smit, Understanding Molecular Simulation:

from Algorithms to Applications, 2nd ed. (Academic Press, San
Diego, 2002).

[42] It is worth observing that latent heat produced by the perpet-
ual conversion of vapor into liquid appears to flow away from
the interface into the bulk phases, following the opposite gra-
dients of temperature featured in the liquid and vapor phases
constrained to mass flow (see Fig. 3B). Dissipative processes of
mass and heat transfer at phase boundaries are highly coupled,
and we notably observe a mass transfer from the cold to the
warm regions in the vapor phase [48].

[43] V. K. Badam, V. Kumar, F. Durst, and K. D. Danov, Exp.
Therm. Fluid Sci. 32, 276 (2007).

[44] F. Duan, C. A. Ward, V. K. Badam, and F. Durst, Phys. Rev. E
78, 041130 (2008).
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