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An asymptotic model is constructed to analyse the interaction of turbulence generated
far upstream with a thin elliptic-nosed solid body in uniform flow. The leading-edge stag-
nation point causes significant deformation of incident vorticity, and hence our analysis
focuses on the region of size scaling with the nose radius close to the stagnation point.
Rapid distortion theory is used to separate the flow field generated by a single unsteady
gust perturbation into a convective non-acoustic part, containing the evolution of the
upstream vortical disturbance, and an acoustic part generated by the interaction of the
vorticity with the solid surface, as is typical in gust-aerofoil interaction theory. Using
single-frequency gust response solutions, along with a von Karman energy spectrum, we
find the turbulent pressure spectrum generated by homogeneous isotropic turbulence in-
cident from far upstream. Both high- and low-frequency gusts are considered to allow
approximations to be found for the turbulent pressure spectra close to the leading edge,
and far from the body close to the incident stagnation streamline. Good agreement is
shown between the asymptotic results for the near- and far-field leading-edge turbulent
pressure spectra and recent experimental findings.

1. Introduction
The problem of unsteady vorticity-aerofoil interaction in steady uniform flow has been

considered analytically (Myers & Kerschen 1997; Tsai 1992; Goldstein & Atassi 1976),
computationally (Hixon et al. 2006; Allampalli et al. 2009) and experimentally (Geyer
et al. 2012; Mish & Devenport 2006), since understanding this process is key to predicting
the noise generated by blade rows within aeroengines. Computational methods can obtain
results for realistic situations at moderate frequency, but are difficult for high-frequency
incident perturbations, and hence analytic results are sought for high-frequency gust-
aerofoil interactions. Analytic methods, however, require significant assumptions before
progress can be made; typically the aerofoil is assumed to be either a flat plate or to
have small (but non-zero) thickness, camber and angle of attack, all scaling with a small
asymptotic shape parameter, τ � 1. The scaled frequency of an incident gust, k, is
assumed to either be large, k � 1, such that τk = O(1) as done by Myers & Kerschen
(1997), or is assumed to be small, k � 1 (Amiet 1974).

In practice both the far-field sound and the unsteady surface pressure are of interest.
For aerofoils with O(τ) camber angle and thickness, the stagnation point of the steady
flow is typically an O(τ2) distance from the aerofoil nose (Van Dyke 1975) which is
negligible during asymptotic analysis. Within the limits of standard thin-aerofoil theory
(analytic and numeric), there is a singularity in the analytic surface perturbation pressure
at the stagnation point, which violates the assumption that the unsteady perturbation
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pressure is small, however it can be shown that the unsteady pressure calculated along
the rest of the aerofoil surface and in the far-field agree with experimental findings.
This leading-edge singularity is an anomaly that requires closer attention in order to
understand the turbulent interactions close to the stagnation point.

In this paper we attempt to correct the leading-edge singularity and investigate the
true behaviour of turbulence at the stagnation point by considering the evolution and
interaction of an arbitrary gust in a steady uniform flow past a thin elliptic cylinder
(extending infinitely in the spanwise direction), specifically concentrating on the region
close to the leading edge of the body, and in the far field at small angles away from
the incident stagnation-point streamline (which shall also be referred to as the zero-
streamline). The thickness of the ellipse is parametrised by τ � 1, and the frequency
of the gust is parameterised by k which we permit to either be large, k � 1, or small,
k � 1. The leading-order contribution to the acoustic solution can be dependent on a
multiplicative combination of thickness and frequency, which ensures that the thickness
parameter can remain present in the analysis even to leading order, which is not the case
in previous analytic solutions (Myers & Kerschen 1997; Tsai 1992). We use the solution for
single-frequency gust interactions to investigate the effects of the leading-edge stagnation
point on weak homogeneous isotropic turbulence in uniform flow, and obtain an analytic
prediction for the inviscid far-field and surface pressure spectra close to the stagnation
streamline.

Hunt (1973) calculates the surface pressure spectrum of a circular cylinder. Later
Durbin & Hunt (1980) generalise Hunt’s result for a bluff two-dimensional body, e.g. an
elliptic cylinder; their work however does not allow for an asymptotic scaling in thick-
ness, and instead the only asymptotic parameter used in Durbin & Hunt (1980) relates
to the integral lengthscale of the turbulence far upstream and the incident frequency.
By assuming the ellipse has O(1) thickness (or more precisely has an O(1) aspect ratio)
and calculating just the leading-order pressure spectrum, Durbin & Hunt (1980) have
ignored the possibility of an asymptotic reordering of terms due to small ellipse thick-
ness. Likewise, Durbin & Hunt (1980) do not restrict attention to a small region close
to the stagnation point and instead assume O(1) values of polar angle as measured from
the upstream direction (except for calculations at the stagnation point itself). It is these
new allowable scalings that we permit in this paper, and present a leading-order ap-
proximation for the turbulent pressure spectrum that accounts for high or low turbulent
frequency, large or small integral lengthscale of turbulence, and a thin body as is appli-
cable for aeroacoustics. We specifically focus on a small region close to the stagnation
point. We therefore anticipate finding a different leading-order result for the pressure
spectrum than that found in Durbin & Hunt (1980).

In Section 2 we discuss the interaction of a single-frequency gust with the nose of
a thin ellipse, obtaining the acoustic response in both high- and low-frequency cases.
In Section 3 we use the single-frequency solutions to determine the one-dimensional
turbulent pressure spectra close to the leading-edge stagnation point, and in the far
field near the zero streamline. Section 3.1 discusses the far-field spectra at high reduced
frequency (kl, where l is the integral lengthscale of the turbulence), whilst Section 3.2
considers high and low reduced frequency surface spectra. Section 4 contains results and
comparison with experimental data, and we discuss conclusions in Section 5.

2. Acoustic Response for a Single Frequency Gust
We begin by considering the interaction of an unsteady gust with a thin ellipse of

minor axis R∗(1 − b2) and major axis R∗(1 + b2) in steady low Mach number uniform
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Figure 1: Diagram of the coordinate system at the leading edge.

flow, U = U∗∞ex far upstream, at zero angle of attack. We non-dimensionalise velocities
by U∗∞ and lengths by R∗, and define thickness parameter, τ = (1− b2)(1 + b2)−1, which
we take to be small. In (cylindrical) polar coordinates, r measures the radial distance
from the centre of the ellipse and θ measures the angle clockwise from the upstream
direction, as illustrated in Figure 1. We label the stagnation streamline of the steady
flow Ψ = 0, and a streamline formally bounding our analysis away from the stagnation
streamline as Ψ = η, where η � 1. The constant θc provides a lower limit of θ values,
formally bounding our analysis away from θ = 0, and denotes the angle at which the η
streamline first deviates from the horizontal.

2.1. Governing Equations for the Acoustic Response
We write an unsteady harmonic disturbance upstream as a Fourier integral

u∞(x− êxt) =

∫
A(k)eik·x−k1tdk, (2.1)

where u∞ is solenoidal so A · k = 0 ∀k. We write k = kk† = (k1, k2, k3), where k is
our asymptotic frequency parameter. We initially consider just one Fourier mode given
by

u∞(x− êxt) = A(k)ei[k1(x−t)+k2y+k3z] (2.2)

far upstream. It follows from Goldstein (1978) that the vortical components of the velocity
are

u(I)
r =

(
A1

∆

r
+A2

Ψ

r

)
ei[k1(∆−t)+k2Ψ+k3z], (2.3a)

u
(I)
θ =

(
A1

1

r

∂∆

∂θ
+A2

1

r

∂Ψ

∂θ

)
ei[k1(∆−t)+k2Ψ+k3z], (2.3b)

u(I)
z = A3ei[k1(∆−t)+k2Ψ+k3z], (2.3c)

where ∆ is the drift function of the steady flow (non-dimensionalised by U∗/R∗), which
was first discussed by Darwin (1953), then later defined by Lighthill (1956) as

∆ = x+

∫ x

−∞

(
1

Ux
− 1

)
dx. (2.4)
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This function is the difference between the time taken for a fluid particle to travel from
far upstream to position x along a streamline in the given flow, compared to the time
taken to reach the same position in uniform flow.

When the total unsteady velocity field, u, is written as

u =∇φ+ u(I), (2.5)

φ contains the acoustic response to the incident gust and satisfies the acoustic equation
arising from rapid distortion theory,

D0

Dt

(
1

c2
D0

Dt

)
φ− 1

ρ
∇. (ρ∇φ) =

1

ρ
∇ ·

(
ρu(I)

)
, (2.6a)

subject to the condition of zero normal velocity,

∇φ · n = −u(I) · n, (2.6b)

on the solid surface. We have defined D0

Dt by ∂
∂t + U · ∇. The steady density, ρ = 1 +

M2ρ1 +O(M4), and c, the speed of sound, given by

c2 =
1

M2

[
1− γ − 1

2
M2

(
|U |2 − 1

)]
≡M−2(1 +M2c21) +O(M2), (2.7)

are expanded as an asymptotic series in the uniform flow Mach number at infinity, M ,
since we restrict attention to low Mach number flows only. The constant γ is the ratio of
specific heats.

Using Eq. (2.3) we can write the source term in (2.6a) as

1

ρ
∇ ·

(
ρu(I)

)
= (H0 + iH1) ei[k1(∆−t)+k2Ψ+k3z], (2.8)

where H0,1 are defined by

H0 =
A1

r

∂∆

∂r
+
A2

r

∂Ψ

∂r
+
A1

r2

∂2∆

∂θ2
+
A2

r2

∂2Ψ

∂θ2

+M2

[(
A1

r
∆ +

A2

r
Ψ

)
∂ρ1

∂r
+

1

r

∂ρ1

∂θ

(
A1

r

∂∆

∂θ
+
A2

r

∂Ψ

∂θ

)]
, (2.9a)

H1 = A1k1

[(
1

r

∂∆

∂θ

)2

+
∂∆

∂r

∆

r

]
+A2k2

[(
1

r

∂Ψ

∂θ

)2

+
∂Ψ

∂r

Ψ

r

]
+A3k3

+A1k2

[
1

r2

∂∆

∂θ

∂Ψ

∂θ
+

∆

r

∂Ψ

∂r

]
+A2k1

[
1

r2

∂∆

∂θ

∂Ψ

∂θ
+

Ψ

r

∂Ψ

∂r

]
. (2.9b)

We wish to solve (2.6a) to leading order in both high- and low-frequency regimes.
We restrict the bounding streamline, Ψ = η, Mach number, M , and region of interest

near the leading edge (i.e. range of θ) as follows; η = O(τ4), M = O(τ), and θ = O(τ),
where τ is the asymptotic thickness parameter. This restriction of θ creates an asymptotic
region around the leading edge which differs from regions used in previous asymptotic
gust-aerofoil analysis such as Tsai (1992) and Myers & Kerschen (1997); in these problems
the leading-edge inner regions scale on blade thickness, e.g. r − (1 + b2) = O(τ), but θ
was assumed to be O(1). For our problem, since r measures the radial distance from the
centre of the ellipse, we suppose r = O(1).

In both high- and low-frequency cases, we set

φ = e−ik1t+ik3zφ̃, (2.10)
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and expand φ̃ = φ̃0 +M2φ̃1. Retaining terms in (2.6a) up to O(M2), we obtain

M2
(
−k2

1φ̃0 + 2ik1U0 · ∇φ̃0 + (U0 · ∇)(U0 · ∇φ̃0)
)

−∇2φ̃0 −M2
(
∇2φ̃1 +∇.

(
ρ1∇φ̃0

)
− ρ1∇2φ̃0

)
= (H0 + iH1) eik1∆+ik2Ψ, (2.11)

where we have assumed the steady velocity can be written as U = U0 + O(M2), with
U0 the incompressible steady flow around the ellipse, whose components are O(1) under
the given θ = O(τ) scaling.

For high frequencies, k � 1, assuming k > τ−1 and retaining only the leading-order
terms yields

−M2k2
1φ̃0 −

1

r2

∂2φ̃0

∂θ2
+ k2

3φ̃0 = (H0 + iH1) eik1∆+ik2Ψ, (2.12)

where the forcing terms, H0,1 are taken to leading order only.
For low frequencies k � 1, the convective terms are negligible compared to the Lapla-

cian, therefore we obtain

− 1

r2

∂2φ̃0

∂θ2
= (H0 + iH1) eik1∆+ik2Ψ, (2.13)

where once again the forcing terms, H0,1 are taken to leading order only.
We see from equations (2.12) and (2.13), that to obtain a leading-order approximation

for φ̃0, we need only calculate H0,1 to leading order, which will be given by the in-
compressible steady flow solutions for ∆ and Ψ. In particular we require these functions
approximated in the small θ limit. We obtain them by conformal mapping incompressible
steady uniform flow around a circular cylinder of radius 1 to our required elliptic cylinder
using the Joukowski transformation. Relevant calculations can be found in Appendix A.

We now proceed to solve (2.12) and (2.13) in our high- and low-frequency regimes
respectively.

2.2. High-Frequency Solution
We rewrite (2.12) as

∂2φ̃

∂θ2
+ k2w2r2φ̃ = −r2f(r, θ), (2.14)

where w2 = k† 2
1 M2 − k† 2

3 , and

f(r, θ) = (H0(r, θ) + iH1(r, θ)) eik1∆(θ)+ik2Ψ(r,θ). (2.15)

We retain k3 in the governing equation so that we may discuss three-dimensional turbu-
lence, however we impose k3 = O(k1M) and suppose w2 > 0. The small θ scalings of the
source terms H0,1 are

H0 ∼ O
(

A1

a1θ2r2

)
, H1 ∼ O

(
A1k1

a2
1θ

2r2

)
, (2.16)

when constrained to the η-streamline, hence terms in (2.14) balance if k = O(τ−2), and
φ̃ = O(k−1). The constant a1 is given in Appendix A.

We solve (2.14) using a Green’s function satisfying

∂2G

∂θ2
(θ, θ′, r, r′) + k2Ω(r)2G(θ, θ′, r, r′) = δ(θ − θ′)δ(r − r′), (2.17)

where Ω(r) = wr and δ is the Dirac delta function.
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To determine appropriate boundary conditions for (2.17), we consider the results from
Durbin & Hunt (1980, eq. 36) for turbulent interactions along the stagnation stream-
line, θ = 0. They found that the pressure decayed exponentially with k on approach to
the stagnation point. By asymptotically matching this exponentially small result with
an inner limit of our small θ region, θ → θc, we find we must impose the boundary
conditions;

φ̃ = 0 at θ = θc, (2.18a)

∂φ̃

∂θ
= 0 at θ = θc. (2.18b)

For Ω2 > 0 the Green’s function in (2.17) is oscillatory. If Ω2 < 0 we would obtain
an exponentially decaying solution, which would be negligible, thus we only consider
the case |k3| ≤ M |k1|, which corresponds to sound waves with phase vector (k1, k2, k3)
propagating to infinity rather than being evanescent. The Green’s function is then

G(θ, θ′, r, r′) =

{
0 if θ < θ′

1
kΩ(r) sin[Ω(r)k(θ − θ′)]δ(r − r′) if θ > θ′

. (2.19)

The solution of Eq. (2.14) comprises a particular solution, φ̃p, which takes care of the
source term on the right hand side, and a homogeneous solution, φ̃h that then ensures
zero normal velocity on the rigid surface. Using our Green’s function, (2.19), we find

φ̃p =
r

k

√
k†21 M

2 − k†23

∫ ε

θ

(H0 + iH1)(r, θ′)eik(k†1∆(θ′)+k†3Ψ(r,θ′)) sin (kΩ(θ − θ′)) dθ′,

(2.20)
where ε is the the upper limit of validity of the small θ solution (defined by (A 19)). In
the small θ approximation Ψ = O(η), and hence we can neglect it compared to ∆. Since
k is large we can apply the method of stationary phase to (2.20) (Bender & Orszag 1978).
The phase functions in (2.20) are g±(r, θ′) = k†1∆(θ′) ± Ω(r)(θ − θ′), which have points
of stationary phase θ′ = θ′s given by

θ′s ≈
±(1 + b2)k†1

Ωa1
. (2.21)

We require 0 < θ < θ′s < ε, hence on noting that a1 < 0 (given in Appendix A) we see
that only g−(r, θ′) yields a point of stationary phase within the allowed range, and hence

φ̃p ∼ −r

2ik3/2

√
k†21 M

2 − k†23

f0(r, θ0
s)

√
2π

g′′(r, θ0
s)
eiπ/4eikΩ(θ0s−θ). (2.22)

Evaluating g+ at an end point (which would yield the dominant contribution to its
integral) would result in a term of O(k−1/2) smaller than the leading-order term given
in (2.22).

The homogeneous solution of (2.17) requires evaluation of the Green’s function on the
surface,

φ̃h(r, θ) = −
∫ ε

η

G(θ′, θ, r′, r)
∂φ̄h

∂n

∣∣∣∣
r′=
√

(1+b2)2 cos2 θ′+(1−b2)2 sin2 θ′

dθ′. (2.23)

The integration in (2.23) should be evaluated over the entire surface of the ellipse, however
the greatest contribution to the integral arises from the region where θ is small since ∂φ̃p

∂n
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is O(k−1/2) smaller when θ � ε compared to when θ < ε. Also, u(I).n is largest in
a region where the steady flow is slowed most significantly by the solid surface, which
occurs in the region around the leading edge, therefore u(I).n is also larger for θ < ε
compared to when θ � ε. Evaluating the integral in (2.23) yields

φ̃h(r, θ) =
1

kR(θh; r)w
sin
[
kR(θh; r)w(θ − θh(r))

] ∂φ̃h
∂n

∣∣∣∣∣
(R(θh;r),θh)

, (2.24a)

where

θh(r) = 2 arctan

√1− 6b2 + b4 − r2 + 4b
√
r2 − (1− b2)2

(1 + b2)2 − r2

 , (2.24b)

R(θh; r) =

√
(1 + b2)2 cos2 θh + (1− b2)2 sin2 θh, (2.24c)

∂φ̃h

∂n
(r, θ) = − ū(I).n− ∂φ̃p

∂n
. (2.24d)

The single high-frequency gust response, φ = φh+φp derived here is non-singular as the
stagnation point is approached, θ, η → 0, r → 1 + b2.

2.2.1. Far Field Implications and Comparison with Previous Work
We can match this inner solution to a large r solution whilst remaining within the

small θ region. We note from (2.21) that for large enough r the point of stationary
phase, θs = O(r−1), falls outside the region of integration for the leading-order particular
solution, hence the magnitude of the particular solution would drop by O(k−1/2). This is
negligible to the orders retained in our calculations, so we are therefore left with φ = φh

as r →∞. We notice that θh → π/2 for r →∞, and hence θh is also out of range of the
limits of integration in (2.23), thus φh → 0 also. At first sight this prediction that the
far-field sound directly upstream is negligible to the orders retained in our calculations
seems incorrect, given that Tsai (1992) predicts the pressure to be O(k−3/2). However,
we recall that our far-field solution is restricted to θ = O(τ), which if incorporated
into the result from Tsai (1992) (who has θ = O(1)) also gives a reduction of the far-
field magnitude by O(τ) (equivalent to O(k−1/2)). It is also evident that this prediction
of negligible pressure far upstream is consistent with Fig. 4.25 of Tsai (1992), which
shows visually that directly upstream the far-field acoustic pressure is much smaller than
elsewhere. We attribute this zero upstream far-field noise to distortion of the acoustic
waves generated near the surface directly upstream; due to the steady flow any acoustic
waves are diffracted away from the upstream direction by the time they approach the far
field.

We can further extend our inner solution φ̃p into the region outside of our predefined
small θ region, and thereby asymptotically extend our solution into the leading-edge
outer region as described by Tsai (1992). We once again use the method of stationary
phase, but this time do not approximate the drift function, ∆, since we have moved out
of the region where (A 16) is valid. Further, ∆ is now seen as a function of both r and
θ and we take θ = O(1) but θ < π/2. The stationary phase point, (2.21), now occurs at
k†1∆′(r, θs) = Ω ∼ r, hence ∆ ∼ r at the point of stationary phase. Thus

φ̃p ∼ r

k

f(r, θs)√
k∆′′(r, θs)

eikwr(θs−θ) (2.25)
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for large k. As we take r � 1, we see that f(r, θs) ∼ ∆
r2 ∼

1
r , which yields

φp ∼ 1

k3/2
√
r

(2.26)

for θ = O(1) and large r, which has the same order of magnitude in both k and r as
the symmetric Joukowski aerofoil solutions in Tsai (1992) for high-frequency gusts. The
contribution from φh is negligible, since when r is large, θh → π/2. We have therefore
confirmed that our analytic solution in the small region close to the stagnation streamline
is consistent with previous analytic solutions for high-frequency gust-aerofoil interactions.

2.3. Low-Frequency Solution
We now investigate the low-frequency limit, k � 1, of (2.6a). The wavelength of the gust
is now much larger than the thickness of the ellipse, hence we expect that, to leading
order, the solution resembles that of the flat plate, and is independent of the thickness
of the ellipse. The governing equation for the low-frequency solution is given by (2.13)
which we write as

∂2φ̃

∂θ2
= −r2f(r, θ), (2.27)

where f(r, θ) is still given by (2.15), and the scalings (2.16) still hold albeit k is now
small, so H1 � H0. The conditions (2.18) still hold, and we also still require zero normal
velocity on the surface of the ellipse. We assume r is O(1) in deducing (2.27), thus we
have neglected terms of O((kr)2). We therefore cannot consider far-field low-frequency
results (r � k−1), however due to the wavelength being large we would expect the far-
field results to be a dipole that could be modelled by flat-plate interaction theory, which
is well understood (Amiet 1975). Instead we are more interested in the low-frequency
limit of the unsteady surface pressure spectrum.

The low-frequency particular solution to (2.27) satisfying (2.18) is

φ̃p = r2

∫ θ

θc
dθ′
∫ θ′

θc
f(r, θ′′)dθ′′. (2.28)

The homogeneous solution, satisfying the zero normal velocity requirement on the bound-
ary of the ellipse, is

φ̃h = A(r)(θ − θc), (2.29)
where A is an as yet undetermined function of r. On the surface for small θ, to leading
order,

u(I).n =
A1r

c

r
= O(1), (2.30)

and
∂φ̃h

∂n
≈ 1

1− b2

[
A′(r)(1− b2)− 2θA(r)

1 + b2

]
, (2.31)

hence on the surface of the ellipse we require A(r) = O((1− b2)θ−1). It will be sufficient
to know just the order of magnitude to deduce the effects of turbulence at leading order
close to the stagnation point, therefore we do not explicitly solve for φ̃h.

3. Effect of Turbulence and the Turbulent Spectra
We now use our results for a single gust from the previous section to consider the

effect of homogeneous weak turbulence from upstream interacting with the leading-edge



Interaction of turbulence with the leading-edge stagnation point of a thin aerofoil 9

stagnation point of the ellipse (see Goldstein (1978) and Hunt (1973) for early work on this
topic). We assume the three-dimensional upstream turbulent spectrum, Φ

(∞)
i,j (k1, k2, k3),

is known. The one-dimensional turbulent velocity spectrum is defined by

Θν,µ(x, k1) =
1

2π

∫ ∞
−∞

Rν,µ(x, τ)eik1τdτ, (3.1)

where ν and µ are r, θ or z.

Rν,µ(x, τ) = 〈uν(x, t)uµ(x, t+ τ)〉 (3.2)

is the one-point turbulent velocity correlation tensor, where the angle brackets denote
time averaging. It relates to the known upstream turbulent spectrum via the equation

Θν,µ(x, k1) =

∫ ∞
−∞

∫ ∞
−∞

Mν,jMµ,nΦ
(∞)
j,n (k)dk2dk3, (3.3)

where the over bar denotes complex conjugation, and the Mα,i are given in Goldstein
(1978) via

uν = AjMν,j(r, θ)eik1(∆−t)+ik2Ψ+ik3z for ν = r, θ, z. (3.4)
We choose the von Kármán spectrum far upstream, as done by Goldstein (1978),

Φ
(∞)
j,n = α

(k2
1 + k2

2 + k2
3)δjn − kjkn

(g2/l2 + k2
1 + k2

2 + k2
3)17/6

, (3.5)

where

α =
55g1

〈
u2
∞
〉

36πl2/3
, (3.6)

the gi are constants to be determined from experimental data, and l denotes the integral
lengthscale of the upstream turbulence. The magnitude of the unsteady flow far upstream
is given by u∞.

We define the one-dimensional turbulent pressure spectrum analogously to the velocity
spectrum as

Θpp(x, k1) =

∫ ∞
−∞

∫ ∞
−∞

NiNjΦ
(∞)
i,j (k)dk2dk3, (3.7)

where the Ni are given via
p

ρ
= Nj(r, θ)Ajeik1(∆−t)+ik2Ψ+ik3z, (3.8)

and the perturbation pressure can be found from the solutions for the unsteady velocity
potential determined in Section 2 using

p = −ρ0
D0φ

Dt
. (3.9)

We calculate Θpp in Appendix B.

3.1. High-Frequency Pressure Spectrum in the Far Field
In a similar manner to Section 2.2.1 we can extend our solution for Θpp into the far field
for θ = O(1) (recall, in Section 2.2 we found that in the far field for θ = O(τ) the solution
was negligible). This yields

Θpp ∼
2g1

〈
u2
∞
〉√

π

3r

Γ
(

1
3

)
Γ
(

5
6

) cos θ sin4 θ l2M

{
g
−4/3
2 k1l� 1

(k1l)
−8/3 k1l� 1

(3.10)
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in the high and low reduced frequency limits.
These two expressions can be combined to give a composite function for Θpp;

Θpp ∼
2
〈
u2
∞
〉√

πg1l
2MΓ

(
1
3

)
3rΓ

(
5
6

) g
−4/3
2 cos θ sin4 θ(
1 + (k1l)8

g42

)1/3
. (3.11)

3.2. High- and Low-Frequency Surface Pressure Spectrum
The surface pressure spectrum can be found close to the leading-edge stagnation point
when θ is small. We consider both the low- and high-frequency spectra.

3.2.1. Low-Frequency
The scattered pressure can be written as

p = −ρ0eik1t+ik3z

[
−ik1φ̄+ Ur

∂φ̃

∂r
+
Uθ
r

∂φ̃

∂θ

]
, (3.12)

where φ̃ = φ̃h + φ̃p. Evaluating each term in (3.12) in the low-frequency regime and
within the small θ region gives scalings

pp = O(1− b2), ph = O(1), (3.13)

where pp,h are the contributions to the surface pressure due to the particular and homo-
geneous solutions respectively. Thus, in the thin ellipse limit, b → 1, the homogeneous
solution dominates the pressure on the surface of the ellipse near the nose. Hence, the
interaction between the boundary and the gust generates the majority of the unsteady
pressure. Since the solution does not depend on the thickness of the ellipse at leading
order, we can assume that the wavelength of the gust is so large that it does not see an
elliptical body in the steady flow, but rather a point source.

To compute Θpp we therefore follow Mish (2001), who considers spectra for a NACA
0015 aerofoil, based on the work for a flat plate done by Amiet (1975), and writes the
pressure jump across a flat plate due to an incident gust as

∆p∗(x, y, t) = 2πρ∗0U
∗b∗w∗0g(x, k1, k3)eik

∗
3z
∗−k∗1U

∗t∗ (3.14)

in dimensionalised form. Here g is the transfer function between the incident velocity
and aerofoil pressure jump, and w∗0 is magnitude of the incident gust velocity. The cross
power spectral density at a given point is given by Mish (2001) as

Sqq(x, x, 0, ω
∗) = 4(2πρ∗0b

∗)2

∫ ∞
−∞

∫ ∞
−∞
|g(x,−ω/U, k3)|2Φ

(∞)
1,1 (−ω∗/U∗, k∗2 , k∗3)dk∗2dk

∗
3 ,

(3.15)
where ω∗ is the circular frequency, U∗ is the steady free-stream velocity, and b∗ is the
semi-chord length of the flat plate. Mish (2001) provides us with the transfer function
for a thin aerofoil, which in our limit of small k∗1 and small Mach number is

g(x, k1, k3) = −
(

1−
√
x

2

(
1− erf

[√
2(2− x)k3

])) e−ik3x

π3/2
√
x
√
k3 + ik1

. (3.16)

Using this expression we can integrate (3.15) numerically. We are careful to choose param-
eters that are consistent with our scalings of thickness and proximity to the leading-edge
stagnation point with respect to the frequency parameter k, and take values for U , ω,
b and ρ0 from Mish & Devenport (2006) for comparison later in Section 4. We do not
consider k1l � 1 in the low-frequency case because it would not be realistic to allow a
turbulent lengthscale to be so large, l� k−1, for k � 1.
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Figure 2: Sound pressure levels away from the leading edge of an SD7003 aerofoil mea-
sured experimentally, compared to the asymptotically obtained turbulent pressure spec-
trum. The horizontal axis measures (dimensional) frequency, w = k∗1 . The vertical axis
measures the pressure level. Experimental data from (Geyer et al. 2012) comes courtesy
of Thomas Geyer (pers. comm.).

3.2.2. High-Frequency
We now consider the behaviour of (B 4) for k1 � 1 to yield

Θpp ∼
g1u2
∞
√
πΓ
(

1
3

)
l2M

3Γ
(

5
6

)
(1− b2)2

{
g
−4/3
2 k1l� 1

(k1l)
−8/3 k1l� 1

, (3.17)

in the high-frequency limit. A composite function can be constructed similarly to the
far-field high-frequency solution,

Θpp ∼
g1u2
∞
√
πΓ
(

1
3

)
l2M

3Γ
(

5
6

)
(1− b2)2

g
−4/3
2(

1 + (k1l)8

g42

)1/3
. (3.18)

The above result now sheds light on an even smaller inner region to that considered
by Tsai (1992), since here we are constrained to a narrow wedge around the stagnation
point as opposed to allowing O(1) values of θ. This narrower region properly analyses
the effects of the stagnation point on high-frequency incident turbulence, which were
neglected in Tsai (1992).

4. Comparison with experimental data
Here we present comparisons of our asymptotic results, (3.11), (3.17) and (3.15) with

experimental data.
In Figure 2 we compare our far-field high-frequency spectra, (3.11) to experimental

sound pressure levels measured by Geyer et al. (2012). The parameters used are as follows;
U∗ = 35ms−1, g1 = 0.2, g2 = 0.56,M = 0.09, θ = π/30, l = 0.002. These match the
experimental setup, with g1,2 chosen following Goldstein (1978). We see a good agreement
for high frequencies, but at lower frequencies our asymptotic approximation no longer
matches the experimental results. This is because in the experiment the upstream integral
lengthscale of turbulence is fixed, while our high-frequency approximation has required
us to vary l so that k1l remains very small whilst k1 remains very large.
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(a) Small grid, l = 0.0078m. (b) Large grid, l = 0.0818m.

Figure 3: Asymptotically obtained pressure spectrum. Experimental data shows the sur-
face pressure spectra measured on a NACA 0015 aerofoil. Coherent Output Power (COP)
results give the inviscid spectra. Experimental results from (Mish & Devenport 2006) are
courtesy of William Devenport for two grid sizes yielding different integral lengthscales
of turbulence.

On the surface of the ellipse, for small θ, the low- and high-frequency limits of the tur-
bulent pressure spectrum are given by (3.15) and (3.17) respectively. We compare these
analytic solutions with the experimental data obtained by Mish & Devenport (2006) in
Figure 3. Mish & Devenport (2006) introduced grid-generated turbulence upstream of a
NACA 0015 aerofoil using a small or large grid to produce turbulence of different integral
lengthscales, l = 0.0078 (small grid) and l = 0.0818 (large grid). We assume this turbu-
lence is isotropic upstream, U = 30ms−1, b = 0.305m,M = 0.09, and g1 = 0.2, g2 = 0.56
again chosen following Goldstein (1978). The horizontal axis measures scaled frequency,
wr = 2πk1bU

−1, and the vertical axis measures the (dimensional) surface pressure spec-
trum (normalised by 4πU). For the small grid, the turbulence is on the same lengthscale
as the viscous boundary layer, therefore the directly measured (viscous) surface pressure
is contaminated by boundary layer interactions, hence we only compare to the inviscid co-
herence output power (COP) measurements. The COP results, discussed in Mish (2001,
pp. 75-77), extract the inviscid surface response from the measured pressure spectra, re-
moving any turbulent boundary layer fluctuations. We see good agreement between the
asymptotic results and the COP measurements in Figure 3a at both low and high frequen-
cies. The large grid turbulence has a lengthscale much greater than that of the viscous
boundary layer, hence for wr . 10 we see good agreement between the directly measured,
COP, and asymptotic results in Figure 3b. For wr & 10 the COP measurements diverge
from the direct measurements indicating an onset of some viscous behaviour and hydro-
dynamic effects discussed in Mish & Devenport (2006). The asymptotic result is still in
reasonable agreement with direct measurements, but has some distinct differences indi-
cating that alongside viscous interferences, we could also expect non-linear interactions
to begin to take effect.

5. Conclusions
We have considered the effects of homogeneous isotropic turbulence from far upstream

interacting with the leading-edge stagnation point of an aerofoil, by calculating analytic
approximations for the turbulent pressure spectrum, both on the aerofoil surface close to
the stagnation point, and in the far field close to the stagnation streamline. The analytic
solution we have found requires the Mach number and body thickness to be small. This
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allows simplifications to be made, and leading-order approximations to be found. We
identified the need to consider a new asymptotic region for the gust-aerofoil interaction
problem because current analytic methods based on thin aerofoil theory predict a sin-
gularity at the leading-edge stagnation point which invalidates asymptotic assumptions.
Our solution in a region close to the leading-edge stagnation point does not permit a
singularity, and has been shown to be compatible with previous asymptotic solutions
through a matching process in the high-frequency limit.

Both high- and low-frequency turbulent interactions were considered, and the resulting
turbulent pressure spectra on the surface and in the far field showed good agreement with
experimental data. For small scale turbulence, our analytic surface predictions agree well
with inviscid measured data for all frequency ranges, whilst for large scale turbulence we
have good agreement up to scaled frequency wr ≈ 10, after which non-linear effects may
begin to be important. Below wr ≈ 10, both the directly measured and inviscid COP
spectra of Mish & Devenport (2006) agree since the viscous boundary layer is on a much
smaller lengthscale than the upstream turbulence. We can conclude that the analytic
model presented in this paper accurately predicts the inviscid response to both small
and large scale upstream turbulence, provided viscous and non-linear effects are negligi-
ble. This approximation for the inviscid response can be used during post-processing of
measured data to establish the effects of boundary layer interactions, without requiring
additional data processing such as COP.

We have not provided results along the stagnation streamline itself, since these can
be recovered from Durbin (1978), who found that along a stagnation streamline the
turbulence pressure spectra decays exponentially due to piling up of eddies and strong
cancellation of the corresponding pressure contributions. This has more recently been
seen by Santana & Schram (2015), where the high-frequency decay rate of the turbulence
pressure spectrum increases with proximity to the stagnation point. Whilst the results
from Durbin (1978) are specifically for bluff bodies with O(1) thickness, the result along
the stagnation streamline would also hold for thin bodies such as those discussed in this
paper, since the stagnation streamline is unaffected by the conformal mapping from a
circular cylinder to a thin elliptic cylinder.
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Appendix A. Stream Function and Drift Function
Here we obtain the stream function, Ψ, and drift function, ∆, for incompressible steady

uniform flow around a thin elliptic cylinder, as required in Section 2. We begin with steady
flow around a circular cylinder of radius R∗ which far upstream is uniform with velocity
U∗∞ = U∗∞êx. This is mapped via the Joukowski transformation to give the corresponding
flow around an elliptic cylinder. Velocities are non-dimensionalised with respect to U∗∞,
and lengths with respect to R∗.

The (non-dimensional) velocity potential of the flow around the circular cylinder is
given by

Φ(s, ϕ) =

(
s+

1

s

)
cosϕ, (A 1)

where (s, ϕ) are standard polar coordinates with origin at the centre of the cylinder. The
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velocity field is obtained from the potential, U0 = ∇Φ, and the streamfunction, Ψ, is
then obtained as

Ψ(s, ϕ) =

(
s− 1

s

)
sinϕ. (A 2)

Since we wish to consider the flow around an elliptic cylinder, we apply the Joukowski
transformation,

z = ζ +
b2

ζ
,

to map from a circular to an elliptical cylinder, where ζ = seiϕ, and z = reiθ define
the (r, θ) polar coordinates for the elliptic geometry, centred on the centre of the ellipse,
with θ = 0 corresponding to the upstream direction, and measured clockwise. The unit
circular cylinder is mapped to an elliptic cylinder of minor axis 1 − b2 and major axis
1 + b2. The transformation of coordinates is given by

s =
1

2 cosϕ

(
−r cos θ −

√
r2 cos2 θ − 4b2 cos2 ϕ

)
, (A 3a)

sin2 ϕ =
4b2 − r2

8b2
+

1

2

√
(r2 − 4b2)2

16b4
+
r2 sin2 θ

b2
, (A 3b)

and close to the leading-edge stagnation streamline, θ ≈ 0, this is approximated by

s ≈ 1

2

(√
r2 − 4b2 + r

)
, (A 3c)

sinϕ ≈ r sin θ√
r2 − 4b2

. (A 3d)

We obtain the streamfunction for the ellipse by applying the transform (A3d) to (A 2).
The drift function is defined by (2.4). In order to evaluate ∆ we march along a stream-

line by integrating the relation

dt =
rdθ

Uθ
, (A 4)

as done in Lighthill (1956). To do this we write r in terms of θ along a given streamline
close to the leading-edge stagnation streamline, Ψ = 0. We choose

η = Ψ(r, θ), (A 5)

for η � 1 and solve (A 5) for r by expanding

r = r0 + ηr1 +O(η2), (A 6)

in a similar way to Lighthill (1956). Equating (A 5) at each order using (A 6) allows us
to solve for r0,1;

r0 = 1 + b2, (A 7a)

r1 =
(1− b2)2

2(1 + b2)
csc θ. (A 7b)

We notice from (A7) that (A 6) is in fact a series in η/ sin θ so it is only valid if
1� θ > η, hence our solution is bounded away from the stagnation streamline. To bound
θ values away from the stagnation point, we introduce θc as the lower limit of allowable
small θ values. As illustrated in Figure 1, the Ψ = η streamline in the region θ ≤ θc is
approximately a straight line from upstream infinity, which arises from the uniform flow.
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Hence we can treat this region as Goldstein (1978) does, so when calculating the drift
we use a uniform flow approximation for θ ≤ θc and our expansion (A 6) for θ > θc.
Specifically, the point on the η streamline, (rc, θc), is approximated by

θc =
η

rc
, (A 8a)

rc =
4(1 + b2)4

1 + 6b2 + 8b4 + 2b6 − b8 + (1 + b2)2
√

50b4 − 24b6 − b8 − 8b2 − 1
+O(η2),

∼ 2− 2(1− b). (A 8b)

We later neglect terms of O(η) therefore our solution will be independent of θc, however
we define it here to specifically bound our region of interest away from the Ψ = 0
streamline.

We note that Durbin (1978) considered turbulent interactions with a bluff body along
Ψ = 0 and found that close to the leading-edge stagnation point of the body, the turbulent
pressure spectrum decays exponentially with frequency. Since we anticipate an identical
result along Ψ = 0, we only consider Ψ = η 6= 0.

Using (A 6) we can write the velocity component uθ as

uθ = a1 sin θ + η (a2 + a3f(θ) + a4 cos 2θ)
1

f(θ)
, (A 9a)

where

f(θ) =

√
(1− b2)2 − (1 + b2)2 sin2 θ. (A 9b)

We require θ < 2 arctan
(

1−b
1+b

)
to ensure that f is real.

The ai are constants given by

a1 = −2(1 + b2)

(1− b2)2
, (A 10)

a2 = − 2(b2 − 6b4 + b6)

(1 + b2)(1− b2)3
, (A 11)

a3 =
(b4 + 6b2 + 1)

(1 + b2)(1− b2)2
, (A 12)

a4 = −2b2(1 + b2)

(1− b2)2
. (A 13)

(A 14)

Using (A 6) we obtain the asymptotic expression for uθ for r close to the surface, in
the form

r

uθ
∼ (1 + b2)

a1
csc θ + η csc2 θ

1

a2
1

[
a1(1− b2)2

2(1 + b2)
− 1 + b2

f(θ)
(a2 + a4 cos 2θ + a3f(θ))

]
.

(A 15)

Finally, we insert (A 15) into (A 4) and integrate to obtain the drift function

∆(θ) ≈ const.− r cos θ +
(1 + b2)

a1
I1 +

η

a2
1

(
a1

(1− b2)2

(1 + b2)
I2 − (1 + b2) [a2I4 + a4I3 + a3I2]

)
,

(A 16)
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where

I1 =

∫
csc θdθ = log [tan (θ/2)] , (A 17a)

I2 =

∫
csc2 θdθ = − cot θ, (A 17b)

I3 =

∫
csc2 θ

f(θ)
cos 2θdθ =

g(θ) cot θ
√

2 (1− b2)
2 −

1

(1− b2)

[
F

(
θ

∣∣∣∣∣
(
b2 + 1

)2
(1− b2)

2

)
+ E

(
θ

∣∣∣∣∣
(
b2 + 1

)2
(1− b2)

2

)]
, (A 17c)

I4 =

∫
csc2 θ

f(θ)
dθ =

1
√

2 (1− b2)
2
g(θ)

{(
b2 + 1

)2
sin 2θ − 2

(
1− b2

)2
cot θ

+
√

2
(
1− b2

)
g(θ)F

(
θ

∣∣∣∣∣
(
b2 + 1

)2
(1− b2)

2

)
−
√

2
(
1− b2

)
g(θ)E

(
θ

∣∣∣∣∣
(
b2 + 1

)2
(1− b2)

2

)}
,

(A 17d)

with
g(θ) =

√
b4 + (b2 + 1)2 cos 2θ − 6b2 + 1. (A 18)

The quantity within the square root defined in g(θ) is positive subject to the same
constraint as before,

θ < 2 arctan

(
1− b
1 + b

)
≡ ε. (A 19)

We use (A 19) to define ε, the upper limit of θ. In (A 17), F (x|m) and E(x|m) denote
elliptic integrals of the first and second kind respectively (Abramowitz & Stegun 1964,
pp. 589). The constant in (A 16) depends on η, rc and θc. For our calculations we only
require derivatives of ∆ therefore we do not explicitly calculate the constant.

The integrals, (A 17), should be expanded for small θ to obtain an expression for ∆
near the leading-edge stagnation point. These expansions are

I1 ∼ log

[
θ

2

]
+
θ2

12
+O(θ3), (A 20a)

I2 ∼ −
1

θ
+
θ

3
+O(θ3), (A 20b)

I3 ∼ −
1

(1− b2) θ
−
(
7b4 − 26b2 + 7

)
θ

6 (1− b2)
3 +O(θ3), (A 20c)

I4 ∼ −
1

(1− b2) θ
+

(
5b4 + 2b2 + 5

)
θ

6 (1− b2)
3 +O(θ3). (A 20d)

Appendix B. Turbulent Pressure Spectrum
The turbulent pressure spectrum is given by (3.7). We write the Ni (defined in (3.8))

as

N1 = (n0 + n1

√
k2

1M
2 − k2

3)e−ir
√
k21M

2−k23(θ−θ0s) + n2 cos

[
R
√
k2

1M
2 − k2

3(θ − θh)

]
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+
n3√

k2
1M

2 − k2
3

sin

[
R
√
k2

1M
2 − k2

3(θ − θh)

]
, (B 1a)

N2 = n4 cos

[
R
√
k2

1M
2 − k2

3(θ − θh)

]
+

n5√
k2

1M
2 − k2

3

sin

[
R
√
k2

1M
2 − k2

3(θ − θh)

]
,

(B 1b)

where

n0 =
ik1C

k3/2
− U0,r

k3/2

[
∂C

∂r
+ ik1C

∂∆(θ0
s)

∂r

]
, n1 =

iCθ
k3/2

U0,r +
iC
k3/2

U0,θ,

n2 = U0,r
F1

R

∂

∂r

[
R(θh − θ0

s)
]

+
F1

r
U0,θ, n3 = iU0,r

F1

R
k1
∂∆(R, θh)

∂r
,

n4 = U0,r
F2

R

∂

∂r

[
R(θh − θ0

s)
]

+
F2

r
U0,θ, n5 = iU0,r

F2

R
k1
∂∆(R, θh)

∂r
,

(B 2)

and

u(I).n
∣∣∣
(R,θh;r)

= AiFi(R, θ
h; r)eik1∆+ik2Ψ+ik3z, (B 3a)

φ̃p =
A1C(r, t, k1)

k3/2
eik1∆(r,θ0s)+ik2Ψ(r,θ0s)−ir

√
k21M

2−k23(θ−θ0s), (B 3b)

U0 = (U0,r, U0,θ, U0,z). (B 3c)

Therefore integrating (3.7) gives

Θpp ≈
12αk1M

√
πΓ
(

1
3

)
55Γ

(
5
6

) (
l2

g2 + k2
1l

2

)4/3 [
2−2 F1

(
1

3
,

1

2
,

3

2
;− k2

1l
2M2

g2 − k2
1l

2

)]
|n0|2

+
72α
√
πΓ
(

1
3

)
55Γ

(
5
6

) (
l2

g2 + k2
1l

2

)1/3 [
1−2 F1

(
1

3
,

1

2
,

3

2
;− k2

1l
2M2

g2 − k2
1l

2

)]
|n1|2

+
36απ3/2Γ

(
1
3

)
55Γ

(
5
6

) (
l2

g2 + k2
1l

2

)1/3 [
2F1

(
−2

3
,

1

2
, 1;− k2

1l
2M2

g2 − k2
1l

2

)
−2F1

(
1

3
,

1

2
,

3

2
;− k2

1l
2M2

g2 − k2
1l

2

)]
Re(n0n

∗
1)

+
4k1α

√
πΓ
(

1
3

)
55l2Γ

(
5
6

) [
8k2

1l
2|n4|2J1 + n2

2J2 + 2n2(Re(n1J
∗
3 ) + Re(n0J

∗
4 ))

+
2|n3|
k1

(Im(n1J5) + Im(n0J7)) +
8l2

k2
1

|n5|2J6 +
|n3|2

k2
1

J8

]
, (B 4)

where the function 2F1 denotes a hypergeometric function (Abramowitz & Stegun 1964,
pp. 556), and U0 is the velocity field due to uniform flow around an ellipse as calculated
in Appendix A. When integrating over k3 to obtain the pressure spectra, we take only
|k3| ≤M |k1| to ensure an oscillatory solution for φ̃ rather than an exponentially decaying
one.

The Ji in (B 4) are defined by

J1 =

∫ M

0

(1 + s2)

(
l2

g2 + k2
1(1 + s2)l2

)7/3

cos2
[
Rk1

√
M2 − s2(θ − θh)

]
ds, (B 5a)
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J2 =

∫ M

0

(
l2

g2 + k2
1(1 + s2)l2

)7/3 (
3g2 + k2

1(3 + 11s2)l2
)

cos2
[
Rk1

√
M2 − s2(θ − θh)

]
ds,

(B 5b)

J3 =

∫ M

0

√
M2 − s2

(
l2

g2 + k2
1(1 + s2)l2

)7/3 (
3g2 + k2

1(3 + 11s2)l2
)

cos
[
Rk1

√
M2 − s2(θ − θh)

]
eirk1

√
M2−s2(θ−θ0s)ds, (B 5c)

J4 =

∫ M

0

(
l2

g2 + k2
1(1 + s2)l2

)7/3 (
3g2 + k2

1(3 + 11s2)l2
)
eirk1

√
M2−s2(θ−θ0s)

cos
[
Rk1

√
M2 − s2(θ − θh)

]
ds, (B 5d)

J5 =

∫ M

0

1√
M2 − s2

(
l2

g2 + k2
1(1 + s2)l2

)7/3 (
3g2 + k2

1(3 + 11s2)l2
)

sin
[
Rk1

√
M2 − s2(θ − θh)

]
ds, (B 5e)

J6 =

∫ M

0

1 + s2

M2 − s2

(
l2

g2 + k2
1(1 + s2)l2

)7/3

sin2
[
Rk1

√
M2 − s2(θ − θh)

]
ds, (B 5f )

J7 =

∫ M

0

1√
M2 − s2

(
l2

g2 + k2
1(1 + s2)l2

)7/3 (
3g2 + k2

1l
2(3 + 11s2)

)
eirk1

√
M2−s2(θ−θ0s)

sin
[
Rk1

√
M2 − s2(θ − θh)

]
ds, (B 5g)

J8 =

∫ M

0

1

M2 − s2

(
l2

g2 + k2
1(1 + s2)l2

)7/3 (
3g2 + k2

1l
2(3 + 11s2)

)
sin2

[
Rk1

√
M2 − s2(θ − θh)

]
ds. (B 5h)

In the far-field, Θpp is dominated by the vortical source, i.e. terms arising from φ̃p,
hence only n0,1 terms contribute. These are given by

n0 ∼
√

2πe−iπ/4ik1√
M2k2

1 − k2
3

√
kr

√
cos θ sin2 θ, (B 6a)

n1 ∼ i
√

2π

√
cos θ

kr

e−iπ/4√
M2k2

1 − k2
3

(θ cos θ − sin θ) . (B 6b)

On the surface, dominant terms arise due to horizontal blocking, hence n4,5 ∼ 0.
Remaining terms are

n0 ∼
−
√
πie−iπ/4

√
k1(1− b2)

, (B 7a)

n1 ∼
2iθ
√
πe−iπ/4

k
3/2
1 (1− b2)

, (B 7b)

n2 ∼
4θ

1− b4
, (B 7c)

n3 ∼ 0. (B 7d)



Interaction of turbulence with the leading-edge stagnation point of a thin aerofoil 19

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables. Courier Dover Publications.

Allampalli, V., Hixon, R., Nallasamy, M. & Sawyer, S. D. 2009 High-accuracy large-
step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics. Journal
of Computational Physics 228, 3837–3850.

Amiet, R.K. 1974 Compressibility effects in unsteady thin-airfoil theory. AIAA Journal 12,
252–255.

Amiet, R.K. 1975 Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound
and Vibration 41, 407–420.

Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and
Engineers. Springer.

Darwin, C. G. 1953 Note on hydrodynamics. Proc. Camb. Phil. Soc. 49, 342–354.
Durbin, P. A. & Hunt, J. C. R. 1980 On surface pressure fluctuations beneath turbulent

flow round bluff bodies. Journal of Fluid Mechanics 100, 161–184.
Durbin, P. A. 1978 Rapid Distortion Theory of Turbulent Flows. PhD thesis, University of

Cambridge.
Durbin, P. A. & Pettersson Reif, B. A. 2001 Statistical Theory and Modeling for Turbulent

Flows. Wiley.
Geyer, T., Sarradj, E. & Giesler, J. 2012 Application of a beamforming technique to the

measurement of airfoil leading edge noise. Advances in Acoustics and Vibration 2012, 1–16.
Goldstein, M. E. 1978 Unsteady vortical and entropic distortions of potential flows round

arbitrary obstacles. Journal of Fluid Mechanics 89, 433–468.
Goldstein, M. E. & Atassi, H. 1976 A complete second-order theory for the unsteady flow

about an airfoil due to a periodic gust. Journal of Fluid Mechanics 74, 741–765.
Hixon, R., Golubev, V., Mankbadi, R. R., Scott, J. R., Sawyer, S. & Nallasamy,

M. 2006 Application of a nonlinear computational aeroacoustics code to the gust-airfoil
problem. AIAA Journal 44, 323–328.

Hunt, J. C. R. 1973 A theory of turbulent flow round two-dimensional bluff bodies. Journal
of Fluid Mechanics 61, 625–706.

Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. Doklady Akademiia Nauk SSSR 30, 301–305.

Lighthill, M J 1956 Drift. Journal of Fluid Mechanics 1, 31–53.
Mish, P. F. 2001 Mean Loading and Turbulence Scale Effects on the Surface Pressure Fluctu-

ations Occurring on a NACA 0015 Airfoil Immersed in grid Generated Turbulence. PhD
thesis, Virginia Polytechnic Institute and State University.

Mish, P. F. & Devenport, W. J. 2006 An experimental investigation of unsteady surface
pressure on an airfoil in turbulence – Part 1: effects of mean loading. Journal of Sound and
Vibration. 296, 417–446.

Myers, M. R. 1987 Effect of airfoil mean loading on high-frequency gust interaction noise.
PhD thesis, University of Arizona.

Myers, M. R. & Kerschen, E. J. 1997 Influence of camber on sound generation by airfoils
interacting with high-frequency gusts. Journal of Fluid Mechanics 353, 221–259.

Santana, L. D. & Schram, C. 2015 Airfoil noise prediction from 2D3C PIV data. 21st
AIAA/CEAS Aeroacoustics Conference, Dallas, TX AIAA 2015-2203.

Sears, W. R. 1941 Some aspects of non-stationary airfoil theory and its practical applications.
Journal of the Aeronautical Sciences 8, 104–188.

Tsai, C-T. 1992 Effect of Airfoil Thickness on High-Frequency Gust Interaction Noise. PhD
thesis, University of Arizona.

Van Dyke, M. 1975 Perturbation methods in fluid mechanics. Parabolic Press.


