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One of the great challenges of electronic structure theory is the quest for the exact functional of
density functional theory. Its existence is proven, but it is a complicated multivariable functional
that is almost impossible to conceptualize. In this paper, the asymmetric two-site Hubbard model
is studied, which has a two-dimensional universe of density matrices. The exact functional becomes
a simple function of two variables whose three dimensional energy landscape can be visualized
and explored. A walk on this unique landscape, tilted to an angle defined by the one-electron
Hamiltonian, gives a valley whose minimum is the exact total energy. This is contrasted with
the landscape of some approximate functionals, explaining their failure for electron transfer in the
strongly correlated limit. We show concrete examples of pure-state density matrices that are not
v-representable due to the underlying non-convex nature of the energy landscape. For the first
time, the exact functional is calculated for all numbers of electrons, including fractional, allowing
the derivative discontinuity to be visualized and understood. The fundamental gap for all possible
systems is obtained solely from the derivatives of the exact functional.

In 1964 Hohenberg and Kohn [1] established density
functional theory (DFT) showing that the electron den-
sity, ρ, is all that is is necessary to determine the ex-
act energy of many electron systems. However, all the
challenge of electronic structure is then moved into an
unknown universal functional of the density, F [ρ]. For
a wavefunction, Ψv, that is the ground-state solution of
the Schrödinger equation with potential v,

Ev = min
Ψ
〈Ψ|Ĥ|Ψ〉 = 〈Ψv|T + Vee|Ψv〉+ Tr(ρvv) (1)

simply subtracting off the one-electron term, gives the
exact Hohenberg-Kohn functional for ρv (Ψv → ρv)

FHK[ρv] = Ev − Tr(ρvv) = 〈Ψv|T + Vee|Ψv〉. (2)

This procedure can be carried out for many different v,
to obtain many points of the exact functional FHK[ρv].
A question arises of whether all possible densities are
achievable. This is the problem of v-representability, that
is addressed by the constrained search by Levy and Lieb
[2, 3] following earlier work by Percus [4]

FLevy[ρ] = min
Ψ→ρ
〈Ψ|T + Vee|Ψ〉. (3)

This functional is defined for all possible densities com-
ing from a N -electron wavefunction, including those that
are not obtainable as the ground-state solution of a
Schrödinger equation (not v-representable). Once the
exact functional is known, the total energy is obtained
by minimization only over densities,

Ev[ρ] = min
ρ
{F [ρ] + Tr(ρv)} . (4)

The exact functional of the first-order density matrix, γ,
can be derived [2, 5]

FLevy[γ] = min
Ψ→γ
〈Ψ|Vee|Ψ〉, (5)

and used similarly, where the kinetic energy term is now
a known linear functional of γ

Ev[ρ] = min
γ
{F [γ] + Tr(Tγ) + Tr(vγ)} . (6)

In this Letter, the nature of the exact first-order den-
sity matrix functional is revealed by considering the
asymmetric two-site Hubbard model. In this universe,
the fundamental equations are tractable and the exact
functional becomes a visualizable three dimensional en-
ergy landscape in the space of density matrices. We
demonstrate how this one universal landscape gives the
exact energy of all possible systems, for all numbers of
electrons including fractional. This connected view of
the functional for all density matrices makes clear the
reasons for the failure of approximate functionals, and
allows us to answer the questions of whether there are
density-matrices which are not v-representable and also
how the derivatives of the exact functional give the fun-
damental gap.

The asymmetric two-site Hubbard [6] model describes
interacting electrons on a lattice of two sites that con-
tains the physics of electron transfer and has even re-
cently been experimentally described using two ultracold
fermionic atoms [7]. It has the Hamiltonian

Ĥ = −t
∑
σ

(
c†1σc2σ + c†2σc1σ

)
+U

∑
i

n̂iαn̂iβ +
∑
iσ

εin̂iσ

(7)
where the site index i = 1, 2, spin index σ = α, β and the
number operator is n̂iσ = c†iσciσ. There has been recent
work on the exact functional in this model from Fuks et al
[8, 9], Carrascal et al [10], Pastor and coworkers [11, 12],
Requist et al [13], and in other systems [14–16].

The parameters that define a particular model are the
hopping between the sites, t, on-site energies ε1/ε2 and
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Figure 1: Energy landscape of the exact functional (a) FLevy[γ] for all allowable density matrices of the two site Hubbard model.
(b) The one electron term, γ.v, for t = 0.1 and ∆ε = 0.9, which is purely a flat plane. (c) Illustration of the minimization of
the exact functional adding on the same γ.v term to give the FCI energy and density matrix,

{
EFCI

v , γFCI
v

}
. (d) FLevy[γ] and

6552 points of
{
FHK[γFCI

v ], γFCI
v

}
that show the EFCI

v subtracting the one electron term (Eq. 11) at γFCI
v for many different v.

the electron-electron repulsion penalty due to double oc-
cupation of a site, U . The physics is completely deter-
mined by ∆ε = ε1 − ε2 and the ratio U/t, therefore, in
this work U is fixed at 1 and t and ∆ε are the chosen
variables. The kinetic and on-site potential part of the
Hamiltonian, which together we denote as v, is a real
symmetric 2x2 matrix defined by parameters t and ∆ε

v =

(
∆ε/2 −t
−t −∆ε/2

)
(8)

and the 2x2 density matrix, γij =
∑
σ〈Ψ|c

†
iσcjσ|Ψ〉 is

γ =

(
γ11 γ12

γ∗12 (2− γ11)

)
(9)

leading to a total energy for real density matrices

Ev = −2γ12t+ γ11∆ε/2− (2− γ11)∆ε/2 + F [γ].(10)

The exact functional can be obtained and understood
from different perspectives. Firstly, for any γ that comes

from an exact diagonalization full configuration interac-
tion (FCI) calculation with one-electron Hamiltonian v,
the Hohenberg-Kohn functional is given by

FHK[γv] = EFCI
v +2γ12t−γ11∆ε/2+(2−γ11)∆ε/2. (11)

The second way is the constrained search over real singlet
wavefunctions

Ψ =
a√
2

[A(φ1αφ2β) +A(φ2αφ1β)]

+bA(φ1αφ1β) + cA(φ2αφ2β) (12)

which can be simplified to an expression (see Refs. [10,
12] and supplementary information (SI) for more details)

FLevy[γ] =
γ2

12

(
1−

√
1− γ2

12 − [γ11 − 1]2
)

+ 2[γ11 − 1]2

2 (γ2
12 + [γ11 − 1]2)

.

(13)
Thirdly, it can be viewed as the exact functional in den-
sity matrix functional theory for two electrons. From the
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Figure 2: Entire landscape of F [γ] for the exact functional, and three approximate density-matrix functionals (see supplementary
information for more details). The minimizing values {F [γv], γv} for three lines of v (−2 ≤ ∆ε < 2) with t = 1, 0.2, 0.05 are
plotted on the surfaces in purple, green and red, respectively. The central plots show the failure of approximate functionals to
correctly describe the electron transfer (γ11 vs ∆ε) as t approaches the strongly correlated limit (see supplementary animations).

work of Löwdin and Shull in 1956 [17] using the natural
orbitals |a〉 and |b〉 (|p〉 =

∑
i=1,2 Cpic

†
i |vac〉) and their

occupation numbers na and nb that diagonalize γ, it can
be derived that

FLS[γ] =
1

2
na〈aa|aa〉+

1

2
nb〈bb|bb〉−

√
nanb〈aa|bb〉 (14)

where the two-electron integral is 〈pp|qq〉 =
U
∑
i=1,2 C

2
piC

2
qi. This gives exact agreement with

the constrained search expression, Eq. (13) and has
been utilized in functionals such as the AGP natural
orbital functional [18, 19] and PNOF5[20] (see SI). There
are two further possible routes to the exact functional
(details in the SI): the extension over pure-state wave-
functions to complex, and the Lieb maximization[3],
FLieb[γ] = supv {Ev − γ.v}.
FLevy[γ] is shown in Fig. 1a. for the allowable density

matrices (γ11 − 1)
2

+ γ2
12 ≤ 1. It is represented as a

unique surface of hills and a valley in a bowl type shape,
with a channel through the centre (at γ11 = 1) and hills
on both sides (reaching 1 at γ12 = 0). This defines the
energy landscape that maps every possible system to its
corresponding exact energy.

The exact functional is an energy landscape with only

one minimum, so how does it give rise to all possible FCI
energies? This can be pictured in a very physical manner
by considering a walk on this landscape, placed upon a
flat surface tilted to the angle given by the one-electron
potential, which gives a valley whose minimum equals
exactly the FCI solution. Fig. 1b shows the one electron
term for a particular v, defined by t = 0.1 and ∆ε = 0.9,
and Fig. 1c shows the addition of this with the exact
functional, FLevy[γ] + γ.v, whose minimum is at the FCI
energy, EFCI

v , and FCI density matrix, γv. This holds
for every possible v. Thus, once the exact functional is
known, it gives the exact solution of any system by means
of an almost trivial calculation.

We have performed a large number of FCI calcula-
tions varying the two free parameters, −10 < t < 10
and −10 < ∆ε < 10. Fig. 1d illustrates the result of
over 6000 FCI calculations subtracting off the one elec-
tron term, γ.v, to give the FHK[γ] of Eq. (11). Every
single light blue dot, representing many FHK[γv], lies on
the surface of FLevy[γ]. However, the one-particle den-
sity matrices γv that result from all these FCI calcula-
tions cover only a small fraction of the space (seen as the
black dots projected onto the base of the plot with more
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details in SI). The rest of the density matrices are not
v-representable, even though they are N -representable.
From the perspective of the exact functional, it is clear
why these density matrices can never be found, as they
correspond to the hills of the surface where the FLevy[γ]
lies inside a convex containing surface (see SI). Addition
of the one electron interaction term, which is purely lin-
ear in the variables γ11 and γ12, as pictured in Fig. 1b,
means that these points can never be minima, and hence
cannot be a FCI solution. In terms of the functional it
corresponds to where the second derivatives of the func-
tional are no longer positive definite as seen by the a
negative lowest eigenvalue of the Hessian matrix of sec-
ond derivatives, Hij = ∂2F

∂γ1i∂γ1j
, (see SI). It should also be

noted that the lowest energy wavefunctions of the non-
v-representable density matrices cannot be written in a
Gutzwiller form [21] (see SI). The non-v-representable re-
gion highlights the key distinction between FLevy[γ] de-
rived from pure-state wavefunctions, which can be con-
cave, versus the FLieb[γ] functional derived from ensem-
bles by a Legendre-Fenchel transform, which is proven to
be everywhere convex [3].

The derivatives of the functional (expressions in SI)
satisfy the Euler equation and give the one-electron
Hamiltonian needed,

∂F [γ]

∂γ
= −v + C. (15)

Now, consider the physics of electron transfer, by vary-
ing ∆ε, from the weakly correlated (U/t = 1) to strongly
correlated (U/t = 20) regimes as depicted in Fig. 2.
Correctly describing this electron transfer in the strongly
correlated regimes is one of the great challenges of elec-
tronic structure, as demonstrated in Fig. 2 by the failure
of approximate density matrix functionals such as Müller
[22] and Power functionals [23]. The approximate func-
tionals do not correctly describe the entire landscape and
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Figure 4: The exact functionals of Eqs. (17) and (18) for all
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Hubbard model.

thus completely fail to describe electron transfer (see an-
imation in SI). This is related to the complete failure
of all currently used density functionals for the electron
transfer in a two-electron molecular type challenge (see
HZ{2e}of Ref. [24]).

The exact functional can be calculated for all numbers
of electrons (0 ≤ N ≤ 4); the integer parts are trivial
and given in the SI. For non-integer numbers of elec-
trons, the functional is constructed using the Perdew,
Parr, Levy and Balduz (PPLB)[25] ensemble extension
to search over many-electron density matrices

ΓN+δ = c0|Ψ0〉〈Ψ0|+ c1|Ψ1〉〈Ψ1|+ c2|Ψ2〉〈Ψ2|
+c3|Ψ3〉〈Ψ3|+ c4|Ψ4〉〈Ψ4| (16)

with
∑
i ci = 1 and

∑
i ci.i = N + δ (0 ≤ δ ≤ 1). Thus,

we explicitly construct the fractional extension

FN+δ[γ] = min
ΓN+δ→γ

Tr[ΓN+δVee], (17)

where, unlike PPLB, we have not assumed convexity
of the energy versus N . That is, rather than using
ΓN+δ = cN |ΨN 〉〈ΨN | + cN+1|ΨN+1〉〈ΨN+1|, we explic-
itly search over ensembles of allN -electron wavefunctions
(N = 0, 1, 2, 3, and 4) as in Eq. (16) (see SI).

Fig. 3 shows the extension of the exact functional to
fractional numbers of electrons for N + δ = 1.5. We
obtained FN+δ[γ] for all the possible density matrices,
where the minimum is actually given only by the combi-
nation of N and N + 1 (see supplementary information
for more details). We also find that all the appropriate
ensembles of FCI energies subtracting off the one electron
term using the ensemble of density matrices,

FHK
N+δ[v] = (1− δ)EFCI

v [N ] + δEFCI
v [N + 1]

−
[
(1− δ)γNv + δγN+1

v

]
.v (18)

lie perfectly on the functional surface for all values of v
and δ. Additionally, just like for integer electrons, a walk
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on this surface tilted to the angle of any one-electron
potential (analogously to Fig. 1c) gives a minimum point
that exactly agrees with the ensemble FCI energy.

The knowledge of the exact functional for fractional
numbers of electrons connects to the band-gap problem.
This is the question of whether the fundamental gap, de-
fined as the difference of the ionization energy and elec-
tron affinity, can be given by the derivatives of the exact
functional. For simplicity, consider only the symmetric
Hubbard dimer with different numbers of electrons. In
Fig. 4 the exact functional is shown for 1 ≤ N ≤ 3,
along with several points of the ensemble FHK

N+δ[v] with
v = {−1 < t < 1,∆ε = 0} (see also animations in SI).
For every v, FHK

N+δ[v] traces out a straight line versus
particle number with a clear derivative discontinuity at
N = 2, hence the derivatives of the exact functional give
the contribution to the fundamental gap

∂F [γ]

∂N+

∣∣∣∣
v

− ∂F [γ]

∂N−

∣∣∣∣
v

= F [γN+1]+F [γN−1]−2F [γN ]. (19)

If there is no discontinuity in the density matrix, which
is the case of a Mott insulator, the entirety of the fun-
damental gap is given by the exact functional (Eq. 19).
This is illustrated as the green line in Fig. 4 for the
symmetric Hubbard model with t = 0 and 1 ≤ N ≤ 3,
and has a direct correspondence to the gap of infinitely
stretched H2 [26]. Nevertheless, most systems have a dis-
continuity in the density matrix, γN+1−γN 6= γN−γN−1,
giving rise to a discontinuous derivative even for the one
electron term, which is an entirely smooth flat plane.
However, the direction in which γ changes upon electron
addition or removal is already determined by derivatives
of F whilst keeping the derivative in the direction of fixed
N to be constant

γN±1 = γN +
δγ

δN±

∣∣∣∣
∂F
∂γ |N

. (20)

Hence, the fundamental gap is solely determined by the
derivatives of the functional itself,

Gap[γN] =

 ∂F [γ]

∂N+

∣∣∣∣
∂F [γ]
∂γ

∣∣
N

− ∂γ

∂N+

∣∣∣∣
∂F
∂γ |N

.
∂F [γ]

∂γ

∣∣∣∣
N


−

 ∂F [γ]

∂N−

∣∣∣∣
∂F [γ]
∂γ

∣∣
N

− ∂γ

∂N−

∣∣∣∣
∂F
∂γ |N

.
∂F [γ]

∂γ

∣∣∣∣
N


Overall, it is amazing to have a universe that turns any

question about the exact functional into simple move-
ments of a three-dimensional energy landscape. Walks on
this landscape and its valley and hills correspond to im-
portant physical concepts such as the exact energies of ev-
ery possible system and domains of non-v-representable
density matrices. Furthermore, in the direction of chang-
ing particle number there is a continuous surface that has

a derivative discontinuity at the integers, giving all pos-
sible fundamental gaps, including Mott insulators. The
whole landscape of the exact functional is itself an infinite
number of exact constraints, such that any approxima-
tion must approach and be mathematically proximal to
it for the entire universe. It is this connected view of the
exact functional for a family of densities in a global land-
scape that truly highlights a path for the improvement
of approximate functionals.
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