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Abstract 

The external mucus surface of reef fish contains ultraviolet absorbing compounds (UVAC), 

most prominently Mycosporine-like Amino Acids (MAAs). MAAs in the external mucus of 

reef fish are thought to act as sunscreens by preventing the damaging effects of ultraviolet 

radiation (UVR), however, direct evidence for their protective role has been missing. We 

tested the protective function of UVAC’s by exposing fish with naturally low, Pomacentrus 

amboinensis, and high, Thalassoma lunare, mucus absorption properties to a high dose of 

UVR (UVB: 13.4 W*m
-2

, UVA: 6.1 W*m
-2

) and measuring the resulting DNA damage in the 

form of cyclobutane pyrimidine dimers (CPDs). s For both species, the amount of UV 

induced DNA damage sustained following the exposure to a one hour pulse of high UVR was 

negatively correlated with mucus absorbance, a proxy for MAA concentration. Furthermore, a 

rapid and significant increase in UVAC concentration was observed in P. amboinensis 

following UV exposure, directly after capture and after ten days in captivity. No such increase 

was observed in T. lunare, which maintained relatively high levels of UV absorbance at all 

times. P. amboinensis, in contrast to T. lunare, uses UV communication and thus must 

maintain UV transparent mucus to be able to display its UV patterns. The ability to rapidly 

alter the transparency of mucus could be an important adaptation in the trade off between 

protection from harmful UVR and UV communication. 

 

Keywords: Ultraviolet absorbing compounds, Mycosporine-like Amino Acids; DNA damage; 

UV radiation; reef fish; sunscreens; Pomacentrus amboinensis 
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1 Introduction 

Ultraviolet radiation (UVR, 280 - 400 nm), specifically short-wavelength UVB radiation (280 

- 315 nm) causes damage to DNA.  The formation of cyclobutane pyrimidine dimers (CPDs) 

between adjacent pyrimidine bases [1] is one of the key consequences of UVB exposure 

leading to structural changes in the DNA double helix, which can inhibit polymerases thus 

arresting replication and transcription of the DNA sequence [2]. If left unrepaired, UV-

induced DNA damage can lead to mutations [3] and apoptosis of affected cells [4, 5]. In fish, 

the effects of UVR exposure include behavioural changes (e.g.in trout [6] and salmon [7]), 

damage to tissues of the skin (Japanese medaka [8]) and the brain (Northern Pike [9]), DNA 

damage [10] MAAs can be found in fish eggs [11], larvae [10] and in the ocular media as well 

as the external mucus of reef fish [12, 13]. and can lead to increased mortality (Zebrafish [14], 

Atlantic cod [15] and Sea Bream [16]). 

In the tropics, where levels of UVR are among the highest on Earth [17], the clear and 

shallow waters around coral reefs allow UVR to penetrate farther than in other aquatic 

ecosystems [18, 19] leading to a high risk of  UVB induced DNA damage. Due to changes in 

ozone levels [20], aerosols, greenhouse gases and cloud cover [21, 22] as well as loss of coral 

complexity due to increased cyclone intensity [23] and severe coral bleaching [24], UVR 

around coral reefs is likely to continue to increase [22]. These changes can be mediated wither 

directly by increases in irradiance [21, 22], or indirectly by the increases in water clarity and 

loss of shelter [24].  

Protection from harmful UVR in marine organisms can arise from physical barriers (e.g. 

shells and scales) as well as from UV-absorbing compounds (UVACs) like carotenoids [25] 

and Mycosporine-like amino acids (MAAs), [26]. Over twenty MAAs with absorbance 

maxima between 309 and 360 nm have been found in the tissues of hundreds of marine 

species from all trophic levels and all latitudes, and together with Gadusol (absorbance 

maximum ~ 290 nm) cover the UVB and UVA spectrum [27]. This variety of MAA 

compounds [28] is synthesized by microbes, fungi and plants via the shikimate pathway [29] 

and alternatively the pentose phosphate pathway [30, 31]. Although some of the genes from 

the shikimate pathway have been found in the sea anemone Nematostella vectensis [32] and 

corals [33], MAAs cannot be synthesized by animals [29] and are likely of dietary origin [34, 

35]. In reef fish, over 100 species (of 137 studied) show UV absorbing mucus [13], and the 

tissues where MAAs can be found are as varied as the number of compounds [36]. MAAs 
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have been detected in fish eggs [11], larvae [10] and in the ocular media as well as the 

external mucus of reef fish [12, 13], all tissues which are vulnerable and exposed to UVR.  

MAAs as part of all UVACs in fish mucus are widely recognized to act as sunscreens due to 

their absorbance properties, the tissues in which they are found [17, 27, 34, 37], and due to 

their ability to prevent sunburn when topically applied to the skin of mice [38]. MAAs have 

been shown to protect against cleavage delay in sea urchins [39] and have recently been 

linked to reduced DNA damage in an intertidal gastropod [40]. In corals and other marine 

organisms, MAA concentrations in exposed tissues are linked environmental levels of UVR, 

as reviewd by Shick and Dunlap [26]. There is circumstantial evidence that MAAs may also 

have a protective function in reef fish [36]. The MAA concentration in the external mucus of 

reef fish correlates with the levels of UVR in their habitat [41, 42]. In captivity, the UVR 

absorbance of mucus of Hawaiian wrasse that were provided with an MAA-rich diet 

decreased under conditions that lacked UVR, suggesting that there is an energetic cost to the 

maintenance of MAA protection in the external mucus [43]. In the presence of UVR and 

under the same dietary conditions, MAA levels in mucus remained at pre-capture levels. The 

MAA profiles detected using laboratory methods (HPLC) and the absorbance of whole mucus 

samples measured in the field both vary between species and geographical locations [41, 44]. 

Mucus absorption has been established as a proxy for MAA concentration [42] in the external 

mucus of reef fish, and can be easily quantified in the field [45] by measuring UV absorbance 

in mucus samples. 

Here, we address the sunscreen hypothesis, specifically that a higher level of UVACs lead to 

reduced UV- induced DNA damage. Therefore, fish with different known mucus absorbances 

were exposed to a high pulse of UVB radiation in order to induce UV-specific DNA damage 

in the skin. If UVACs, of which MAAs are an integral part, indeed acted as sunscreens, it is 

expected to find higher DNA damage (CPDs) in fish that have lower levels of UVACs in their 

mucus. Consequently, we tested for a sunscreen function of UVACs shortly after capture, 

assuming unchanged mucus absorbance, and after a period of captivity, which is shown to 

reduce mucus absorbance.  
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2 Methods 

 2.1 Location and experimental animals 

The study was carried out at the end of the Australian summer in March and April 2013 at 

Lizard Island Research Station (LIRS, 14°40'5”S, 145°27'47”E). Pomacentrus amboinensis 

(Bleeker 1868, n = 50, SL = 6.9 cm, SD = 0.63 cm) and Thalassoma lunare (Linnaeus 1758, n 

= 30, SL = 11.08 cm, SD = 1.84 cm) were caught at two shallow (water depth < 2 m) sites 

inside the Lizard Island lagoon using hand and barrier nets. Both species were caught in 

locations that had a maximum depth of 2 metres. Both species are active during the day, and 

occur in the same habitat at Lizard Island. Damselfish such as P. amboinensis are highly 

territorial [46], and although wrasses such as T. lunare are more mobile than substrate-

associated Damselfish, individuals were observed in the same habitat over several days (C. 

Braun, pers. observation). It is therefore highly likely that both species experience similar 

environmental levels of UVR. For the transport back to the research station by boat (< 5 min), 

the fish were held in plastic tanks (23x 21x 21 cm) filled with seawater and the lid closed. 

Upon arrival at the station, the size (SL) of the fish was measured to the nearest mm by 

transferring individuals to a sealable plastic bag with little seawater and gently placing the bag 

on a mat that had a ruler taped to it. Only fish of similar sizes (+/- 2 cm difference in SL) were 

used in the experiments since Zamzow and Siebeck [47] showed an effect of body length on 

mucus absorbance in P. amboinensis. All procedures were conducted with permission from 

the Queensland Government (General fisheries permit 162472 to U.E.S.), the Great Barrier 

Reef Marine Park Authority (permit G11/34453.1 to C.B. and U.E.S.) and the animal ethics 

commission of the University of Queensland (permit SBMS/091/11 to C.B. and U.E.S.).  

 2.2 Holding conditions 

Test 1 – natural mucus absorbance levels: All fish were randomly assigned to the following 

treatments and holding conditions. Thirty P. amboinensis and twenty T. lunare were subjected 

to the UV challenge (see below) within 24 hours of capture. These fish were held in plastic 

tanks (P. amboinensis: 23x 21x 21 cm, water depth 20 cm; T. lunare: 40x 30x30 cm, water 

depth 20 cm) with flow through seawater inside an aquarium room of LIRS.  

Test 2 – following manipulation of mucus absorbance levels: Twenty P. amboinensis and ten 

T. lunare were held in captivity for ten days before being subjected to the treatments of the 
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UV exposure challenge. These fish were different individuals than the fish that were used in 

Test 1. The aim of this was to manipulate mucus MAA levels to increase their variability 

within each species and hence manipulate mucus absorbance. Previous studies showed that 

both, MAA-rich food and exposure to UV is required to maintain high mucus UV absorbance 

[43].  Here all fish were fed the same diet (MAA rich food (see below and Fig. S 1) and relied 

on the presence/absence of UV for the manipulation of mucus absorbance levels.  

The fish were randomly assigned to an experimental tank (same dimensions per species as 

above), which was linked to the seawater flow-through system and contained a small PVC 

pipe that served as shelter. Pomacentrus amboinensis were either shielded from natural 

sunlight (inside an aquarium room of LIRS), or exposed to natural sunlight, with equal 

number of fish being held in each condition. All ten individuals of Thalassoma lunare were 

held inside an aquarium, shielded from natural sunlight. The aquaria exposed to natural 

sunlight were placed on two benches which were aligned on an east-west axis to maximize 

sun exposure during the day and to prevent shading from nearby trees and buildings. On a 

daily basis, tanks were cleaned to prevent build-up of algae, detritus and leftover food. 

The water temperature for each holding condition was recorded every 15 minutes by an 

immersed HOBO Datalogger (Onset Computer Corporation, Bourne, MA, U.S.A.), placed in 

an additional tank, which was also linked to the flow-through system. Mean water 

temperature for the outside condition was 29.53 °C (SD ± 1.57), which was slightly higher 

than for the inside condition (28.79 °C, SD ± 0.59) and the water in the Lizard Island Lagoon 

(28.52 °C, SD ± 0.24; measured by an oceanographic mooring (Australian Institute of Marine 

Science (AIMS), 14°68'S, 145°45'E at 0.6m, data provided by Integrated Marine Observing 

System (IMOS)).  

2.3 Diet during captivity 

Fish were fed twice daily with approximately 0.5 g food paste made of frozen prawns and 

whitebait, supplemented with 10% (w/w) ground Acanthophora spicifera, a rhodophyte rich 

in MAAs [48]. The algae were collected (GBRMPA permit G11/33857.1 to LIRS) from a 

shallow site (water depth < 2 m) in the lagoon. The food paste was prepared before the start of 

the experiment, aliquoted to small portions, and frozen at -20°C. A new aliquot was used each 

day and leftover food discarded. Characteristic signatures of eight known MAAs were 

detected in samples of A. spicifera using HPLC-MS (Fig. S 1). 
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 2.4 Experimental treatments (UV exposure challenge) 

The experiment was conducted inside the aquarium room. Each light treatment (see below) 

lasted one hour. Fish were placed individually in one of five plastic tanks (23x 21x 21 cm, 

water depth 20 cm) connected to the seawater flow-through system. 

 

Within 24 hours of capture (test 1), ten P. amboinensis were challenged with exposure to a 

high dose of UVB radiation (treatment “UVB +”). Ten control individuals (treatment “UVB -

”) were exposed to the fluorescent lights of the room only and handled in the same way as the 

treatment fish (Fig. 1). In order to ensure that any changes in UV-induced DNA damage and 

mucus absorbance levels were due to an increase in UVB radiation and not brightness, an 

additional ten P. amboinensis were exposed to a light pulse that had the same amount of 

photons as the UVB challenge, but lacked any light below a wavelength of 400 nm (treatment 

“brightness control”). After ten days in captivity (test 2), five P. amboinensis held under 

exclusion of UVR and five individuals held under natural UVR were subjected to the “UVB 

+” and “UVB -” treatments.   

For T. lunare, ten individuals each were exposed to the ”UVB +” and “UVB -” treatment 

within 24 hours after capture (Test 1), and five individuals each to the “UVB +” and “UVB -” 

treatment after ten days in captivity (T est 2). One individual of the “UVB +” treatment 

(within 24 hours after capture) and one individual of the “UVB -” treatment (after 10 days in 

captivity) escaped from their tanks into the overflow area around the tanks during the 1 h UV 

challenge. Although these fish survived and were put back into the tanks, they were excluded 

from the analysis due to the extra handling stress they might have experienced.  

Immediately after being subjected to one of the treatments, fish were euthanized in an ice 

bath, followed by sampling of mucus and skin tissue. 

 2.5 Light treatments 

All measurements were made using an OceanOptics Jaz spectrometer, 1000µm optical fibre 

and a CC-3-UV-S cosine corrector (all OceanOptics, Ft Lauderdale, FL, U.S.A.), held 

horizontally just above the water surface facing the light source above the tanks. The 

spectrometer was calibrated against a DH-2000 Deuterium- Tungsten Halogen light source 

(OceanOptics, Ft Lauderdale, Florida, U.S.A.).  
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In the treatment “UVB +”, three lamps with two fluorescent tubes each (Sankyo Denki 

G20T10E UVB, Kanagawa, Japan, peak emission at 310 nm) were used. The lamps were 

suspended 30 cm above the water surface of the tanks holding the individual fish. The UVB 

(280 - 315 nm) and UVA (315 – 400 nm) doses at the water surface were 13.4 and 6.1 W*m
-2

, 

respectively. A total photon flux (280 – 700 nm, Fig 1a) of 7.74*10
15

 photons*cm
-2

*s
-1 

was 

detected at the water surface (Table S1 in supplementary material) The total UVB and UVA 

dose for the exposure of one hour were 48.2 and 21.9 kJ*m
-2

, respectively. This UVB dose is 

the rough equivalent of a surface exposure of 2.7 hours around midday at Trawler Beach 

(Table 2 in supplementary material, for further details see Braun [49]). The animals used in 

this experiment were caught in this area, making this exposure environmentally relevant.  

For the treatment “UVB -”, illumination of the tanks was provided by four fluorescent tubes 

(Philips TLD 36W/950) on the ceiling above the exposure tanks. The photon flux (280 – 700 

nm, Fig. 1b) was measured at 1.08*10
14

 photons*cm
-2

*s
-1 

(Table S1 in supplementary 

material). Spectral measurements confirmed that no UVR (UVA and UVB) was present in 

this treatment. 

The light environment for the brightness control treatment was created by a combination of an 

AquaOne Daylight fluorescent tube (Arcadia, Redhill, Surrey, UK) and a UVB tube in each of 

the four lamps. The lamps were covered with one layer of UV-blocking filter material 

(LEE226, Andover, Hampshire, UK), and spectral measurement with the Jaz spectrometer 

confirmed that no UVR was present. The photon flux (280 – 700 nm) in the “brightness 

control” treatment was 7.48*10
15

 photons*cm
-2

*s
-1

 (Fig. 1c, Table S1 in supplementary 

material).  

An overlay of figures 1a-c is shown in the supplementary material (Fig S2). 
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Figure 1: Photon flux in the light treatments of the experiment. a) Note the large proportion 

of UVB (280 – 315 nm) radiation in the “UVB +” treatment, b) compared to the “UVB –” 

treatment. c) The absence of UVR needed to be controlled with a larger proportion of visible 

light in the “brightness control” treatment to equalise overall photon flux.  

 2.6 Mucus absorbance analysis 

Mucus was taken from both flanks of the fish using a dull scalpel blade [13] and stored in a 2 

ml Cryotube on ice for absorbance measurements later on the same day. The UV absorbance 

(280 - 400 nm) of external mucus was measured following Zamzow and Losey [13]. This 

approach allows mucus samples to be measured shortly after their collection in the field and is 

a reliable method for the quantification of the mucus absorbance [13, 42, 45, 47]. Briefly, 

mucus samples were squashed between a UV-transparent slide (made from OP4 acrylic, T50 = 

278 nm) and a coverslip (T50 = 290 nm). Two cover slips were glued to the slide and acted as 

spacers to standardize the mucus samples to a thickness of 0.25 mm. The slide was mounted 

on the stage of a modified microscope which held two UV-transmitting fibre optic cables 

(with a diameter of 200 µm) perpendicular to each other. Light from the Deuterium-Tungsten 

Halogen source of the Jaz spectrometer (OceanOptics, Ft Lauderdale, FL, U.S.A.) passed 

through the upper optic fibre through the slide and the mucus sample and into the lower fibre. 

Ten absorbance measurements against a blank (seawater plus slide) at different points of the 

mucus sample were averaged to account for heterogeneity of the mucus. The absorption data 

of the mucus samples were then integrated (AUC, area under the curve) between 280 and 400 

nm using GraphPad Prism 6. Reef fish mucus not only contains MAAs, but also a suite of 

endogenous proteins and lipids [50] and external compounds such as bacteria [51]. All parts 

together possibly add to the absorbance of the mucus in the UV range. Hence, the 

measurement of “sunscreens” in the mucus using the technique described here includes all 

possible compounds, and the term “sunscreens” in this paper refers to all UV absorbing 

compounds (UVACs).  

 2.7 DNA damage analysis  

After sampling of the mucus, the fish were immediately frozen in liquid nitrogen, and stored 

at -70°C until analysis of DNA damage. The procedure followed the protocol by Mori et al. 

[52]. 
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Genomic DNA was extracted from up to 25 mg of skin and tissue from an area between the 

dorsal fin and the head of each fish. A scalpel blade was used to shave off a section of skin 

and tissue (< 1 mm thick) from the still frozen fish. Using the DNeasy
®

 Blood and Tissue kit 

(Qiagen) following manufacturers’ instructions, each sample was immediately transferred into 

a 2 ml tube containing the lysis buffer to prevent DNA degradation. Upon isolation, the 

integrity of the DNA was visually inspected using gel electrophoresis and the DNA was 

quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmingtion, DE, USA). The DNA was diluted in 1 x PBS to a final concentration of 0.2 µg / 

ml. Only structurally intact DNA samples (i.e. single band on the gel) and with an absorption 

coefficient (260 / 280 nm) > 1.8 were used for damage analysis. 

 

To detect UV-induced CPD lesions, the TDM-2 primary antibody (Cosmo Bio, Tokyo, Japan) 

was used in an enzyme-linked immunosorbent assay (ELISA) read out in a 96 - well plate 

reader (Model 680, Bio-Rad, U.S.A.) at 492 nm. Mean values of triplicate DNA samples were 

used as the damage level for each fish, which was the statistical replicate. In order to compare 

damage levels between assays, i.e. 96 - well plates, a DNA standard was included with each 

assay. This standard was generated by irradiating a DNA solution (170 µg/ml in 1 x PBS from 

salmon testes, Sigma-Aldrich) in a 6 well plate for up to 20 minutes under two UVB lamps 

(2x Sankyo Genki GL20SE, peak emission at 310 nm, distance from well plate 12 cm). For 

the ELISA assay, the standard solution was then diluted in 1 x PBS to the same concentration 

as the DNA samples (0.2 µg / ml). Additionally to the triplicates of the DNA standard and the 

isolated DNA samples, a triplicate blank (1 x PBS) was included in all assays. This blank was 

then subtracted from the average of the OD values of all triplicates (standard and samples). 

OD values (i.e. DNA damage levels) were then normalized to the average of the three highest 

values of the standard curve.  

2.7 Statistical analysis 

For the statistical analysis, the normalized DNA damage values were arcsine transformed. 

First, it was tested for an effect of holding condition (shielded or exposed to natural sunlight) 

on the DNA damage and integrated mucus absorbance after the exposure to the different 

conditions in the UV challenge (“UVB +” and “UVB -”) using two-way ANOVAs. This 

analysis was done for the cohort of P. amboinensis that was held in captivity for ten days. As 

there was no significant effect of holding condition on DNA damage (F(1,16) = 0.7, P = 0.4) or 
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integrated mucus absorbance (F(1,16) = 4.2, P = 0.06), the data were pooled for further 

analysis.  

Subsequently, a two-way ANOVA and post hoc tests (Dunnett’s) were conducted for each 

species to test the effects of the UV challenge (“UVB +” and “UVB -”) and time (zero days or 

ten days) in captivity on either DNA damage or integrated mucus absorbance. In the case of 

P. amboinensis, the brightness control treatment was excluded to keep the number of factors 

equal for the two time points (zero and ten days in captivity). The DNA damage and 

integrated mucus absorbance of the “brightness control” group were compared separately to 

the “control” treatment using an additional ANOVA.  

The ratio of the integrated UVB/UVA absorbances were compared between treatment groups 

(UVB + versus UV -, and UV – versus brightness control) using a Mann-Whitney test. No 

significant differences were found in these ratios (all P > 0.5, see Table S3).  

Linear regressions were used to test whether decreased mucus absorbance was linked to 

higher amount of UV-induced DNA damage. In the case of T. lunare an additional Spearman-

rank correlation was performed, since the initial linear regression was not significant, possibly 

due to a low sample size. GraphPad Prism 6 and JMP 10 were used in this analysis.  
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3 Results 

 3.1 Pomacentrus amboinensis 

The treatments of the UV challenge had a highly significant effect on DNA damage 

(ANOVA, F1,36 = 139.9, P < 0.0001) and the integrated mucus absorbance (ANOVA, F1,36 = 

47.22, P < 0.0001). Both measured variables were significantly higher in the “UVB +” 

compared to the “UVB -” treatment (Dunnett’s, P <  0.0001, Figs. 2a and 2b). The time the 

fish spent in captivity had no significant effect on DNA damage or integrated mucus 

absorbance (P > 0.05, Figs. 2a and 2b, and also Figs. 3a and 3b). No significant interactions 

between the treatments of the UV challenge and time in captivity were observed (DNA 

damage: ANOVA, F1,36 = 0.22, P = 0.642; integrated mucus absorbance: ANOVA, F1,36 = 

0.004, P = 0.951).  

There was no significant difference in either DNA damage (ANOVA, F1,18 = 0.0006, P = 

0.98, Fig. 2a) or mucus absorbance (ANOVA, F1,18 = 1.43, P = 0.25, Fig. 2b) between the fish 

of the “UVB -” and “brightness control” treatments. An increase in average mucus 

absorbance of “UVB +” fish compared to the “UVB -” treatments is clearly visible in the 

absorption curves (Figs. 3a and 3b). The “brightness control” and “control” treatments 

appeared very similar (Fig. 3a). Figure S3 (supplementary material) shows the SD error, 

which was omitted here for clarity.  

The amount of DNA damage was negatively correlated with the integrated mucus absorbance 

(Fig. 4a) in the “UVB +” treatment (linear regression, n = 20, R
2
 = 0.34, P = 0.007), but not in 

the “UVB -” treatment (linear regression, n = 20, R
2
 = 0.06, P = 0.3).  
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Figure 2: Relative DNA damage in skin samples (a,c) and integrated mucus absorbance (b,d) 

of P. amboinensis (a,b) and T. lunare (c,d) after exposure to one of three treatments (“UVB 

+”, “UVB -” and “brightness control”) measured within 24 hours of capture (“0 days”) and 

after ten days in captivity (“10 days”). a) P. amboinensis exposed to the “UVB +” treatment 

had significantly higher DNA damage than fish from the treatments “UVB -” or “brightness 

control” at both timepoints. b) The same pattern was found for integrated mucus absorbance.  

c) DNA damage in T. lunare was significantly higher in fish of the “UVB +” treatment after 

ten days in captivity. d) Integrated mucus absorbance of T. lunare was significantly reduced 

after 10 days in captivity.  Solid bars: “UVB -”, open bars: “UVB +”, chequered: “brightness 

control”. Error bars indicate 1 SD from the mean. Numbers above bars indicate the total 

number of fish used in the respective treatment. Asterisks indicate significant Dunnett’s post-

hoc comparisons (*: 0.01 < P < 0.05; **: 0.001< P < 0.01; ***: 0.001 < P < 0.0001).  

 

 3.2 Thalassoma lunare 

DNA damage was significantly affected by the UV challenge (F1,24 = 12.23, P < 0.002), with 

fish that were in the “UVB +” treatment showing significantly higher DNA damage levels 

than “UVB -” fish (Dunnett’s P <  0.0001, Fig. 2c) after ten days in captivity. There was also 
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a significant effect of time spent in captivity on the integrated mucus absorbance (F1,24 = 14.4, 

P < 0.0009), with mucus absorbance being significantly lower after ten days (Dunnett’s, 

“UVB -”: P = 0.04; “UVB +”: P = 0.005, Fig. =2d). No significant effect of time spent in 

captivity on DNA damage of T. lunare was observed (F1,24 = 0.02, P > 0.05). There were no 

significant interactions between the treatments of the UV challenge and time in captivity 

(DNA damage: F1,24 = 3.134, P = 0.089; integrated mucus absorbance: F1,24 = 0.067, P = 

0.798).  

The absorbance curves (Figs. 3c and 3d) of “UVB +” and “UVB -” fish did not differ upon 

visual inspection, with the SD error of the mean curves overlapping (omitted for clarity in Fig. 

3, but see supplementary material, Fig S3). Similar to P. amboinensis, the DNA damage of 

exposed T. lunare was negatively correlated with the integrated mucus absorbance (Spearman 

rho -0.662, n = 14, P = 0.01), although the linear regression showed a non significant 

relationship (linear regression, n = 14, R
2
 = 0.24, P = 0.07, Fig. 4b). No significant relation 

between DNA damage and integrated mucus absorbance was observed in “UVB –“ animals 

(linear regression, n = 14, R
2
 = 0.11, P = 0.25, Fig. 4b).  
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Figure 3: Mean absorbance curves of mucus samples of P. amboinensis and T. lunare. Mucus 

was sampled after exposure to one of the three treatments: “UVB -” (solid lines), “UVB +” 

(dashed lines) and in the case of P. amboinensis, the “brightness control” (dotted line). Mucus 

absorbance for P. amboinensis was higher across the spectrum in fish exposed to the ”UVB 

+”, both within 24 hours after capture (a) and after ten days in captivity (b). The “brightness 

control” treatment (a) was very similar to the “UVB -” treatment in terms of magnitude and 

shape. In contrast to P. amboinensis, mucus absorbance of T. lunare exposed to the ”UVB +” 

treatment did not differ upon visual inspection and appeared very similar across the spectrum, 

both within 24 hours after capture (c) and after ten days in captivity (d). After ten days in 

captivity (d), a decrease in overall absorbance was visible in both “UVB -” and “UVB +” 

treated fish. 

Wavelength (nm)

A
b

so
rb

an
ce

 (
O

D
)

280 300 320 340 360 380 400
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

A
b

so
rb

an
ce

 (
O

D
)

280 300 320 340 360 380 400
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

A
b

so
rb

an
ce

 (
O

D
)

280 300 320 340 360 380 400
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

A
b

so
rb

an
ce

 (
O

D
)

280 300 320 340 360 380 400
0.0

0.2

0.4

0.6

0.8

1.0

a) P. amboinensis: mucus absorbance 0 days b) P. amboinensis: mucus absorbance 10 days

d) T. lunare: mucus absorbance 0 days d) T. lunare: mucus absorbance 10 days

UVB -

UVB +

Brightness Control



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 4: Relationship between DNA damage levels and mucus absorbance in fish exposed to 

various treatments  a) DNA damage significantly increased with decreasing mucus 

absorbance in fish exposed to the UVB + treatment (linear regression, n = 20, R
2
 = 0.34, P = 

0.007) but not in “UVB -” fish (n = 20, R
2
 = 0.06, P = 0.3). b) The linear regression for the 

“UVB +” exposed T. lunare was not significant (n = 14, R
2
 = 0.24, P = 0.07), however a 

Spearman-rho rank correlation was significant (P = 0.01). A linear regression for the “UVB -” 

group was not significant (n = 14, R
2
 = 0.11, P = 0.25). Open squares: “UVB +”, solid circles: 

“UVB -”. 
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4 Discussion 

The UV-absorbing function of reef fish mucus has been relatively well studied [13, 36, 41, 42, 

44, 47], however direct evidence for a protective, sunscreen function that actually reduces or 

mitigates the negative effects of UVR exposure in fish, specifically DNA damage, is missing 

from the literature. The results show that UVACs, of which MAAs are a crucial component, 

do indeed act as a first line of defence against UV- induced DNA damage in two species of 

reef fish, Pomacentrus amboinensis and Thalassoma lunare. When fish were exposed to a 

high dose of UVB radiation, the level of DNA damage in the skin of the fish was negatively 

correlated with the integrated mucus absorbance, which is an accepted proxy for the amount 

of MAAs present in the external mucus [42]. Fish exposed to the “UVB –“ treatments had 

variable levels of UVACs levels but overall low DNA damage. Additionally, it was 

discovered that in P. amboinensis, but not T. lunare, mucus absorbance was significantly 

higher in UVB exposed fish compared to control groups, therefore potentially increasing the 

amount of UVAC and MAA protection in their mucus. The changes in mucus absorbance 

observed in this experiment were species-specific, and restricted to fish that were exposed to 

increased UVB light.  

Similar protective functions of natural sunscreens have previously been shown only in 

invertebrates. Adams [39] showed that in larvae of the sea urchin Strongylocentrotus 

droebachiensis, lower MAA levels lead to longer delays in cleavage induced by acute UV 

exposure. Carefoot [53] observed reduced hatching in UV exposed Aplysia eggs, and higher 

MAA levels in spawn from UV exposed adults, however a definite protective function of 

MAAs could not be confirmed. Although we did not directly measure MAA content in 

mucus, our observations of mucus absorbance in relation to DNA damage strongly support a 

protective function of UVACs, and since MAAs are an integral part of fish mucus, also the 

hypothesis that MAAs serve as natural sunscreens.  

The experiments were designed to manipulate mucus absorbance levels found in the external 

mucus of fish to achieve high variability in UVACs levels prior to exposure to UV radiation. 

In particular, to lower the mucus absorbance of one group of fish relative to that of another 

group through the exclusion of UVR light while keeping all other factors constant between 

the groups, including the MAA-rich diet. After ten days, lower mucus absorbance was indeed 

achieved in T. lunare that were held under the exclusion of UVR, which was in agreement 

with previous studies [43, 47] and the suggestion that UVR exposure is necessary for MAAs 

to be sequestered into the external mucus layer [41, 43]. However, no reduction in mucus 
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absorbance was observed in P. amboinensis over time, neither in fish that were held in 

conditions lacking UV, nor in fish exposed to natural sunlight for the ten day holding period. 

In the latter group, the increase in mucus absorbance due to the 1 hr UVB pulse possibly 

could have masked a decrease of mucus absorbance caused by the holding conditions. This is 

unlikely however, as the mucus absorbance of fish from the control group held in captivity for 

ten days was no different from that of the control group which was measured within 24 hrs of 

capture. A previous study showed that a reduction of MAAs can be induced in this species by 

using a MAA- free diet [43]. It seems that this species, which has naturally low MAA levels, 

maintains a minimum level of UV- protection in the presence of MAA-rich food, irrespective 

of ambient UVR levels.  

The increase of mucus absorbance in P. amboinensis can be attributed to exposure to the 

UVR pulse which contained a high proportion of UVB light and therefore has a high potential 

to inflict DNA damage, rather than just an exposure to light with high intensity. This 

conclusion follows the fact that there was no significant increase in the integrated mucus 

absorbance, nor a visible change in the shape of the absorbance curves in fish that were 

exposed to the brightness control treatment.To our knowledge, the observed increase of 

mucus absorbance in P. amboinensis within one hour of exposure is the fastest change of such 

nature described in a reef fish. Changes in mucus absorbance, mediated by UVACs and/or 

MAAs after changes to the UVR regime have been documented before [13, 42, 43], but are 

usually only detectable after several days or weeks. Similarly, the accumulation of MAAs in 

algae [54], diatoms [55] and corals [56] due to UVB exposure occurs over longer time 

periods. 

Most certainly, UV exposure influenced the mucus absorbance. The mucus absorbance curves 

of P. amboinensis appeared to be similar to the profiles detected by Eckes [36], who also 

documented a strong absorbance of mucus in the UVA range. Interestingly, the peaks of the 

UV lamps used in the treatments (310 and 360 nm) do not correspond with the mucus 

absorbance peaks (280 – 290 nm, representing most likely the MAA precursor Gadusol, and 

320 – 340 nm, most likely representing the MAAs Palythine-threonine and Porphyra). This 

indicates that a defensive response using UV absorbing compounds is not directly matched to 

the environmental spectrum. However, the light spectrum used in these experiments does not 

recreate a natural exposure, like the one used by Zamzow [42]. Nevertheless, we did observe 

mucus absorbance increases in UVB exposed groups of fish, as did Zamzow [42], despite the 

different light sources that were used in the experiments.  
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Although UVB exposed P. amboinensis showed increased mucus absorbance, higher levels of 

DNA damage compared to a group of fish not exposed to UVR were still observed. However, 

it is difficult to know how much more DNA damage would have been induced by the 

exposure to the UVB pulse if this increase had not taken place, or mucus measurements in the 

same individuals were taken at the beginning of the treatment. However, such measurements 

require repeated handling of fish to sample mucus, which has been linked to disease in this 

species [47]. Our exposure regime was on a much smaller scale, and we intended to avoid any 

additional handling effects due to repeated sampling. The formation of CPDs, the most 

common type of UV- induced DNA lesions [57], occurs nearly instantaneously upon 

irradiation with UV light [58]. Any protection by UVACs in the mucus of P. amboinensis 

also did not prevent higher DNA damage levels (up to 58%) than in T. lunare and indicates 

interspecific variation in the susceptibility to UVR, which has been shown in both marine and 

freshwater fish [16, 59-61]. The fish used in this study differ in their diet and lifestyles, with 

T. lunare being a known diurnals piscivore, foraging for large amounts of time away from 

cover [62]. In contrast, P. amboinensis is a diurnal omnivore, andstrongly associated with 

sheltering habitats [46]. Both factors, diet and UV exposure are known to influence the levels 

of UVACs [43] and may have led to the observed susceptibility to DNA damage observed in 

the present study.  

The mechanism of the regulation of MAA content in the mucus and their transport from the 

gut into the mucus layer is unknown. Potential storage locations in tissues such as the gonads 

[48] and gut [42], followed by transport to the mucus producing goblet cells in the epidermis 

seem possible, and could be responsible for the swift increase in mucus absorbance observed 

in the present study. Whether MAAs could also be stored in the mucus producing goblet cells 

for an even faster release than from the gut is unclear and needs further investigation. 

UVACs in the mucus could also originate directly from the MAA rich food items in the gut, 

without previous storage in other tissues. Gut turnover rates in fish are possibly fast enough to 

process some MAAs to the mucus [63, 64] but certainly not fast enough to prevent the 

formation of CPDs. MAAs originating from bacteria with a functioning shikimate pathway 

transferred into fish mucus [51] cannot be discounted, and could potentially be responsible for 

the changes in mucus absorbance observed in this study. However, mucus is water soluble 

and constantly sequestered and replaced [50] and also possesses antibacterial properties [65, 

66], therefore making an external source of MAAs in fish mucus a less likely explanation. 
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The modulation of mucus absorbance could be visually triggered, since P. amboinensis is able 

to see UV light in contrast to T. lunare [67, 68], where mucus absorbance modulation must be 

triggered otherwise [42, 43]. For P. amboinensis, the ability to modulate the UV absorption 

properties of their external mucus layer may be essential in order to successfully send and 

receive their UV signals for communication [46, 69]. The ability for fast UVAC modulation 

could be the result of a trade-off, which allows P. amboinensis to communicate in the UV as 

long as the UV damage can be kept at low levels but is induced once damage levels are too 

high, or UV exposure reaches critical levels. Initially at day zero, T. lunare had an up to 63% 

higher mucus absorbance than P. amboinensis, confirming previous findings of family 

differences in MAA levels [13]. At a later stage in the experiment, the high levels of mucus 

absorbance in T. lunare were lost and were up to 50 % lower than in P. amboinensis (cohorts 

exposed to UVB). Insofar as this presents a trade-off between communication with UV 

signals (at times of low UV and low UVAC levels) and protection from UV radiation at times 

of high UV and high UVAC levels is unknown and needs to be examined in detail. 

 

Variable sunscreen protection could also provide an important selective advantage for reef 

fish to react quickly to increases in UV radiation over a short period of time with tidal 

movements and the movement of fish across a habitat [70]. Changes in the UV regime over 

larger timescales and magnitudes facilitated by climate change [21] are currently ongoing on 

the Great Barrier Reef, with less cloud cover increasing solar radiation and hence UV 

exposure. In this study, the dose of UVB radiation in the “UVB +” treatment (13.1 W*m
-2

) 

was more than double the amount of UVB radiation measured at Lizard Island at midday in 

the austral summer (6 W*m
-2

). However, the implications of increased UVR as an additional 

stressor in an ocean that is already impacted by warmer temperatures, higher acidity and a less 

complex habitat [71] are currently poorly understood. The relatively low levels of DNA 

damage in fish that were not UV challenged, compared to the sharp increase in DNA damage 

in fish exposed to the UVR pulse, indicate that at present, the level of UVR in their 

environment does not pose a significant threat and the negative effects of UV exposure are 

being held at bay by the protective function of their MAA sunscreens and other hypothesized 

UV protection mechanisms such as UV specific avoidance behaviour and DNA repair. 
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Highlights 

 

 Ultraviolet absorbing compounds (UVACs) and MAAs have been dubbed nature’s 

sunscreens  

 The efficiency of MAAs to protect against UV induced DNA damage is yet unknown 

 We induced DNA damage in reef fish with variable UVACs in their external mucus 

 Fish with more sunscreens in their mucus had less DNA damage in skin samples 

 An increase in mucus absorption when exposed to UV radiation was observed in one 

species 


