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Abstract 
 

The cellular diversity of the hematopoietic system has been extensively 

studied and a plethora of cell-surface markers have been used to discriminate and 

prospectively purify different blood cell types. However, even within 

phenotypically-identical fractions of hematopoietic stem and progenitor cells 

(HSPCs) or lineage-restricted progenitors, significant functional heterogeneity is 

observed when single cells are analyzed. To address these challenges, 

researchers are now utilizing techniques to follow single cells and their progeny in 

order to improve our understanding for the underlying functional heterogeneity. On 

November 19th 2015 Drs. David Kent and Leïla Perié, two emerging young group 

leaders, presented their recent efforts to dissect the functional properties of 

individual cells in a webinar series organized by the International Society for 

Experimental Hematology (ISEH). Here, we provide a summary of the presented 
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methods for cell labeling and clonal tracking and discuss how these different 

techniques have been employed to study hematopoiesis.  

 

 

Introduction 
 

Cellular heterogeneity within defined populations is becoming increasingly 

evident, and examination of cellular cohorts at the population level may thus 

obscure unique properties of individual cells. For example, hematopoietic stem and 

progenitor cells (HSPCs) are defined as the multipotent cells able to give rise to all 

hematopoietic (myeloid, lymphoid and thrombo-erythroid) lineages. However, 

there is growing evidence that subpopulations with inherent lineage bias exist. In 

addition, it has been postulated that committed progenitor populations may also 

be inherently heterogeneous. Given the heterogeneity of those cellular 

compartments, single-cell analysis is essential to define their functional potential. 

Single-cell sorting has been employed by the stem-cell field to address 

function of individual cells through either in vivo transplantation or in vitro culture 

experiments. With advances in sequencing technology, single cells can be 

assayed for their entire DNA sequence (genome) [1], RNA expression 

(transcriptome) [2], DNA methylation, chromatin structure (epigenomes) [3], and 

most recently the combination of both epigenome and transcriptome [4,5].  

Evaluation of genome-wide information at the single-cell level provides unique 

insights into the potential of individual cells, but requires the destruction of the 

starting cell, and thus functional output cannot be performed in tandem [6–8]. 

However, several tools have been developed to address this problem.  First, flow 

cytometric index-sorting allows for retrospective analysis by collecting and 

comparing parameters (light scattering properties, cell-surface marker expression 

levels) from each of the individual sorted cells from the same experiment. Second, 

viral barcoding provides a powerful way to assay multiple single cells in the same 

assay, but is limited by the genetic manipulation of starting cells. In tandem, such 

powerful methods can provide novel insights into the cellular heterogeneity of 



defined hematopoietic cell types. On November 19th 2015 Drs. David Kent and 

Leïla Perié highlighted techniques employed by their groups to study the functional 

properties of individual cells in a webinar series organized by the International 

Society for Experimental Hematology (ISEH) [9,10] and moderated by Dr. Claudia 

Waskow. Here, we present an overview of this webinar together with advantages 

and limitations of the main techniques used to identify functional differences 

between hematopoietic populations; index sorting and viral barcoding (Figure 1). 

 

Linking genome-wide expression data with functional properties in 
single cells- David Kent 
 

One long-standing challenge in stem cell biology is the identification of 

distinct molecular markers that would allow isolation of pure, functional HSCs. 

Over the last decades, a number of laboratories have developed different cell-

surface marker combinations or used reporter gene constructs to prospectively 

isolate HSCs with achieved purities ranging from 20 to 50% [11–15]. While some 

transplantation failures may be partially attributed to the technical challenges of 

single-cell transplants, it appears that a sizeable fraction of analyzed cells do not 

have stem-cell properties. These “contaminating cells” within the isolated HSC 

population therefore obscure subsequent functional or gene expression analyses. 

As mentioned above, a variety of functional assays have revealed vast 

heterogeneity within the HSC pool, since single stem cells show differences on 

lineage output [16–18], repopulation kinetics [19,20], and response to extrinsic 

factors [21]. 

To address these challenges, Dr Kent presented his recent work in the first 

part of the webinar. In collaboration with Bertie Gottgens’ laboratory, Dr. Kent 

hypothesized that comparing gene expression profiles of HSCs isolated with 

different strategies would reveal a conserved/overlapping molecular profile 

between HSCs that would not be shared by various contaminating cell fractions. 

Excluding contaminating cells based on the expected purity of each HSC 

population sorted, would thus reveal the molecular signature of “true” stem cells 

and lead to identification of markers enabling HSC isolation with higher purity. 



To test this hypothesis, they combined single-cell gene expression 

techniques with single-cell in vivo assays and bioinformatic analysis. Initially, they 

isolated HSCs through four different immunophenotypic strategies (CD34-Flt3-

CD48-CD150+KSL, CD45+EPCR+CD48-CD150+, CD34-Flt3-KSL and SP CD150+ 

KSL) as well as five types of progenitor cells. The expression of 43 genes was 

compared across those 9 cell populations (1800 single cells total) by single-cell 

qRT-PCR [22]. Using multidimensional mathematical analysis (t-distributed 

stochastic neighbor embedding analysis, t-SNE), they presented data in single-cell 

plots confirming that most cells of the same population clustered together. As 

initially hypothesized, they indeed identified a region where differently sorted HSC 

populations overlapped, thus sharing a common gene expression profile (termed 

molecular overlapping HSCs - MolO) compared to those outside that region (no 

molecular overlap - NoMo).  

Taking advantage of flow cytometric index-sorting, a technique which 

quantifies the intensity for all parameters used for the isolation of single cells, they 

were able to retrospectively link the cell-surface marker expression of sorted cells 

with their outcome in downstream assays [23,24]. This permitted Dr Kent and 

colleagues to associate gene expression data of MolO HSCs with the expression 

levels of all fluorescent markers used for their isolation. By doing so, they revealed 

that 28 of 43 genes were differentially expressed between HSCs located in the 

overlapping or non-overlapping region. Interestingly, MolO HSCs exhibited higher 

expression for Sca1 and CD150 and lower for CD48 than NoMo. To functionally 

test these results, CD48-CD150+Sca1+ HSCs were divided to Sca1 high (SLAM 

Sca1hi) or low expressing cells (SLAM Sca1lo) and their HSC potential was 

assessed in both in vitro and in vivo assays [22]. Monitoring the cell-cycle profile, 

colony size and immunophenotype after in vitro culture revealed that SLAM Sca1hi 

cells were enriched for behaviors typically associated with stem cells (slow division 

kinetics, small colony size, retaining cell surface marker expression in culture). 

SLAM Sca1hi HSCs led to higher donor chimerism while producing all 

hematopoietic lineages compared to the myeloid-deficient SLAM Sca1lo cells in 

bulk transplantation experiments. In addition, single-cell transplants illustrated that 



this 3-marker based strategy (CD48, CD150 and Sca1) yields HSCs with at least 

50% purity, comparable to previous schemes utilizing three markers (CD150, 

CD48, CD41) [12]. 

To further investigate the underlying HSC heterogeneity at the 

transcriptome level, single-cell RNA sequencing was performed and identified 

differential expression of 4533 genes between single CD34-Flt3-CD48-CD150+KSL 

cells. Going one step further, Dr Kent presented plots which could link these single-

cell RNA sequencing with single-cell transplantation data, since populations used 

in both assays were index-sorted for the exact same flow cytometry parameters. 

Bioinformatic analysis of those data identified EPCR as a marker positively 

correlating with retention of functional stem-cell properties, while negatively 

correlating with differentiation. Indeed, isolating SLAM Sca1hi EPCRhi cells 

improved HSC purity to almost 70% as shown by single-cell transplantations [22], 

providing a novel strategy for functional HSC isolation. 

 

Cellular Barcoding Following Multiple Single Cell Lineages in vivo - 
Leila Perié  
 

In her seminar Dr. Perié presented the methods utilized by her laboratory 

to perform barcoding and lineage tracing of hematopoietic progenitors. Her data 

demonstrate that lymphoid-primed multipotent progenitors and common myeloid 

progenitor populations are highly heterogeneous containing lineage restricted cells 

of different commitment potential.   

The Perié laboratory utilizes a library of small, non-coding, DNA sequences 

as barcodes. These are cloned into lentiviral vectors that also express a 

fluorescent reporter for easy isolation of transduced cells. For lineage tracing 

cultured hematopoietic progenitors are transduced with the lentiviral library. Those 

sequences will integrate into the genome of transduced cells allowing identification 

of their progeny by presence of unique DNA barcodes. The transduced progenitors 

are then injected into myeloablated recipients and the lineage contribution of each 

barcode is assessed by purifying specific hematopoietic populations at different 



time points after transplantation and performing nested PCR amplification and 

next-generation sequencing.  

During her seminar, Dr Perié emphasized on some important aspects of 

cellular barcoding. For this method to be successful, validating the ability of utilized 

viral vectors to transduce the cells of interest while keeping transduction efficiency 

low (between 5-10%) is essential to ensure a single DNA barcode per progenitor. 

The size of the library is also important: the number of cells to be transduced 

should be several orders of magnitude smaller than the diversity of the library (to 

ensure that each progenitor has a unique barcode). Also, the length of the 

barcodes will affect sequencing costs. Dr Perié recommended to sequence the full 

library before any experiment, in order to create a reference library and facilitate 

bioinformatics analysis of generated data. Another important consideration is 

controling the number of different progenitors transduced with the same barcode. 

To do so, Dr Perié suggested transplanting the pool of transduced cells into at 

least two separate recipients and check whether the same barcode appears in 

both mice. 

It is also important to be aware of the limitations of cellular barcoding. The 

first limitation is that it provides no information about the exact time of commitment; 

if a progenitor gives rise to two different cell types it is impossible to determine 

whether this occur early or late during cell maturation. It also provides no 

information whether the transduced progenitor underwent trans-differentiation or 

de-differentiation instead of commitment to one or more lineages. An important 

technical limitation is that the technique requires in vitro culture, use of lentivirus 

and lengthy transplantation of the transduced progenitors into myeloablated 

recipients. All those steps can affect lineage commitment decisions and not reflect 

actual lineage differentiation during homeostasis.  

Utilizing the methods described above, Dr. Perié presented data showing 

that early murine hematopoietic progenitors are highly heterogeneous and, in most 

cases, already committed to specific lineages. Transplanting lentivirally barcoded 

CD16/32-CD127-CD117hiSca1+CD135hi lymphoid-primed multipotent progenitors 

(LMPP) into myeloablated recipients revealed that LMPPs are extremely 



heterogeneous in their lineage output. Most LMPP were already committed to 

dendritic, myeloid or B-cell lineage and only a small fraction was capable of 

multilineage reconstitution [25]. There results demonstrated that LMPP could 

generate dendritic cells directly without passing through a common myeloid 

progenitor (CMP) or common lymphoid progenitor (CLP) stage [25]. These, 

together with mathematical modeling, suggested that the classical hematopoietic 

differentiation tree should be revised to include new LMPP sub-types [26]. Using 

the same technique, Dr. Perié examined lineage commitment to erythroid and 

myeloid lineages from the CMP stage. They found that the CMP population was 

also heterogeneous with most CMP already committed to either myeloid or 

erythroid lineages, whereas only 5% of CMP are bipotent [27]. These studies 

revealed the heterogeneity of hematopoietic progenitors defined by cell-surface 

markers and highlighted the power of cellular barcoding to investigate progenitors’ 

potential with single-cell resolution.  

 

Together, these single-cell methodologies and recent studies utilizing these 

powerful methods have provided insights into the heterogeneity of the primitive 

hematopoietic compartment including committed progenitor cells and not just the 

early stem cell compartment, rigorously defined a cell-surface marker combination 

for HSCs. Also, the power of single-cell studies was highlighted, which will soon 

become the norm for evaluating cell function and potential, as further optimization 

and enhancements of current methods to analyze genome-wide information 

generated from single cells is ongoing.  

 

 The webinar can be viewed at the ISEH website at: http://iseh.site-

ym.com/?ISEHWebinars 
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Figure legend 
 
Figure 1: Single-cell methods to define properties of individual cells that are 
masked in population-based experimental paradigms. Index sorting allows for 
the retrospective analysis of FACs data post experiment (ie after RNA-
Sequensing, single-cell transplant, clonal culture assays). Lentiviral barcoding 
allows for tagging a plethora of single cells (after purification or enrichment of a 
population) that can then be used to track individual cells’ potential. There are 
benefits and drawbacks to each method, but both have been utilized to establish 
more in-depth appreciation of the heterogeneity in primitive hematopoietic cell 
potential.  
  



 


