
Eur. Phys. J. C (2015) 75:439
DOI 10.1140/epjc/s10052-015-3659-3

Regular Article - Experimental Physics

The Pandora software development kit for pattern recognition

J. S. Marshalla, M. A. Thomson
Cavendish Laboratory, University of Cambridge, Cambridge, UK

Received: 18 June 2015 / Accepted: 4 September 2015 / Published online: 21 September 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The development of automated solutions to pat-
tern recognition problems is important in many areas of sci-
entific research and human endeavour. This paper describes
the implementation of the Pandora software development kit,
which aids the process of designing, implementing and run-
ning pattern recognition algorithms. The Pandora Applica-
tion Programming Interfaces ensure simple specification of
the building-blocks defining a pattern recognition problem.
The logic required to solve the problem is implemented in
algorithms. The algorithms request operations to create or
modify data structures and the operations are performed by
the Pandora framework. This design promotes an approach
using many decoupled algorithms, each addressing specific
topologies. Details of algorithms addressing two pattern
recognition problems in High Energy Physics are presented:
reconstruction of events at a high-energy e+e− linear col-
lider and reconstruction of cosmic ray or neutrino events in
a liquid argon time projection chamber.

1 Introduction

Pattern recognition is the identification of structures or regu-
larities in data. Problems requiring a pattern recognition solu-
tion occur in all areas of scientific research and our every-
day lives. This document describes the implementation of
the Pandora software development kit (SDK), which aims
to ease the process of designing, implementing and running
pattern recognition algorithms. The Pandora SDK was cre-
ated to address the problem of identifying energy deposits
from individual particles in fine granularity detectors in High
Energy Physics (HEP). The ideas described in this document
are, however, actually quite generic, covering a wide array
of problems where the aim is to sort points in time or space
into higher-level structures.

a e-mail: marshall@hep.phy.cam.ac.uk

Figure 1 illustrates two typical pattern recognition prob-
lems in HEP. Figure 1a shows the simulated detector response
to the production and hadronic decay of Higgs and Z bosons
following high energy e+e− collisions at the Compact Lin-
ear Collider (CLIC). In order to extract measurements of
the Higgs boson properties, such as its coupling strengths,
it is vital to reconstruct and classify the individual particles
in large samples of events. Figure 1b shows the simulated
response of a Liquid Argon Time Projection Chamber (LAr
TPC) to a charged current electron neutrino interaction. In
order to understand neutrino mixing and CP-violation in the
neutrino sector, it is crucial to identify and characterise each
particle in this challenging topology.

The idea underpinning the Pandora SDK is that the inter-
faces for pattern recognition problems are well defined, as are
the operations that must be performed by pattern recognition
algorithms. Whoever poses the pattern recognition problem
must specify the building-blocks, or space-points, that define
the problem. They must also be able to extract the output
structures, such as clusters, that represent the solution. The
algorithms that address the problem must be able to build
clusters of space-points and should be able to manipulate
clusters by splitting them up or merging them together. What
differs between pattern recognition problems is the precise
logic controlling the algorithm operations.

2 Historical context

The Pandora project began in 2007 to provide the first parti-
cle flow calorimetry implementation for the proposed Inter-
national Linear Collider (ILC). A particle flow algorithm
was developed, exploiting the fine granularity detectors in
order to reconstruct the paths of individual visible particles.
Successful identification of the trajectories allows particle
four-momenta to be extracted from the subdetector system
in which they are best-measured, delivering unprecedented
jet energy resolution. The Pandora algorithm was used to

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77412553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3659-3&domain=pdf
mailto:marshall@hep.phy.cam.ac.uk

439 Page 2 of 16 Eur. Phys. J. C (2015) 75 :439

(a)

(b)

Fig. 1 Typical pattern recognition problems in HEP. a Simulated
detector response to a Higgsstrahlung event at CLIC.bSimulated detec-
tor response to a charged current νe interaction in a LAr TPC

perform the first systematic study of the potential of this
approach to calorimetry at a high energy lepton collider [1].

The original Pandora algorithm demonstrated sophisti-
cated pattern recognition ideas, but, in software-engineering
terms, was only a proof-of-principle implementation. It was
decided to develop a fully-featured software framework for
pattern recognition algorithms and to reimplement the ILC
particle flow approach in this new framework. This signifi-
cant software-engineering project took place in 2009–2010
and resulted in the first versions of the Pandora SDK and
Pandora Linear Collider content library.

New algorithms were subsequently added to extend the
pattern recognition functionality to higher energies, such as
those relevant to the multi-TeV lepton collider, CLIC. Pan-
dora was then used to provide the event reconstruction for
the physics analyses described in the ILC Technical Design
Report [2,3] and the CLIC Conceptual Design Report [4,5].
The performance of particle flow calorimetry at CLIC was
characterised in detail [6].

The Pandora SDK was designed to be applicable to mul-
tiple pattern recognition problems. Most recently, in 2013–

2015, a new library of Pandora algorithms was developed
to address the problem of particle reconstruction in the chal-
lenging event topologies seen in LAr TPCs [7]. This problem
is very different to that originally tackled for the ILC, but the
functionality required from the pattern recognition software
framework remains exactly the same.

3 Overview of the Pandora SDK

The Pandora SDK aims to provide a robust, reliable and easy-
to-use environment for developing and running pattern recog-
nition algorithms. Its Application Programming Interfaces
(APIs) are designed to create an environment in which:

– It is easy for users to provide the building-blocks defining
a pattern recognition problem.

– The logic required to solve pattern recognition problems
is cleanly implemented in algorithms.

– All operations to access or modify building-blocks, or to
create new structures, are requested by algorithms and
performed by the Pandora framework.

This design strategy is well-suited to an approach using
large numbers of decoupled algorithms, each of which care-
fully address specific event topologies, typically controlling
the merging or splitting of clusters.

The Pandora SDK consists of a dependency-free C++
library and carefully-designed APIs. It provides a compre-
hensive Event Data Model (EDM) for managing pattern
recognition problems. Instances of objects in the EDM are
owned by Pandora Manager classes. The instances are stored
in named lists and the managers are able to create new objects,
delete objects, create and save new lists and move objects
between lists. They provide a complete set of low-level oper-
ations that allow high-level operations requested by pattern
recognition algorithms to be satisfied.

To use the Pandora SDK, a user must create a Pandora
client application. This provides the input building-blocks
to describe the pattern recognition problem and receives the
final output. The pattern-recognition logic is implemented by
Pandora algorithms, which ask the Pandora SDK to provide
services in order to create new objects or make any changes
to existing instances. Sophisticated visualisation and tree-
writing monitoring functionality is available for use by algo-
rithms. Figure 2 illustrates the typical setup for addressing
pattern recognition problems with the Pandora SDK. With
this setup in mind, this document will describe the key aspects
of the Pandora SDK in detail.

4 Pandora event data model

The Pandora EDM provides a mechanism for managing data
describing pattern recognition problems and their possible

123

Eur. Phys. J. C (2015) 75 :439 Page 3 of 16 439

Pandora SDK

Client Application Pandora Algorithms

Fig. 2 The software setup for addressing pattern recognition problems
using the Pandora SDK

solutions. It consists of a set of classes representing the input
building-blocks for a problem and the structures that can
be created using these building-blocks. A successful EDM
provides a well-defined development environment for pattern
recognition algorithms. It also allows for independence of
the algorithms, which can only communicate via the EDM.
Algorithms are then successfully encapsulated and can be
developed and maintained independently. An algorithm can
be implemented to merge together clusters in close proximity,
for instance, without needing to know anything concerning
the construction of the clusters.

The Pandora EDM aims to be self-describing, which is
to say that each object provides all the information required
to allow investigation and processing by pattern recognition
algorithms. This enables Pandora to be a reusable software
solution, completely isolating the pattern recognition algo-
rithms from the details of the software framework and I/O
mechanism used to create or read the input building-blocks.

The building-blocks for pattern recognition in the Pan-
dora SDK are as described below. These are Pandora “Input
Objects” and are typically all created by the Pandora client
application before the pattern recognition algorithms are
called (see Sect. 5). These objects are completely defined
when they are created and their properties cannot be changed
by the algorithms. The objects are instead used to build new
constructs, termed “Algorithm Objects”. The Pandora SDK
monitors the usage of all the Input Objects to ensure that no
double-counting can occur, with no Input Object being used
to create multiple Algorithm Objects.

– CaloHit The primary building-block for pattern recogni-
tion problems, a CaloHit defines a position and extent
in space and time, together with an associated inten-
sity or energy measurement. Whilst CaloHits can rep-
resent points in free space, they can also provide infor-
mation regarding their location in a particle detec-
tor. This includes details of the subdetector system in
which energy was deposited and information about the
calorimeter readout and geometry. The CaloHits hold
estimators for the electromagnetic energy or hadronic
energy associated with the space-point. It is for algo-
rithms to select the appropriate energy estimator.

– Track Continuous trajectories of well-defined space-
points are represented by Track objects. These are helix

parameterisations of the space-points, providing details
of particle positions and momenta (Track States) along
the trajectory. These objects were originally designed to
represent Tracks reconstructed in fine granularity, low
material-budget tracking systems in particle detectors.
As such, key information provided by Pandora Track
objects include impact parameter details and a projected
Track State at the surface of the detector calorimeters.
Tracks can have parent–daughter and sibling relation-
ships in order to fully-describe particle interactions and
decays that can occur within a tracking detector.

– MCParticlePrimarily for development purposes, MCPar-
ticles can be provided for access by the pattern recogni-
tion algorithms. These provide full details of the true pat-
tern recognition solution for simulated events. MCPar-
ticle instances can have parent–daughter links and can
fully describe particle decay cascades in simulated inter-
actions. The MCParticles can store details of their asso-
ciation (in terms of e.g. true energy deposited) with each
CaloHit and Track. Using MCParticles, it is possible
for algorithms to cheat some, or all, aspects of the pat-
tern recognition, allowing a wealth of development and
debugging functionality.

The Pandora Algorithm Objects represent the higher-level
structures created in order to solve pattern recognition prob-
lems. The Pandora SDK carefully manages the allocation
and manipulation of these objects and all non-const oper-
ations can only be requested by algorithms via the Pandora
APIs. The Pandora SDK is then able to perform the memory-
management for the objects.

– Cluster The main working-horse for pattern recognition
algorithms, a Cluster is a collection of CaloHits. It also
provides derived information describing the combined
properties of the CaloHit collection, such as energy esti-
mators and the results of linear fits to the CaloHit spatial
positions. The most typical tasks for Pandora algorithms
will be to create new Clusters from lists of input CaloHits
or to read lists of input Clusters and selectively split or
merge some Clusters.

– Vertex The identification and classification of a specific
point in space, vertices are typically used to flag positions
of particle creation or decay.

– ParticleFlowObject A container of Clusters, Tracks and
Vertices, together with metadata describing the parti-
cle type and four-momentum. The Particle Flow Object
(PFO) is the ultimate output of the pattern recognition,
grouping the input objects into structures that completely
define the solution. PFOs can have parent–daughter links
in order to describe particle decay hierarchies.

Instantiation of objects in the Pandora EDM follows a
design pattern that provides a clean and simple interface.

123

439 Page 4 of 16 Eur. Phys. J. C (2015) 75 :439

Object creation is typically requested by a client applica-
tion (Input Objects) or an algorithm (Algorithm Objects).
The calling function must create a local instance of a Pan-
dora parameters object. There is one parameters class for
each type of Pandora object, each having public member
variables to which values must be assigned. For instance, a
PandoraApi::CaloHit::Parameters instance will have public
member variables such as the CaloHit position (three-vector)
and dimensions. The calling function must assign to each of
the member variables, then call the Create API. Failure to
assign to any member variable in the parameters instance
will lead to failure of the object creation. Successful assign-
ment will allow the Pandora SDK to create the required object
instance. The newly created instance is owned and managed
by the Pandora SDK, but can be accessed and manipulated
by algorithms, as described in Sect. 6.

It is possible, for advanced users of the Pandora SDK, to
add additional functionality to the base objects in the Pandora
EDM. The user can inherit from the Pandora base class for
the relevant object. The user may also want to add additional
content to the relevant parameters class and can also define a
new class inheriting from the base parameters. The key step
is for the user to provide an object instantiation factory, inher-
iting from the ObjectFactory template base class, to perform
the actual object creation. The Pandora SDK will continue to
work with pointers to the base class for these derived objects,
but algorithms can successfully access additional function-
ality via use of a dynamic cast.

The Pandora object creation mechanics are templated to
allow for simple addition of new objects to the EDM. Such
an addition would require only the definition of a new object
type, plus the associated parameters class.

5 Pandora client application

The Pandora client application is ultimately responsible
for controlling pattern recognition reconstruction using the
Pandora SDK. The client application creates the Pandora
instances and then sends requests to these instances. Dur-
ing the initialisation step, it must use the Pandora APIs to
perform the following operations:

1. Create the required Pandora instances. Typically only a
single instance is required, although advanced use-cases
addressing problems where particles are split between
multiple detectors may require more. A Pandora instance,
as shown in Fig. 3, contains instantiations of the Pandora
manager classes and API implementations.

2. Register the required Algorithm and Algorithm Tool Fac-
tories with the Pandora instance(s). These factories give
a Pandora instance the ability to create instances of the
algorithms and algorithm tools (see Sect. 7.3), if they

pandora::Pandora

- m_pAlgorithmManager
- m_pCaloHitManager
- m_pClusterManager
- m_pGeometryManager
- m_pMCManager
- m_pPfoManager
- m_pPluginManager
- m_pTrackManager
- m_pVertexManager
- m_pPandoraSettings
- m_pPandoraApiImpl
- m_pPandoraContentApiImpl
- m_pPandoraImpl

+ Pandora()
+ ~Pandora()
+ GetPandoraApiImpl()
+ GetPandoraContentApiImpl()
+ GetSettings()
+ GetGeometry()
+ GetPlugins()
- PrepareEvent()
- ProcessEvent()
- ResetEvent()
- ReadSettings()

Fig. 3 Class diagram describing the structure of the Pandora class.
The member variables consist of the addresses of Pandora manager
instances, API implementation instances and a settings instance. The
member functions provide a number of high-level services and are typ-
ically accessed via the Pandora APIs

are requested via the PandoraSettings XML configura-
tion file.

3. Ask the Pandora instance(s) to parse the provided Pando-
raSettings XML files, which describe the chain of pattern
recognition algorithms to be used to process each event.
The Pandora instance will create and manage the algo-
rithm instances as required and will configure them as
specified.

On a per-event basis, the client application must perform
the following operations:

1. Ask the Pandora instance(s) to create the building-blocks
for the pattern recognition problem. As described in
Sect. 4, this involves assigning values to each of the fields
required for the relevant object type. The Pandora algo-
rithms access the information stored in these building-
blocks, but, crucially, do not need to know how the infor-
mation has been obtained. The client application thus
isolates algorithms from the user’s software framework.

2. Ask each Pandora instance to process the event. The
thread will be passed to the Pandora instance, which will
then run the specified algorithms in the specified order,

123

Eur. Phys. J. C (2015) 75 :439 Page 5 of 16 439

processing the requested building-blocks in order to pro-
duce output Clusters, Vertices and PFOs.

3. After algorithm processing, ask each Pandora instance
to provide its solution to the pattern recognition prob-
lem. This will typically be in the form of PFOs. The
client application can read the list of reconstructed PFOs
and access the building-blocks that form each PFO. By
using the parent addresses/identifiers specified for each
building-block, the user can link the PFO constituents
back to objects in the input software framework. The
user will typically want to persist the output.

4. Ask to reset each Pandora instance, in preparation for the
next event. This will reset all of the Pandora manager
classes so that all Input Objects and Algorithm Objects
are removed and all saved object lists are removed/reset.

The client application is thus responsible for defining the
pattern-recognition problem and persisting the solution. It is
also responsible for bringing together algorithm implementa-
tions and for configuring the Pandora instances. Algorithms
can, for convenience, be bundled together into Pandora Con-
tent Libraries. The client application can then simply ask to
register factories for all the available algorithms in a given
content library. The algorithms will depend on the Pandora
SDK, but can also have as many external dependencies as
required by their implementation. The client application will
depend on the Pandora SDK and on the content libraries. The
actual algorithm instances used in the reconstruction are not
created until the Pandora instances parse the PandoraSettings
XML file.

6 Pandora managers

The aim of the Pandora SDK is to provide key services for pat-
tern recognition algorithms, so that the algorithms can remain
simple and focused on pattern recognition logic. At the heart
of this design are the Pandora manager classes, which own all
instances of objects in the Pandora EDM. The managers aim
to provide a complete set of low-level object manipulation
functions. Algorithms request high-level services, which are
then satisfied when the API implementations, or the man-
agers themselves, call the correct low-level manager func-
tions in the correct order. This approach helps to ensure that
the implementation is extensible, easy to maintain and rather
human-readable. A key part of the design is that algorithms
can only access managed objects via the Pandora APIs, so
the managers are able to perform memory-management and
book-keeping.

The Pandora manager classes are templated on the
managed-object type, allowing for easy addition of new types
to the Pandora EDM. There is a Manager template base class

and separate derived template classes for Input Object and
Algorithm Object Managers. There are also manager classes
for each of the object types in the Pandora EDM, which derive
from the appropriate base classes. These address small details
specific to each object type. For instance, the Track Manager
handles track parent–daughter and sibling relationships. A
Pandora instance owns manager instances for each of the
object types in the EDM. The structure of the manager classes
is illustrated in Fig. 4.

Pandora objects are heap-allocated and their addresses are
stored in named object lists, owned by the object managers.
The object lists are unordered sets, keyed on pointers to the
objects. This storage strategy ensures efficient retrieval of
specific object instances, although care is required if ever the
objects must be sorted in a defined manner. Each manager
holds a map from the list name (a string) to the address of
the object list. It also stores the set of saved list names, plus
the name of the current list.

Algorithms can use the Pandora APIs in order to receive
const references to the object lists from the managers. Algo-
rithms can access lists by name, or can simply ask for the
current list. Algorithms can also choose to replace the current
list name with the name of another saved object list. This aids
the development of reusable algorithms where, for instance,
parent algorithms can control the current lists before running
instances of daughter algorithms to process the contents of
the current lists.

The manager classes all hold the address of the Pandora
instance with which they are associated. They also record
details for all the algorithms that are currently running, such
as the current list name when the algorithm was first called
and details about any temporary lists the algorithm has cre-
ated. Note that the algorithm stack may have more than one
entry, since parent algorithms can run daughter algorithms.
The details of accessing object lists are common to all man-
agers, but details concerning the creation of new object lists
and saving lists are different for Input Objects and Algorithm
Objects.

6.1 Input object managers

Input Objects can be created, via the Pandora APIs, by any
function with access to the relevant Pandora instance. The
most common point of creation is, however, a Pandora client
application. Newly-requested objects are created on the heap,
via the relevant manager, and their address is always stored
in a specific named list: the “Input” list.

The design idea is that Input Objects cannot be modified
or deleted by the pattern recognition algorithms, although
new refined or reimagined objects could be created by algo-
rithms. The Input list, for a given manager, keeps a full record
of all the objects created. Algorithms can choose to work
with this list, or, more typically, save new lists (under new

123

439 Page 6 of 16 Eur. Phys. J. C (2015) 75 :439

Fig. 4 Class diagram
describing the Manager template
base classes. The Manager class
provides functionality for
supervising named lists of
objects. The derived classes
provide functionality that
reflects the different rules
governing creation and usage of
Algorithm Objects and Input
Objects. Concrete object
manager classes derive from the
appropriate base classes

pandora::Manager< T >

m_nameToListMap
m_algorithmInfoMap
m_currentListName
m_savedLists
m_pPandora
NULL_LIST_NAME

+ Manager()
+ ~Manager()
GetList()
GetCurrentList()
GetCurrentListName()
GetAlgorithmInputList()
GetAlgorithmInputListName()
ResetCurrentListToAlgorithmInputList()
ReplaceCurrentAndAlgorithmInputLists()
DropCurrentList()
CreateTemporaryListAndSetCurrent()
RegisterAlgorithm()
ResetAlgorithmInfo()
ResetForNextEvent()
EraseAllContent()
CreateInitialLists()
Modifiable()

pandora::AlgorithmObjectManager< T >

m_canMakeNewObjects

+ AlgorithmObjectManager()
+ ~AlgorithmObjectManager()
CreateTemporaryListAndSetCurrent()
MoveObjectsToTemporaryListAndSetCurrent()
SaveObjects()
MoveObjectsBetweenLists()
TemporarilyReplaceCurrentList()
DeleteObjects()
DeleteTemporaryObjects()
GetResetDeletionObjects()
ResetCurrentListToAlgorithmInputList()
ReplaceCurrentAndAlgorithmInputLists()
DropCurrentList()
ResetAlgorithmInfo()
EraseAllContent()

pandora::InputObjectManager< T >

INPUT_LIST_NAME

+ InputObjectManager()
+ ~InputObjectManager()
CreateInputList()
CreateTemporaryListAndSetCurrent()
SaveList()
AddObjectsToList()
RemoveObjectsFromList()
EraseAllContent()
CreateInitialLists()

names) containing only a subset of the Input lists. Copies of
the pointers to Input Objects can appear in multiple saved
lists.

The memory-management is rather simple, as all Input
Objects are deleted only when the client application asks to
reset the managers at the end of an event. All objects in the
Input list can be deleted and all other lists simply cleared and
deleted.

6.2 Algorithm object managers

Memory-management for Algorithm Objects is considerably
more complex than for Input Objects. Algorithm Objects
will typically be created, modified and deleted as the pattern
recognition reconstruction progresses. The Pandora SDK
enforces a specific approach to working with Algorithm

Objects, which maintains flexibility whilst also enabling
use of the powerful reclustering functionality described in
Sect. 9.

In order to create a new Algorithm Object, the relevant
manager must have a new, temporary object list as the current
list, waiting to receive newly created instances. The creation
of such a temporary list must be requested by an algorithm.
If the temporary object list is not in-place, the object creation
will be rejected. Similarly, object creation is not possible once
the algorithm finishes or chooses to run a daughter algorithm.
If the temporary list is present, it will receive the address of
any newly-created objects. The temporary list is associated
with the algorithm that requested its creation. When this algo-
rithm ceases running, its associated temporary lists will be
removed and all Algorithm Objects contained will be deleted.
In order to persist the Algorithm Objects, the algorithm must

123

Eur. Phys. J. C (2015) 75 :439 Page 7 of 16 439

ask to save the objects in a (new or existing) named object
list.

Once saved in a named list, additional APIs are avail-
able to move (subsets of) objects between existing lists or
to new lists. Unlike Input Objects, it is enforced that the
address of each Algorithm Object can exist in only one list.
At the end of an event, Algorithm Objects are tidied-up by
deleting all instances in all saved lists and then deleting all
the lists. Any Algorithm Objects that were created, but not
explicitly saved, are deleted automatically upon algorithm
completion.

The mechanics for Algorithm Object management were
designed with Pandora reclustering (Sect. 9) firmly in
mind. These mechanics keep the Algorithm Objects under
extremely tight control. It could be argued that all objects
in the Pandora EDM should behave as Algorithm Objects,
and the implementation to achieve this would be trivial as
all managers and APIs are templated. The existing design
decision, however, is simply to allow more flexibility for the
Input Objects, where memory-management can be achieved
rather simply.

6.3 Monitoring of object usage

The Algorithm Objects are typically containers of other
objects. Clusters, for instance, are containers of CaloHits,
whilst PFOs are containers of Clusters, Tracks and Vertices.
An important role played by the manager classes is the mon-
itoring of object usage, ensuring that no double-counting can
occur. When an algorithm asks to create an Algorithm Object,
or add to an Algorithm Object, the availability of the daughter
objects is checked. If any of the daughter objects is flagged
as unavailable, the Algorithm Object creation or modifica-
tion will not be allowed. If the daughter objects are avail-
able, the operation can proceed and the daughter objects will
be flagged as unavailable. Removal of the daughter objects
will reset their availability flags. Algorithms can use the
Pandora APIs to ask whether objects are available or have
already been used, functionality which proves extremely
useful.

The availability monitoring is largely straightforward,
with each instance of a daughter object having a boolean
member variable that can only be modified by the relevant
manager class. For CaloHits the operation is, however, com-
plicated significantly by the Pandora reclustering mecha-
nism. This mechanism is described in detail in Sect. 9, and
allows multiple Cluster configurations to be explored simul-
taneously. The CaloHit manager performs CaloHit usage
monitoring separately for each set of Cluster configurations.
It ensures that a CaloHit can appear simultaneously in multi-
ple Cluster candidates during reclustering, but can only fea-
ture once in the final selected Clusters.

7 Pandora algorithms

Pandora algorithms contain the step-by-step instructions for
finding patterns in the provided data. The algorithms use the
Pandora APIs to access the Pandora objects and to request the
Pandora managers to make new objects or modify existing
objects. Algorithms inherit from the Pandora Process purely
abstract base class. The inherited functionality controls the
handshaking procedure between the Pandora instance and
the algorithm instance, establishing a communication chan-
nel between the two entities. The Process base class also
provides the ability to receive a ReadSettings callback with a
provided XML handle from which any configurable param-
eters can be extracted. Finally, Process instances can also
receive an Initialise callback, providing an opportunity to
finalise any constructs required before event processing can
begin. The Algorithm purely abstract base class then provides
the interface for the crucial Run callback, which is called each
event and is the entry-point for all event processing.

7.1 Algorithm creation and configuration

As discussed in Sect. 5, the Pandora client application is
responsible for registering Algorithm Factories with a Pan-
dora instance. Algorithm factories are extremely simple, each
implementing a CreateAlgorithm function that allocates an
instance of the relevant derived algorithm class and returns
a pointer to the Algorithm base class. Algorithm factories
are registered with the Pandora Algorithm Manager under
specific names. Pandora is configured by an XML file, the
path to which is provided by the client application. When
Pandora parses the PandoraSettings XML file, it will look for
algorithm XML tags within the top-level Pandora XML tags.
For each algorithm XML tag found, Pandora will extract the
algorithm type, which must match the name of a registered
algorithm factory. If there is a match, the Algorithm Manager
will ask the factory to create a new instance of the desired
algorithm type and will store the pointer to the Algorithm
base class.

After algorithm creation, the Algorithm Manager will call
the ReadSettings member function of the new algorithm, pro-
viding a handle to the XML element describing the algorithm.
This provides the mechanism by which Pandora algorithms
can be configured at run-time. The ReadSettings function can
look for specific daughter XML tags and assign values to its
member variables as required. The algorithm can demand that
some XML tags be present, returning a context-specific error
to halt execution if configuration details are missing. Alter-
natively, each algorithm can assign default values to each of
its configurable member variables, then provide the ability
to override the default values if specific tags are found in
the XML file. This allows an implementation in which algo-
rithms need have no hard-coded parameters, but the XML

123

439 Page 8 of 16 Eur. Phys. J. C (2015) 75 :439

configuration can remain clean and simple for most use-
cases.

The Algorithm Manager will create and configure in-
stances of all the algorithms specified in the top-level of the
PandoraSettings file. It will store the pointers to the Algo-
rithm base classes in an ordered container. It will call the
Initialise method for each algorithm, then is ready for event
processing. When the client application asks the Pandora
instance to process an event, the Algorithm Manager will
call the Run method for each of the algorithms in turn. Upon
completion of the final algorithm in the ordered list, the thread
will be returned to the client application.

7.2 Nested algorithms

The Pandora Algorithm Manager will only search for algo-
rithm XML tags within the top-level Pandora XML tags.
These are the algorithms that it will create, configure, ini-
tialise and then run, in order, each event. In the configuration
step, however, when a new algorithm receives a callback to
its ReadSettings method, the algorithm itself is given con-
trol of parsing any details contained within its XML tag. The
algorithm can then search for daughter algorithm XML tags.
Daughter algorithms could be specified in a list, within a
named XML tag, or may be identified by a XML descrip-
tion attribute. If found, the parent algorithm can use an API
to instruct the Algorithm Manager to create a new instance
of the specified algorithm type, configure the new algorithm
instance and then return the unique name of the new algo-
rithm instance. During event processing, the parent algo-
rithm can use an API to ask to run the daughter algorithm
instance with the stored unique name. This nesting of algo-
rithms opens-up functionality whereby parent algorithms can
manipulate the current object lists, for instance, then call
reusable daughter algorithms to process the objects in the
current lists.

7.3 Algorithm tools

Using nested daughter algorithms to perform operations pro-
motes the creation of small, reusable algorithms contain-
ing just the kernel of specific pattern-recognition logic. The
design does mean, however, that the parent and daughter
algorithms are completely decoupled and there can be no
communication between the two, other than via manipula-
tion of objects in the EDM or the object lists. Sometimes, the
user will instead want to create Algorithm Tools, which can
offer direct extensions to specific algorithms.

An algorithm tool inherits from the Pandora Process
purely abstract base class, so it has all the handshaking and
configuration functionality of an algorithm. It does not, how-
ever, receive a Run callback from the Algorithm Manager.
Instead, a parent algorithm defines the interface for its algo-

pandora::Process

m_pPandora
m_type

+ Process()
+ GetType()
+ GetPandora()
ReadSettings()
Initialize()
~Process()
RegisterDetails()

pandora::Algorithm

Run()

pandora::AlgorithmTool

Fig. 5 Class diagram describing the structure of the Algorithm and
Algorithm Tool classes. The Process base class provides all functional-
ity for handshaking with a Pandora instance and for XML-based config-
uration. Algorithms must provide an implementation of the Run method,
which is their entry-point for event processing. Algorithm Tools have a
user-defined interface and provide custom functionality to parent algo-
rithms

rithm tools and is given direct access to the pointer to the
algorithm tool instances. The parent algorithm can create
some complicated construct (e.g. comparing multiple Clus-
ters), then hand the construct directly to its algorithm tools
for processing. The precise algorithm tools used can be spec-
ified via the PandoraSettings XML file, allowing for simple
run-time configuration. The structure of the algorithm and
algorithm tool classes is illustrated in Fig. 5.

8 Pandora APIs

The APIs are static functions, which are typically templated
to allow for operations on each of the different types in the
Pandora EDM. The APIs used by the Pandora algorithms, for
accessing and manipulating Pandora content, take a reference
to a Pandora algorithm as their first argument. This allows
the static functions to resolve a particular Pandora instance
and access the relevant instance of the API implementation.
Careful friending of classes ensures that the API implementa-
tion is in the privileged position of being able to call Pandora
manager functionality inaccessible to other classes. The API
implementation typically calls manager functions directly,
but sometimes provides simple logic, calling multiple func-
tions in different managers in order to provide the high-level
services requested by algorithms. The APIs used by the client

123

Eur. Phys. J. C (2015) 75 :439 Page 9 of 16 439

application instead take a reference to a Pandora instance as
their first argument, but otherwise work in an identical man-
ner.

Typical uses of the Pandora APIs are demonstrated in
Algorithms 1 and 2, which describe, in human-readable form,
the API calls that are required in order to perform key oper-
ations. Algorithm 1 illustrates access to a list of CaloHits,
followed by the creation of Clusters, which are saved in a
named list. Algorithm 2 shows the merging of pairs of Clus-
ters. In each case, the true implementation in a Pandora algo-
rithm will read in exactly the same manner, with the addi-
tion of encapsulated logic and decision-making procedures
to determine exactly when to create a Cluster or merge Clus-
ters. A comprehensive set of demonstrations and unit-tests
are included in the Pandora ExampleContent library and test
application, which are described in [8].

Algorithm 1 Cluster creation pseudocode. The logic deter-
mining when to create new Clusters and when to extend exist-
ing Clusters will vary between algorithms
1: procedure Cluster Creation
2: Create temporary Cluster list
3: Get current CaloHit list
4: for all CaloHits do
5: if CaloHit available then
6: for all newly-created Clusters do
7: Find best host Cluster
8: if Suitable host Cluster found then
9: Add CaloHit to host Cluster
10: else
11: Add CaloHit to a new Cluster
12: Save new Clusters in a named list

Algorithm2Cluster merging pseudocode. The logic govern-
ing the identification of suitable parent Clusters and daughter
Clusters will vary between algorithms
1: procedure Cluster Merging
2: Get current Cluster list
3: for all Clusters do
4: if Cluster is suitable parent then
5: for all Clusters do
6: Find best daughter Cluster
7: if Suitable daughter Cluster found then
8: Merge daughter Cluster into Parent

9 Pandora reclustering

The Pandora reclustering mechanism exploits the function-
ality of the Pandora SDK in order to reinvent the traditional
pattern recognition approach. Using reclustering allows algo-
rithms to simultaneously explore multiple different Cluster

configurations. The resulting Clusters can be compared and a
decision made as to which configuration is best. The Pandora
SDK will then automatically tidy-up any discarded Clusters.
This approach means that, instead of selecting the best algo-
rithmic approach to solve a problem, the user is able to control
a process whereby the approach that best solved the problem
is identified. This allows use of the Pandora XML config-
uration to drop-in a (potentially large) number of indepen-
dent approaches to solving a problem. The overall algorithm
steering will then select the approach that is deemed most
successful.

9.1 Standard reclustering

The standard reclustering use-case is to examine the Clusters
produced by a clustering algorithm and identify problems or
deficiencies with a subset of these Clusters. For example,
in the Pandora Linear Collider event reconstruction, a sig-
nificant discrepancy between measured inner detector Track
momentum and associated calorimeter Cluster energy indi-
cates a pattern recognition failure. A Pandora algorithm iden-
tifying such a failure can use an API to ask to Recluster any
Clusters (and Tracks) in the current object lists. This request
moves the relevant Clusters from the current list into a new
temporary Cluster list. Furthermore, CaloHits in the relevant
Clusters are copied into a new CaloHit list, which is set as
the current CaloHit list. The Tracks are copied into a new
Track list, set as the current Track list.

The steering algorithm can then ask to run a daughter clus-
tering algorithm. A new temporary Cluster list is created to
hold any newly-created Cluster candidates. The temporary
list is associated with the steering algorithm, which receives
the temporary list name. The daughter clustering algorithm
can access the current CaloHit and Track lists and create an
all-new Cluster configuration, stored in the temporary list.
The steering algorithm can repeatedly call daughter cluster-
ing algorithms, using differently-configured instances of the
same algorithm or radically different clustering approaches.
The result is a set of named temporary Cluster lists, each
holding Cluster candidates. One named temporary list holds
the original, input Clusters.

By examining the different temporary Cluster lists, the
steering algorithm makes a decision as to which Cluster con-
figuration is the best. For the Linear Collider reconstruction
discussed above, this would be the configuration in which
Track momentum and associated Cluster energy match most
closely. The steering algorithm then only needs to call the
EndReclustering API, specifying the name of the chosen tem-
porary Cluster list. The desired Clusters will be injected into
the original current list, replacing those originally present. All
other temporary lists will be cleaned by the Cluster manager,
deleting all the rejected Cluster candidates and all the tem-
porary lists. The end result is a seamless replacement of the

123

439 Page 10 of 16 Eur. Phys. J. C (2015) 75 :439

original, deficient Clusters using the best result from a large
number of alternative (black-box) clustering algorithms.

9.2 Local reclustering

In some use-cases, a steering algorithm may not wish to
use daughter clustering algorithms in order to reconfigure
existing Clusters. The algorithm may instead want to simply
examine one alternative configuration and to directly com-
pare the original and new Cluster candidates side-by-side.
This functionality is provided by a local reclustering mech-
anism offered by the Pandora SDK. The steering algorithm
must ask to Fragment the original Cluster candidates, which
will move the relevant Clusters into a new temporary Clus-
ter list, plus create a further temporary Cluster list to receive
any newly-created Clusters. The same algorithm can now
build a second set of Cluster candidates, from the same con-
stituent CaloHits, without violating the CaloHit usage mon-
itoring requirements. The two sets of Cluster candidates can
be compared, before a decision must be made as to which
of the configurations should be selected. The steering algo-
rithm must ask to end the fragmentation process, specifying
which of the two temporary Cluster lists to keep and which
to delete. The chosen Clusters will seamlessly replace those
in the input current list.

10 Additional functionality

In addition to the Pandora EDM and the functionality pro-
vided by the Pandora APIs, the Pandora SDK offers a num-
ber of other key features to aid pattern recognition algorithm
implementation, development and debugging. These include
classes to complement the EDM, providing three-vector alge-
bra or performing (sliding) linear fits to Clusters. The most
important additional features are described in this section.

10.1 Plugins

The Pandora SDK can be easily extended via the addition
of Plugins. These inherit from the Pandora Process purely
abstract base class and have interfaces that define their spe-
cific usage. Plugins are currently available to provide a num-
ber of services specific to pattern recognition in HEP. These
include particle identification, energy correction functional-
ity and electromagnetic shower profile characterisation. Plu-
gins are also available to provide access to magnetic field
maps and to divide regions of a particle detector into lay-
ers. The plugins are owned by a Plugin Manager and can be
accessed by algorithms via a GetPlugins API. The plugins
inherit from the Process base class all functionality required
for handshaking with the relevant Pandora instance and for
configuration via the PandoraSettings XML file.

The particle identification plugins receive a Pandora Clus-
ter and return a boolean result recording whether the Cluster
matches the topology expected for a particular particle type.
The energy correction plugins, meanwhile, receive a Pan-
dora Cluster and implement a custom scheme for estimat-
ing the energy of the Cluster, returning the energy estimate
via a reference to a float. This plugin functionality allows
for improvements whenever it is possible to obtain a better
energy estimator using means other than simply summing the
constituent CaloHit energies. This covers digital calorime-
ters, for instance, which record only whether a particle was
detected in a particular readout cell, not an analogue energy
measurement.

10.2 Detector geometry

Specific to HEP is the ability for the client application to
provide detector geometry information, which can then be
requested by Pandora algorithms. The client application can
specify details of subdetector systems such as the type (e.g.
electromagnetic calorimeter), name and spatial extent, where
the assumption is that the subdetector will have a polygonal
structure. Details for each of the layers of active material can
also be provided, as can information about gap regions in the
detector active material. Algorithms can choose to use the
detector properties to help define their pattern recognition
logic. In general, however, Pandora algorithms try to avoid
use of detector information and work with the self-describing
CaloHits and Tracks alone. The detector geometry informa-
tion is then used predominantly for event visualisation pur-
poses.

10.3 Monitoring and visualisation

Algorithms can access a Pandora Monitoring library, which
has a dependency on the ROOT data analysis framework [10].
ROOT provides the ability to write tree structures, allowing
information constructed within algorithms to be recorded and
written to file. The trees can store information from large
numbers of events and allow algorithm logic to be devel-
oped and tuned via examination of high-statistics distribu-
tions. ROOT also offers a Event Visualisation Environment
(EVE), which provides an application framework for con-
structing event display programs. The Pandora Monitoring
library provides the translation from the Pandora EDM to
the ROOT EVE data model.

Algorithms can use the Pandora Monitoring APIs to
request visualisation of custom lists of any objects in the
Pandora EDM, specifying the visualisation colour-scheme
and providing a name to identify the objects in the GUI
(where objects can be queried and toggled on or off). A
typical approach is for algorithms to request visualisation
of multiple lists of objects, then ask to view the event. The

123

Eur. Phys. J. C (2015) 75 :439 Page 11 of 16 439

event can be examined in the GUI and the Pandora algorithm
processing will be paused until the user hits return in the
relevant terminal. The event display provides zoom and rota-
tion functionality for examining events in three dimensions.
Algorithms can also choose to add reference marker points
to highlight positions of particular interest in an event.

Visualisation can aid algorithm development. It is possible
for a developer to visually check the results of a Cluster selec-
tion procedure, for instance, by asking for separate displays
of all Clusters passing or failing the selection. When looking
to merge Clusters, the event display can show all the pos-
sible parent and daughter Cluster combinations, alongside
details of their association properties, which can be printed
to the terminal. Reusable event display algorithms, which
can be included in the PandoraSettings XML file in multiple
locations, can provide visualisation of the pattern recognition
progress at different points in the reconstruction, without the
need to recompile any source code. This visual approach to
development and debugging can be a particularly efficient
and rewarding way to create pattern recognition algorithms.

10.4 Persistency

As described so far in this document, a Pandora reconstruc-
tion is always controlled by a client application running in
the user’s chosen software framework. The client applica-
tion asks the Pandora SDK to create self-describing objects
to define the pattern recognition problem. Pandora persis-
tency provides a means whereby the self-describing building-
blocks can be written-to or read-from files. This allows a user
to run a client application just once, calling the Event Writ-
ing algorithm, which uses the Pandora persistency APIs to
write the events to binary PNDR files (small, but platform-
specific) or to XML files (large, but platform-independent
and easily compressed). Subsequently, the user can run in
a minimal Pandora standalone application, using the Event
Reading algorithm to recreate the self-describing objects for
processing by the algorithms. This functionality allows for
rapid development outside of complex software frameworks,
such as those typically used in HEP.

11 Pandora reconstruction examples

The algorithms to solve specific pattern recognition prob-
lems can be distributed in Pandora content libraries, which
contain all the required algorithms, algorithm tools and plu-
gins. Client applications can register all products in a content
library with a Pandora instance by calling a single function.

This document now brings together all the information
from the preceding sections in order to describe the Pan-
dora solutions to the pattern recognition problems in Fig. 1.
The reconstructions are provided by separate Pandora con-

tent libraries. The pattern recognition problems, and so algo-
rithms, are rather different, but each uses many decoupled
algorithms to gradually build particles, trying to avoid mis-
takes.

11.1 Linear collider event reconstruction

The Pandora Linear Collider (LC) event reconstruction is per-
formed by algorithms and plugins in the LCContent library.
It aims to trace the paths of visible particles through a fine
granularity detector consisting of inner tracking detectors, an
electromagnetic calorimeter (ECAL), a hadronic calorime-
ter (HCAL) and a series of muon chambers. A typical event
topology, containing multiple particles in a dense jet envi-
ronment, is displayed in Fig. 6a.

The tracking detectors provide highly accurate space-
point measurements. The pattern recognition and fitting of
tracks in the tracking detectors is performed outside of Pan-
dora, as described in [9]. Pandora Tracks represent the recon-
structed trajectories and serve as the input to the particle flow
algorithm. The ECAL and HCAL are sampling calorimeters,
consisting of absorber material, such as tungsten or steel, fol-
lowed by layers of active material, such as silicon or scintilla-
tor, divided into individual cells. Pandora CaloHits represent
energy deposits in the calorimeter cells. Typical cell volumes
are 5 × 5 × 0.5 mm3 in the ECAL and 3 × 3 × 0.3 cm3 in the
HCAL.

The LC event reconstruction is developed and tested
using full GEANT4 [11,12] simulations of the ILD [3] and
CLIC_ILD [13] detector concepts in MOKKA [14]. Monte
Carlo event samples for physics studies are generated using
WHIZARD [15]. Parton showering, hadronisation and frag-
mentation is performed using PYTHIA [16]. The Pandora LC
client application is implemented in the MARLIN [17] soft-
ware framework. Algorithm 3 describes the operations that
must be performed by this client application.

Algorithm 3 Pseudocode description of a client application
used for Linear Collider event reconstruction
1: procedure main
2: Create a Pandora instance
3: Register Algorithms and Plugins
4: Provide detector geometry description
5: Ask Pandora to parse XML settings file
6: for all Events do
7: Create Track instances
8: Create CaloHit instances
9: Create MCParticle instances
10: Specify Track-Track relationships
11: Specify MCParticle-Track relationships
12: Specify MCParticle-CaloHit relationships
13: Ask Pandora to process the event
14: Get output PFOs and write to file
15: Reset Pandora before next event

123

439 Page 12 of 16 Eur. Phys. J. C (2015) 75 :439

The reconstruction proceeds as follows:

– CaloHits are clustered using a simple cone-based algo-
rithm, which works outwards from the interaction point,
either adding CaloHits to existing Clusters or using them
to create new Clusters. Clusters can be seeded by the
projection of Tracks to the front face of the ECAL.

– The Clustering algorithm is configured so that it tends
to split CaloHits from individual particles into multiple
Clusters, rather than risk merging energy deposits from
multiple particles into single Clusters. The Clusters are
instead carefully merged together by a series of algo-
rithms implementing well-defined topological rules.

– Clusters are associated to Tracks via careful compari-
son of Cluster positions and directions (obtained, for
instance, via sliding linear fits) with projected Track posi-
tions and directions at the ECAL.

– The compatibility of associated Tracks and Clusters is
assessed, via comparison of Track momentum with asso-
ciated Cluster energies. Significant discrepancies indi-
cate pattern recognition problems and the reclustering
approach described in Sect. 9 is used to improve the clus-
tering.

– Clusters without associated tracks are examined to assess
whether they genuinely represent electrically neutral par-
ticles, or whether they are more likely to be fragments
of any nearby track-associated Clusters, representing
charged particles.

– PFOs are formed from Tracks and/or Clusters, represent-
ing the final pattern-recognition output. Particle identifi-
cation plugins are used to label specific particle types. In
the particle flow calorimetry approach, the properties of
PFOs are extracted from Tracks when possible, otherwise
they are determined from calorimeter information.

The results of processing a typical event are displayed in
Fig. 6b.

The performance of the LC event reconstruction is typi-
cally characterised by measuring the jet energy resolution.
This is determined using samples of Z’ particles, which are
off-shell Z bosons, produced at rest at different centre of
mass energies. The Z’ particles decay into light quarks and
produce two back-to-back mono-energetic jets. The resolu-
tion of the jet energy, E j , can be determined from the total
reconstructed energy distribution, E j j as follows:

RMS90(E j)

mean90(E j)
= RMS90(E j j)

mean90(E j j)

√
2 (1)

where the RMS90 is defined as the smallest RMS recon-
structed in any region containing 90 % of the events. It is
introduced in order to reduce sensitivity to tails in a well-
defined manner, because the effects of pattern recognition

(a)

(b)

Fig. 6 Simulated detector response to a typical event, containing four
jets, at CLIC. a The input Tracks and CaloHits, and b the output PFOs

failures mean that the PFO energy distribution will be inher-
ently non-Gaussian.

Figure 7a shows the total reconstructed energy distribu-
tions for Z’ events at different energies in ILD. Figure 7b
shows the variation of the jet energy resolution as a func-
tion of the jet energy, for jets in the barrel region of the
detector. The same figure shows the contributions to the jet
energy resolution from the intrinsic calorimeter energy res-
olution and from pattern recognition failures. The intrinsic
energy resolution contribution is dominant at low jet energies,
but decreases with jet energy. The contribution from pattern
recognition “confusion” increases with jet energy and domi-
nates at high jet energies. The jet energy resolutions surpass
the challenging ILC and CLIC targets of σE/E < 3.5–5 %.

The CPU time and overall memory footprint for the LC
event reconstruction is summarised in Table 1. A more
detailed breakdown of the memory usage is shown in Table
2. It can be seen that the Pandora instance itself has a rather
small footprint, as do the algorithms. The input objects, for
events with CLIC 3 TeV backgrounds, are much more signifi-
cant, but it is the algorithm objects that prove most important.
The optional ROOT-based monitoring functionality makes a
significant contribution to the memory usage.

123

Eur. Phys. J. C (2015) 75 :439 Page 13 of 16 439

 [GeV]jjE
0 100 200 300 400 500 600

E
ve

nt
s

/ 2
 G

eV
 [%

]

0

5

10

15

20

25 91 GeV
200 GeV
360 GeV
500 GeV

(a)

 [GeV]jE
50 100 150 200 250

) [
%

]
j

(E
90

) /
 M

ea
n

j
(E

90
R

M
S

0

1

2

3

4

PandoraPFA reconstruction

Perfect pattern recognition

Pattern recognition confusion

(b)

Fig. 7 Performance of the Pandora LC event reconstruction for simu-
lated Z’ events in the ILD detector concept. a The total reconstructed
energy for Z’ events at different centre of mass energies. b The jet
energy resolution as a function of jet energy, for jets in the barrel region
of the detector. The contributions from the intrinsic calorimeter energy
resolution and from pattern recognition “confusion” are also indicated

Table 3 demonstrates that the Pandora SDK operations
represent a negligible amount of the LC event processing
time. It is the operations performed within the algorithms
that dictate the event processing rate, as the algorithms col-
lect evidence to inform their pattern recognition decisions.
The most time-consuming SDK operation is the reset of the
Pandora instance between events.

11.2 LAr TPC event reconstruction

The Pandora LAr TPC event reconstruction is performed by
algorithms, algorithm tools and plugins in the LArContent
library. It aims to identify the paths of individual particles in
cosmic ray and neutrino-induced interactions in a LAr TPC
with single-phase readout, where ionisation is detected using
three readout (wire) planes in the liquid argon volume. The

Table 1 Indicative CPU times and memory footprints for processing
200 GeV Z’ events in the CLIC detector, with and without overlaid
backgrounds. The mean numbers of Tracks and CaloHits indicate the
complexities of the events. The memory footprint is broken down into
a virtual memory value and a resident set size value. The event times
were recorded using a single socket, quad core, unthreaded Core i5-3570
CPU (clock speed 3.4 GHz, SPECint2006 48.5, SpecFP206 62.9)

Event type 200 GeV Z’ 200 GeV Z’
Background None CLIC 3 TeV

Event time (s) 0.22 ± 0.02 12.5 ± 0.4

VMem (MB) 256 480

RSS (MB) 43 266

Tracks 27 ± 1 650 ± 7

CaloHits 4,200 ± 60 39,900 ± 700

Table 2 Memory footprint for processing 200 GeV Z’ events in the
CLIC detector, with overlaid background. Virtual memory and resi-
dent set size values are shown for a number of configurations. These
configurations indicate the separate memory footprints of the Pandora
instance, the algorithm instances, the input objects and the algorithm
objects (produced when both algorithms and input objects are provided).
The memory footprint of the monitoring functionality is also indicated

Algorithms Input objects Monitoring VMem [MB] RSS [MB]

✗ ✗ ✗ 19 3

✓ ✗ ✗ 19 4

✗ ✓ ✗ 64 47

✓ ✓ ✗ 244 229

✓ ✓ ✓ 480 266

Table 3 Indication of the division of event processing time between
algorithm and SDK operations for 200 GeV Z’ events in the CLIC detec-
tor, with overlaid background. The fraction of the time associated with
the most time-consuming algorithm and SDK operations is shown. The
cumulative fraction of time associated with the top-five most expensive
algorithm and SDK operations is also displayed

Category Operation ranking (s) Processing time [%]

Algorithm 1 12.0

Algorithm 1→5 49.2

SDK 1 0.5

SDK 1→5 0.9

readout provides three two dimensional images of the events
within the detector active volumes. Each image shares a com-
mon coordinate, derived from the drift time (the difference
between the time at which ionisation signals were recorded
and the “t0” identified for the event). The second coordinate
is derived from the number of the wire recording the ionisa-
tion signal. The readout pitch is of the order of mm, so each
two dimensional image, such as that in Fig. 8a, provides a
wealth of information.

The LAr TPC event reconstruction is developed using
detailed GEANT4-based Monte Carlo simulations of the

123

439 Page 14 of 16 Eur. Phys. J. C (2015) 75 :439

(a)

(b)

Fig. 8 Simulated detector response to a typical 5 GeV CC νe event in
a LAr TPC. a The input CaloHits, and b the output PFOs in one readout
plane. Track-like PFOs, representing muons, protons or charged pions,
are shown in red. Shower-like PFOs, representing electrons or photons,
are shown in green

MicroBooNE [18] detector and the DUNE [19] far detec-
tor and 35-ton prototype. Events are generated using the
GENIE [20] simulation of neutrino-nucleus interactions and
the CRY [21] cosmic ray generator. The Pandora LAr TPC
client application is implemented in LArSoft [22]. The recon-
struction proceeds as follows:

– The client application creates separate CaloHits for each
of the recorded hits in the three images. The CaloHits
can be distinguished via their HitType member variables
and are all placed in the y = 0 plane. The first algorithm
filters the CaloHits into three separate lists based on their
HitTypes.

– Reconstruction of two dimensional Clusters is performed
separately for each of the three CaloHit lists. The two
dimensional reconstruction begins with a track-based
clustering algorithm, which searches for continuous,

True Muon Momentum [GeV]
0 1 2 3 4 5

P
at

te
rn

 R
ec

og
ni

tio
n

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

 CCμν5 GeV

(a)

True Electron Energy [GeV]
0 1 2 3 4 5

P
at

te
rn

 R
ec

og
ni

tio
n

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

 CCeν5 GeV

(b)

Fig. 9 The reconstruction efficiency of the Pandora LAr TPC algo-
rithms for leading final-state leptons in a 5 GeV νμ CC, and b 5 GeV
νe CC interactions simulated in the MicroBooNE detector

unambiguous lines of CaloHits. Separate Clusters are
formed for each “branch” visible in the CaloHit topolo-
gies.

– The Clustering algorithm is careful to avoid merging
energy deposits from multiple particles into single Clus-
ters. The two dimensional Clusters are instead carefully
merged together via a series of algorithms looking for
clear evidence of topological association between pairs
or chains of Clusters.

– The three lists of two dimensional Clusters are used to
reconstruct the most likely three dimensional event vertex
position. Comparison of Clusters in each of the different
readout planes is possible via a Pandora plugin that per-
forms all required coordinate transformations.

– Reconstruction of three dimensional tracks is performed
by examining the compatibility of combinations of two
dimensional Clusters from each of the three readout
planes. A rank-three tensor is created to store details of

123

Eur. Phys. J. C (2015) 75 :439 Page 15 of 16 439

Table 4 Indicative CPU times and memory footprints for processing
two different classes of events, simulated in the MicroBooNE detector.
Note that the algorithm configuration differs for processing events with
and without cosmic ray overlay. The event times were recorded using
a single socket, quad core, unthreaded Core i5-3570 CPU (clock speed
3.4 GHz, SPECint2006 48.5, SpecFP206 62.9)

Event type 5 GeV νe CC BNB spectrum
Background None Cosmic ray

Event time (s) 1.82 ± 0.07 3.18 ± 0.15

VMem (MB) 273 446

RSS (MB) 59 232

CaloHits 6,100 ± 80 14,600 ± 500

the suitability of all possible Cluster combinations. This
tensor is interrogated by a set of algorithm tools, which
identify ambiguities and make changes to the two dimen-
sional reconstruction until the Cluster combinations are
unambiguous (the tensor is diagonal).

– Consistent groups of the two dimensional Clusters are
stored in PFOs, which provide a convenient means for
collecting together objects reconstructed in the three sep-
arate readout planes.

– Shower reconstruction is performed. This begins in
two dimensions, looking for associations between long
“shower-spine” Clusters and short “shower-branch”
Clusters. Shower Clusters from each of the three read-
out planes are compared and grouped-together in three
dimensions using a further tensor-diagonalisation app-
roach.

– Vertices are created for Track and Shower PFOs. Parti-
cle parent–daughter links are used in order to provide
a reconstructed decay hierarchy. New three dimensional
CaloHits and Clusters are created for each PFO as the
ultimate reconstructed representation of the underlying
event.

The results of processing a typical event are displayed in
Fig. 8b.

The performance of the LAr TPC reconstruction can be
assessed via the efficiency for reconstructing final-state par-
ticles in the simulated events. Figure 9 shows the reconstruc-
tion efficiency for the leading lepton in 5 GeV νμ and νe
charged current (CC) interactions in the MicroBooNE detec-
tor. Successful reconstruction requires accurate clustering in
all three readout planes and successful matching of clusters
between planes. The efficiency is greater than 95 % for lepton
momenta above 1 GeV and approaches 100 % above 2 GeV.
The CPU time and memory footprint for the LAr TPC event
reconstruction is summarised in Table 4.

12 Concluding comments

The Pandora SDK provides an efficient and reusable soft-
ware solution for developing pattern recognition algorithms.
The SDK was developed to address problems in the field of
High Energy Physics. The Pandora LCContent library pro-
vides the state of the art in particle flow analysis for events
in fine granularity detectors, such as those designed for use
at the proposed high-energy e+e− linear colliders ILC and
CLIC. The LC algorithms are also helping to drive detec-
tor optimisation studies for the upgrade of the CMS detector
at the LHC. In the neutrino sector, the Pandora LArContent
library provides an advanced reconstruction of cosmic ray
and neutrino-induced events in LAr TPCs and is used by the
MicroBooNE and DUNE experiments.

Acknowledgments This work was funded in part by the UK Science
and Technology Facilities Council and by the European Union under
the Advanced European Infrastructures for Detectors and Accelerators
(AIDA) project. The authors would like to acknowledge the help pro-
vided by Peter Speckmayer, aiding the development of the Pandora
visualisation, and Andrew Blake, aiding the development of algorithms
for use with events in LAr TPCs.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. M.A. Thomson, Nucl. Instrum. Methods A 611, 25 (2009)
2. H. Baer et al., arXiv:1306.6352 [hep-ph]
3. T. Behnke et al., arXiv:1306.6329 [physics.ins-det]
4. L. Linssen et al., Physics and Detectors at CLIC : CLIC Conceptual

Design Report. arXiv:1202.5940 (2012)
5. P. Lebrun et al., The CLIC programme: towards a staged e+e− lin-

ear collider exploring the terascale: CLIC conceptual design report.
arXiv:1209.2543 (2012)

6. J.S. Marshall et al., Nucl. Instrum. Methods A 700, 153 (2013)
7. C. Adams et al., arXiv:1307.7335 [hep-ex]
8. J.S. Marshall, http://www.hep.phy.cam.ac.uk/~marshall/

PandoraExample
9. F. Gaede et al., J. Phys. Conf. Ser. 513, 022011 (2014)

10. R. Brun et al., Nucl. Instrum. Methods A 389, 81 (1997)
11. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)
12. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)
13. A. Münnich et al., The CLIC ILD CDR Geometry for the CDR

Monte Carlo Mass Production. LCD-Note-2011-002 (2011)
14. P. Mora de Freitas et al., Detector simulation with

MOKKA/GEANT4: present and future. LC-TOOL-2003-010
15. W. Kilian et al., Eur. Phys. J. C 71, 1742 (2011)
16. T. Sjostrand et al., JHEP 0605, 026 (2006)
17. F. Gaede, Nucl. Instrum. Methods A 559, 177 (2006)
18. MicroBooNE Collaboration, http://microboone-docdb.fnal.gov/

cgi-bin/ShowDocument?docid=1821

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1306.6352
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/1202.5940
http://arxiv.org/abs/1209.2543
http://arxiv.org/abs/1307.7335
http://www.hep.phy.cam.ac.uk/~marshall/PandoraExample
http://www.hep.phy.cam.ac.uk/~marshall/PandoraExample
http://microboone-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1821
http://microboone-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1821

439 Page 16 of 16 Eur. Phys. J. C (2015) 75 :439

19. DUNE Collaboration, https://web.fnal.gov/project/LBNF/
SitePages/Home.aspx

20. C. Andreopoulos et al., Nucl. Instrum. Methods A 614, 87 (2010)

21. C. Hagmann et al., Cosmic-ray shower library (CRY). UCRL-TM-
229453 (2012)

22. E.D. Church, arXiv:1311.6774 [physics.ins-det]

123

https://web.fnal.gov/project/LBNF/SitePages/Home.aspx
https://web.fnal.gov/project/LBNF/SitePages/Home.aspx
http://arxiv.org/abs/1311.6774

	The Pandora software development kit for pattern recognition
	Abstract
	1 Introduction
	2 Historical context
	3 Overview of the Pandora SDK
	4 Pandora event data model
	5 Pandora client application
	6 Pandora managers
	6.1 Input object managers
	6.2 Algorithm object managers
	6.3 Monitoring of object usage

	7 Pandora algorithms
	7.1 Algorithm creation and configuration
	7.2 Nested algorithms
	7.3 Algorithm tools

	8 Pandora APIs
	9 Pandora reclustering
	9.1 Standard reclustering
	9.2 Local reclustering

	10 Additional functionality
	10.1 Plugins
	10.2 Detector geometry
	10.3 Monitoring and visualisation
	10.4 Persistency

	11 Pandora reconstruction examples
	11.1 Linear collider event reconstruction
	11.2 LAr TPC event reconstruction

	12 Concluding comments
	Acknowledgments
	References

