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The self-propulsion of a spherical squirmer — a model swimming organism that achieves
locomotion via steady tangential movement of its surface — is quantified across the
transition from viscously to inertially dominated flow. Specifically, the flow around a
squirmer is computed for Reynolds numbers (Re) between 0.01 and 1000 by numerical
solution of the Navier-Stokes equations. A squirmer with a fixed swimming stroke and
fixed swimming direction is considered. We find that fluid inertia leads to profound
differences in the locomotion of pusher (propelled from the rear) versus puller (propelled
from the front) squirmers. Specifically, pushers have a swimming speed that increases
monotonically with Re, and efficient convection of vorticity past their surface leads to
steady, axisymmetric flow that remains stable up to at least Re = 1000. In contrast,
pullers have a swimming speed that is non-monotonic with Re. Moreover, they trap
vorticity within within their wake, which leads to flow instabilities that cause a decrease
in the time-averaged swimming speed at large Re. The power expenditure and swimming
efficiency are also computed. We show that pushers are more efficient at large Re, mainly
because the flow around them can remain stable to Re much greater than that of a puller.
Interestingly, if unstable axisymmetric flows at large Re are considered, pullers are more
efficient due to the development of a Hill’s vortex-like wake structure.

1. Introduction

Swimming organisms span seven orders of magnitude in length (Gray 1968): a motile
bacterium may be only a few microns across whereas a large marine animal may be
several meters in length. Completely different fluid flow regimes are observed at either
end of this scale (Childress 1981). The underlying flow physics are dictated by the relative
strength of inertial to viscous forces within the fluid. The Reynolds number, Re = oV L/p,
represents the ratio of these forces, where g is the fluid density, u is the viscosity, V is a
characteristic speed, and L is a characteristic length.

Locomotion at macroscopic length scales is associated with large Re flows dominated
by inertial forces. Roughly all swimmers between the size of a small fish (Re ~ 10%) and a
blue whale (Re ~ 10%) fall into this Eulerian realm. Self-propulsion is primarily generated
by reactionary forces arising from the acceleration of fluid opposite the swimming
direction (Childress 1981). This is accomplished, for instance, by the motion of a fish’s tail
fin. The effects of viscosity are confined to thin boundary layers so long as the swimmer
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is streamlined in shape (Vogel 1996). Thus, fluid-mechanical analysis may be carried out
using inviscid flow theory (Lighthill 1975).

In contrast, microscopic organisms fall into the Stokesian realm, where viscous forces
dominate and Re is small, ranging from 10~* for bacteria to 1072 for mammalian
spermatozoa (Brennen & Winnet 1977). Here, inertial mechanisms of thrust generation
are unavailable; the swimming mechanics of these organisms are governed by resistive
forces, where viscous thrust is balanced by viscous drag (Lauga & Powers 2009).

Lighthill (1952) and Blake (1971) introduced the spherical squirmer as simple model
for self-propulsion at small Re, intended to mimic the locomotion of organisms possessing
dense arrays of motile cilia. A squirmer of radius a achieves locomotion through small,
axisymmetric deformations of its surface, such that the radial and tangential velocity
components on its surface in a co-moving frame are

oo oo _2
Uplpea = Z A (t)Py(cosh), and wglr—q = Z mBn(t)Pé(cos 0), (1.1)
n=0 n=1

respectively. Here, r is the distance from the origin, located at the center of the squirmer’s
body, 0 is the polar coordinate measured from the direction of locomotion, A,, and B,
are time dependent amplitudes (with units of velocity), and P, (P}) are (associated)
Legendre polynomials of order n. The direction of locomotion remains constant (at small
Re) due to the axisymmetry of the swimming “stroke” represented by (1.1), and thus
the swimming velocity is U = Ue,, where e, is the unit vector along the swimming
direction. From the requirement that the net hydrodynamic force must vanish on a
steadily translating, neutrally buoyant body, the swimming speed of a squirmer in Stokes
flow is U = (2B; — A1) /3 (Lighthill 1952). This depends only upon the first mode of each
surface velocity component in (1.1) and is independent of viscosity, since thrust and drag
scale linearly with viscosity at Re = 0.

A reduced-order squirmer may be conceived by assuming that the surface deforms
steadily and only in the tangential direction (A4,, = 0, and B,, = constant). Furthermore,
one may retain only the first two B,, coefficients, so that

Vg|r—a = v5(0) = By sinf + By sinf cos . (1.2)

Equation (1.2) is a slip flow along the squirmer surface that vanishes at the poles (0 =
0 and # = 7). The first term in (1.2) is solely responsible for propulsion, U|ge—o =
2B;/3, and generates an irrotational velocity field decaying as 1/r3, characteristic of a
potential dipole. The second term is associated with the stresslet exerted by the squirmer,
S|Re—0 = 4mpa®Ba(3e e, —1)/3, where I is the identity tensor (Batchelor 1970; Ishikawa
et al. 2006). The flow field due to this term decays as 1/r? in Stokes flow. There is no
Stokeslet contribution to the velocity field because the squirmer is force-free: there is no
net hydrodynamic force; drag balances thrust. Defining § = B2/B; and with By > 0,
squirmers are divided into pullers having 8 > 0 and pushers having 5 < 0 (Ishikawa
et al. 2007) (figure 1). If |8] > 1, there exists an intermediate point within 0 < 6 < 7 at
which v,(#) vanishes, leading to recirculating flow behind (in front of) a puller (pusher)
(Magar et al. 2003). The magnitude of 5 determines the amount of vorticity generation.
If B = 0, the squirmer is “neutral” and generates a potential flow, which, in fact, is a
solution to the Navier-Stokes equations (NSE) at any Re. In this sense, 8 quantifies the
amount of fluid mixing by a squirmer. Importantly, the swimming speed is independent
of f at Re = 0; there is no coupling between vorticity generation and propulsion in Stokes
flow.

Clearly, this reduced-order squirmer is a simplistic model for the locomotion of actual
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Figure 1: (a) Illustration of the flow pattern around a pusher and puller squirmer in a
co-moving frame. (b) Typical examples of pusher and puller squirmers. Arrows represent
the force exerted by the fluid on the swimmer body. Pullers generate thrust from the
front, e.g., the breast-stroke-like motion performed by Chlamydamonas (a green algae).
Pushers generate thrust from the rear, e.g., E. coli which propel themselves by rearward
facing flagella.

organisms. Nevertheless, it has been employed to examine various facets of self-propulsion
in Stokes flow, including swimming in non-Newtonian fluids (Zhu et al. 2011, 2012),
mixing by swimmers (Thiffeault & Childress 2010; Lin et al. 2011; Pushkin et al. 2013),
feeding and nutrient transport (Magar et al. 2003; Magar & Pedley 2005; Michelin &
Lauga 2011), and hydrodynamic interactions of swimmers (Ishikawa et al. 2006; Drescher
et al. 2009; Llopis & Pagonabarraga 2010). A detailed summary is provided by Pak &
Lauga (2014).

Recently, the locomotion of a squirmer with stroke (1.2) was studied at non-zero Re. In
particular, matched asymptotic expansions were used to compute U to O(Re) by Wang
& Ardekani (2012) and to O(Re?) by Khair & Chisholm (2014). Tt was found that U
depends on 3 at non-zero Re: pushers (8 < 0) swim faster than pullers (8 > 0). Here, the
Reynolds number is Re = 29Bja/(3p). This is a result of vorticity generation, or mixing,
being coupled to propulsion at finite Re. Note that the vorticity distribution around a
Stokesian squirmer evolves purely via diffusion and is thus fore-aft anti-symmetric. This
anti-symmetry precludes the generation of a net force and hence propulsion. The anti-
symmetry is broken at finite Re as vorticity is advected past the squirmer into a far-field
inertial wake. Khair & Chisholm (2014) demonstrate that the wake structure around
a squirmer is consistent with previous work on steady, self-propelled bodies at non-
zero Re (Afanasyev 2004; Subramanian 2010), underscoring the squirmer as a suitable
reduced-order model for inertial locomotion. Additionally, Li & Ardekani (2014) and
Khair & Chisholm (2014) report numerical results for the swimming speed of a squirmer
for Re < 1, which show that the asymptotic results are of practical value in the rather
limited range of Re < 0.2.

The goal of the present article is to quantify the locomotion of a spherical squirmer in
the transition from viscously to inertially dominated flow. Self-propulsion in this regime
has not been fully explored, especially in comparison to the Stokesian and FEulerian
limits. Here, viscous and inertial forces may be simultaneously responsible for thrust and
drag on a swimmer making analysis more difficult. Specifically, we focus on intermediate
values of Re that lie between 0.1 and 1000, thus bridging the gap between viscous
and inertial swimming. A multitude of aquatic organisms, such as zooplankton that
are on the millimeter to centimeter length scale, fall into this range and utilize a wide
variety of swimming motions. The majority of past work has focused on the swimming of
particular species of organisms (Jordan 1992; McHenry et al. 2003; Kern & Koumoutsakos
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2006; Tytell et al. 2010; Gazzola et al. 2012). Such work undoubtedly provides valuable
information on the specific locomotive strategies of these organisms. However, in contrast
to past work, our objective is to quantify finite Re locomotion from a broad perspective
using the simple (reduced-order) squirmer model. Specifically, through the numerical
solution of the NSE, we will determine the flow fields around pusher and puller squirmers
for 0.01 < Re < 1000 and —5 < B < 5, along with their swimming speeds, power
expenditure, and hydrodynamic efficiency. Furthermore, we will determine the stability
of the steady axisymmetric flow about a squirmer and compute the critical values of Re at
which transitions to three-dimensional (3D) and transient flow occur. A prime outcome
of our work is to demonstrate that the fluid mechanics of pusher and puller squirmers
are dramatically distinct at intermediate Re, in contrast to their similar locomotions at
small Re.

It must be noted that the squirmer model is indeed simple in that it only considers
propulsion via generation of a surface velocity, and it may not well capture the detailed
flows arising from the complex geometries and locomotions of many biological swimmers.
Nonetheless, its simple geometry allows examination of the essential fluid mechanics of
a self-propelling body. Moreover, our results are easily compared to the classic problems
of flow past a no-slip sphere and flow past an inviscid spherical bubble, which are well
studied at all Re. Nonetheless, there also exist certain biological swimmers that provide
reasonably close realizations of a finite Re squirmer. Paramecium, a ciliate 0.2 mm in size,
can reach speeds of 10mm/s while evading threats, corresponding to Re ~ 2 (Hamel
et al. 2011). Ctenophores, the largest organisms known to use ciliary propulsion, are
a few millimeters to a few centimeters in size and swim about one body-length per
second when foraging (and faster when evading threats). Thus, the Reynolds number of
the flow ranges from roughly 100 to 6000 (Matsumoto 1991). Moreover, some species
of Ctenophores, such as Pleurobrachia bachei have bodies that exhibit strong axial
symmetry and are approximately spherical in shape (Tamm 2014). Such examples provide
additional biological motivation for studying the squirmer model outside the small Re
limit.

The remainder of this article is organized as follows. In section 2, we present the
governing equations for a self-propelled squirmer. In section 3 we detail two numerical
methods used for performing steady, axisymmetric and transient, three-dimensional (3D)
simulation of flows about a squirmer, respectively. The subsequent results are presented
and discussed in section 4. Finally, we conclude and suggest directions for future work in
section 5.

2. Governing equations

Consider a single squirmer with a steady swimming stroke (1.2) in an unbounded
incompressible Newtonian fluid (figure 1a). We normalize length by the squirmer radius
a, velocity by the speed of a neutral squirmer in potential flow (2B;/3), time by 3a/(2By),
and pressure and viscous stresses by 2By /(3a). Thus, the Reynolds number is defined as
Re = 20B;a/(31). Henceforth, all quantities are dimensionless unless indicated otherwise.
The fluid motion is governed by the NSE,

V-v=0, and Re%:: = V2v — Vp, (2.1)

where v is the velocity vector, p is the pressure, ¢ is time, and D/Dt represents the
material derivative.
We assume that the squirmer body has a constant mass density ogp, equal to g, and
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is thus neutrally buoyant. If the flow about the squirmer is axisymmetric, the net
hydrodynamic force perpendicular to the squirmer’s axis (taken as the z-axis of an
attached Cartesian frame) and the net hydrodynamic torque vanish. Thus, the squirmer
does not rotate and maintains a straight-line path. The remaining z-component of the
hydrodynamic force F, is equal to the mass times acceleration of the squirmer body in
the z-direction,

au
Stk— =F, = /(n-a-ez)dS, (2.2)
dt g
where U is the swimming speed, S represents the spherical squirmer surface with outer
unit normal n, and & = —pl + Vv + (Vo) is the stress tensor. The Stokes number,

Stk = Repy/ 0, is equal to Re because 9 = gp. This force will vanish when the flow is
at steady state and the squirmer translates with a steady velocity. Therefore, a steady
squirmer in steady, axisymmetric flow is force-free and torque-free.

However, the spherical squirmer is a bluff object; the steady, axisymmetric flow around
it may become unstable beyond a critical value of Re, yielding to 3D and/or unsteady
flow. This leads to the production of instantaneous lift forces perpendicular to the
squirmer’s axis and instantaneous hydrodynamic torques that result in lateral motion
and rotation of the squirmer’s body, respectively. Here, for simplicity, forces and torques
are externally applied to the squirmer to keep its direction and orientation constant and
along the z-axis during our computations, although the speed is allowed to vary according

0 (2.2). Thus, the squirmer is not fully free-swimming but rather constrained to follow
a straight-line path. This is a logical first step before considering the more complicated
paths of motion that would arise if the squirmer trajectory were to be unconstrained.
For instance, the transitions in flow that occur for a freely rising or sinking body, and the
values of Re at which they occur, are closely related to the those that take place in the
flow past an analogous fixed body (Horowitz & Williamson 2010; Ern et al. 2012). Thus,
we expect that our study of a squirmer constrained to a single direction of swimming will
be relevant to a fully free-swimming squirmer. Indeed, the two problems are identical in
the regime of axisymmetric flow and only differ when such flow destabilizes. Although
it is not considered here, note that the path of motion of a fully free squirmer could
be computed via a force balance (in all directions) and an angular momentum balance
on the squirmer body, similar to the computation of the paths of freely rising or falling
bodies (Ern et al. 2012).

3. Numerical methods

Two numerical schemes were employed to compute the flow field around a squirmer
for =5 < B < 5 and 0.01 < Re < 1000. One assumes steady, axisymmetric flow where the
steady-state swimming speed U is that at which F, in (2.2) vanishes. The other considers
fully 3D, transient flow, in which case U = U(t) is given by integrating (2.2) via a time
stepping procedure.

3.1. Computation of steady, axisymmetric flow

We convert the NSE into a stream function—vorticity form. From (2.1), the steady
vorticity transport equation is

Re|[(v-V)w — (w - V)v] = VZw, (3.1)
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Figure 2: Structured polar grids (a) were used for both axisymmetric and 3D (by revolving
them azimuthally) computations of the flow. For axisymmetric computations with Re >
10, a different mesh (b) was used with greater resolution in the wake of the squirmer to
more accurately resolve the details of the flow in this region.

where w = V X v is the vorticity vector. A stream function v is defined in cylindrical

coordinates, such that

—la—w, and v, = la—w, (3.2)
p Oz p Op

where p is the distance from the z-axis, and v, and v, represent the fluid velocity

components.

Combining (3.2) with (3.1) gives
(P, w) w o\ o w
Re (‘ 93] ’ + 59, ) = Ve 3 (3.3)

where w is the component of w in the azimuthal direction ¢ about the z-axis; the other
(p and z) components of w vanish by symmetry. Expressing w in terms of ¢ gives

Vp =

2
wp = —F%*)p, where FE?= pagp <;68p> + % (3.4)
Equations (3.3) and (3.4) are coupled partial differential equations, with the former being
nonlinear. These may be simultaneously solved for the scalar quantities ¥ and w to give
the flow field given appropriate boundary conditions.

In a co-moving frame, the squirmer surface (r = 1) is a streamline with tangential
velocity given by (1.2). Thus, ¢|,—1 = 0, and [V¢ - n],—1 = vs = 3sinf(1 + S cosh)/2.
The values of 5 and Re are specified constants, so the swimming stroke is represented as
a fixed boundary condition. By axisymmetry, ¢|,—0 = 0, and w|,—o = 0 on the z-axis.
Finally, the flow is uniform in the far-field, so 1|, 0o = —Up?/2, and w|, 00 = 0.

A spectral element method (Karniadakis & Sherwin 2005) was used to spatially
discretize (3.3), (3.4), and the boundary conditions. The shape functions were defined
as a tensor product of N*" order Lagrange polynomials supported at the N 4 1 Gauss-
Lobatto integration points over the square [—1, 1]? parametric space of each quadrilateral
element. Integration over each element was carried out using the corresponding Gauss-
Lobatto quadrature rule to produce a system of non-linear algebraic equations. This
system was solved iteratively using Newton-Raphson iteration. Iteration was terminated
when the L2-norm of the relative errors in ¥ and w over all discretization points was
reduced below 1076,

The spatial domain was discretized into high-order computational grids using the
software package “Gmsh” (Geuzaine & Remacle 2009). Three different grids were used
depending on the value of Re. For Re < 0.1, a polar grid extending to R, = 1000 and
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consisting of 9-by-9 node quadrilateral elements was used. The elements were distributed
evenly in the 6-direction (Ny = 10) and progressed geometrically outward in the r-
direction (N, = 20). A similar grid was used for 0.1 < Re < 10, with R, = 100
(figure 2a). For Re > 10, a different mesh was used to provide better resolution in the
squirmer wake. Here, a boundary layer grid was used along the squirmer surface, with
N, = 10 and Ny = 51, extending Rpy, = 0.25 radii from the squirmer surface. The radial
grid size grows geometrically with r, and is initially A,.9 = 0.01 at the squirmer surface.
The remainder of the grid was unstructured, with upstream boundaries extending to
R, = 32, and a rectangular wake region extending a distance of 100 radii behind the
squirmer (figure 2b). The far-field boundary conditions were enforced at the exterior
boundary of the mesh. We refer the reader to Appendix A for details on grid convergence.

The far-field boundary condition of uniform, oncoming flow cannot be directly applied
because the steady-state swimming speed U is unknown a priori. Since the flow is
assumed to be steady and axisymmetric, we instead enforce that F, is equal to zero.
Expressing (2.2) in terms of w for an axisymmetric flow field gives (Khair & Chisholm
2014)

7T 7T
F, = Re™ / v sin (20) d + 7 / <a(”") - Qw) sin2 0 do. (3.5)
2 Jy 0 or

A secant method was used to iteratively compute the value of U at which (3.5) vanishes.
At each iteration, the flow is solved with U = U{™ where n is the iteration number,
and (3.5) is evaluated to give FZ<">. An improved estimate for U is given by linear
interpolation: U+ = (U<">Fz<"_1> . U<”*1>Fz<n>)/(FZ<n_1> — Fz<n>) Iteration was
terminated when |U(™ — U™=1| was reduced below 10~°.

Computations for each value of 8 were started initially with Re = 0.01. Two initial
guesses of the swimming speed are required, which were made as U(? = 0.99 and U(") =
1.01, since U is close to unity at small Re. An initial guess for the stream function and
vorticity fields of uniformly zero was sufficient for convergence of the computed flow in
this case. A simple continuation strategy was employed by incrementally increasing Re.
Initial guesses for U and the flow field at a given Re were supplied by using the values
computed at the last largest values of Re for which a converged solution was successfully
reached.

3.2. Computation of unsteady, three-dimensional flows

Unsteady, 3D flows were explored using the JADIM code described in detail in Legendre
& Magnaudet (1998) and Magnaudet et al. (1995). The JADIM code has been extensively
used and validated in previous studies concerning the 3D flow dynamics of spheroidal
and disk-shaped bodies with no-slip (solid) or slip (bubble) surfaces in uniform, shear or
turbulent flows (see, e.g., Legendre & Magnaudet 1998; Merle et al. 2005; Legendre et al.
2006; Hallez & Legendre 2011). In particular, the wake transition from axisymmetric to
3D flow for a fixed body has been considered in Mougin & Magnaudet (2001); Magnaudet
& Mougin (2007); and Fabre et al. (2008). In the case of a sphere, a first bifurcation
resulting in loss of axial symmetry in the flow is detected at a critical Reynolds number
(based on the sphere radius and speed of translation U) of Regl) = 105, in agreement
with linear stability analysis (Natarajan & Acrivos 1993) and previous numerical studies
(Johnson & Patel 1999; Tomboulides & Orszag 2000). A second (Hopf) bifurcation is
observed at Regﬁ) = 135, leading to time-dependent flow, which is also in good agreement
with previous numerical findings (Johnson & Patel 1999; Tomboulides & Orszag 2000),

according to which the Hopf bifurcation lies in within the range 135 < RegQ) < 137. In
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Magnaudet & Mougin (2007), the vortex shedding process for a sphere at Rey = 150
corresponds to a Strouhal number of Sty = fa/U = 0.0665, where f is the dimensional
frequency of vortex shedding. This falls within 2 to 3% of that reported by Johnson &
Patel (1999) and Tomboulides & Orszag (2000) for the same Re.

Briefly, the JADIM code solves the incompressible NSE (2.1) in terms of velocity
and pressure variables. The spatial discretization employs a staggered grid on which
the equations are integrated using a second-order accurate finite-volume method. Fluid
incompressibility is satisfied after each time step by solving a Poisson equation for
an auxiliary potential. Time advancement is achieved through a second-order accurate
Runge-Kutta/Crank-Nicholson algorithm. At each time step, the swimming speed U is
updated by integrating (2.2). For each simulation, the squirmer was started from rest
with swimming stroke (1.2) and allowed to accelerate. Simulations were terminated after
a steady time-averaged value of the swimming speed was reached.

A polar grid extending to R., = 150 and rotated around the z-axis was used for
computation (figure 2a). Nodes were distributed uniformly in the f-direction and in a
geometric progression in the r-direction. The effect of the number of nodes (N, = 150
along the radial direction, Ny = 250 along the polar direction, and N, = 64 along the
azimuthal direction), as well as Ry, and the radial grid size A,o = 0.001 at the body
surface, were checked in order to ensure grid independence of the results (see Appendix
A).

The transition from steady, axisymmetric to unsteady, 3D flow was investigated by
running the simulation for a given period of time while allowing numerical error to perturb
the initially axisymmetric flow profile. If the flow is unstable for a given 8 and Re, such
perturbations are expected to grow over time, resulting in a flow field that is potentially
3D and/or unsteady. Such is the case for a no-slip sphere in uniform flow, where distinct
axisymmetric; steady, 3D; and unsteady, 3D flow regimes are respectively encountered as
Re is increased (Natarajan & Acrivos 1993; Tomboulides & Orszag 2000). Specifically,
simulations were performed with Re increased in coarse increments until a transition,
if one occurred, was identified. Then, Re was increased in finer increments within the
interval in which the transition occurred. This process was repeated until a satisfactory
estimate of the critical transition Reynolds number was procured. The simulation time
was increased as the critical Reynolds number of transition was approached, as it
generally required longer times for perturbations to grow and hence for the flow to reach
a final transitioned state.

4. Results and discussion
4.1. Swimming speed of a squirmer

The calculated swimming speed U versus Re of a squirmer with 5 = +0.5 and 45
is shown in figure 3. There, U is normalized by 2B;/3, which is the swimming speed
at Re = 0 for all g, or the swimming speed of a neutral squirmer at arbitrary Re. At
Re =0, U is independent of 8 because the equations governing the flow are linear. Thus,
the two terms in the swimming stroke (1.2) contribute to the flow field independently;
only the first (treading) term generates propulsion, while the second only produces
vorticity. This is not the case as Re is increased from zero: pushers (pullers) monotonically
increase (decrease) in speed if Re < O(1), in agreement with results from asymptotic
analyses (Wang & Ardekani 2012; Khair & Chisholm 2014). The increase or decrease
in swimming speed is amplified as || increases. However, as Re is increased beyond an
O(1) value, significantly different behavior of pushers versus pullers is observed. For all
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Figure 3: Swimming speed, normalized by 2B;/3, for 8 = +0.5 and +5. The “57” markers
represent pushers and the “A” markers represent pullers. Hollow markers represent
steady, axisymmetric solutions, and filled markers represent unsteady, 3D solutions. We
follow these conventions for the remainder of the article. The dashed line represents the
speed of a neutral (8 = 0) squirmer. For a § = +5 puller, the steady, axisymmetric flow
destabilizes at Re =~ 20, and hence the steady, axisymmetric and unsteady, 3D solutions
diverge. Time averages of U are taken in the case of unsteady flow. Dotted lines show
the asymptotic result of Khair & Chisholm (2014) for U to O(Re?).

pushers and pullers with < 1, U continues to vary monotonically with increasing Re,
eventually reaching a terminal value. The computed swimming speed is nearly identical
for axisymmetric and 3D computations, suggesting that there is no departure from steady,
axisymmetric flow. In contrast, a non-monotonic trend is observed for pullers with 5 > 1,
and no limiting value for U is apparent through Re = 1000. Moreover, the axisymmetric
and 3D computations give drastically different results, suggesting the destabilization of
the axisymmetric, steady flow (see section 4.3 for more detail). We remind the reader
that Re for a squirmer is defined as 20Bja/(31), in contrast to the Reynolds number
based on the translational speed U, which we denote Rey = gUa/u. Note that Re and
Rey are the same order of magnitude since U ~ O(1).

Distinct contributions to the thrust and drag on a squirmer are provided by the
two terms on the right-hand-side of (3.5). The first term, which equals 8mRef3/15
after integration, depends solely on the swimming stroke and vanishes when Re = 0.
The second term also vanishes if Re = 0 due to the antisymmetric, purely diffusive,
distribution of the vorticity, and it is hence associated with forces arising from the flow
asymmetry produced by inertia at finite Re. Thus, (3.5) is satisfied identically in Stokes
flow, and a squirmer propels itself at the same speed regardless of 8. However, pushers
increase in speed with Re while pullers decrease at finite Re < O(1). In the former
case, the first term represents a drag force because it is negative when S < 0. Thus,
the redistribution of vorticity caused by inertia is responsible for the extra thrust that
increases the swimming speed with Re. The opposite occurs for a puller, where 5 > 0:
the contribution of the first term is a thrust, but it is outweighed by drag produced
by the inertial redistribution of vorticity. As Re is increased beyond an O(1) value, the
monotonic trend continues for a pusher until a limiting speed is reached. In contrast, the
swimming speed of a puller becomes non-monotonic. A fuller explanation of these trends,



10 N. G. Chisholm, D. Legendre, E. Lauga and A. S. Khair

(a) Pusher: g =-5 (b) Puller: =5
Re =0.1 Re =0.1

Re =100

7 —

Re = 1000

Figure 4: Streamlines of axisymmetric flow past a squirmer with 8 = +£5. Dashed
streamlines represent negative values of the stream function. The tick marks in (a) at
Re = 1000 follow along streamlines of irrotational flow past a sphere.

(a) Pusher: = —0.5, Re = 1000 (b) Puller: g = 0.5, Re = 1000

e T~ | e e T ——
) AR~

Figure 5: Similar to figure 4 except with 5 = 40.5.

especially when Re is large, requires a closer examination of the flow fields generated by
squirmers and how they differ for pushers versus pullers.

4.2. Flows generated by pushers and pullers
Streamlines illustrating the steady, axisymmetric flow around a pusher and puller are
shown in figures 4 and 5, and contours of constant vorticity are shown in figure 6 and 7.
At Re = 0.1, symmetries in the near-field flow are apparent due to the dominance of
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(a) Pusher: g =-5 (b) Puller: =5

Re = 1000 Re = 1000

Figure 6: Vorticity contours for axisymmetric flow with w = £+ {0.1, 0.2, 0.5, 1, 2, 5,
..., 200}. Dashed lines represent negative values. The dotted line in (b) at Re = 1000
encircles the region where there is an approximately constant value of w/p = 2.9 £ 0.05,
indicating that the wake bubble behind a 8 = 5 puller has a structure resembling a Hill’s
vortex.

(a) Pusher: = —0.5, Re = 1000 (b) Puller: g = 0.5, Re = 1000

Figure 7: Similar to figure 6 except with 5 = 40.5.

viscous forces over inertial forces: reversing the sign of 8 causes the streamlines to be
mirrored along the p-axis. Also, the vorticity is fore-aft anti-symmetric. Pushers generate
positive vorticity ahead of their direction of travel and negative vorticity behind, while
pullers do the opposite. Closed-streamline recirculatory regions appear in front of pushers
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Figure 8: The maximum value of |w|, normalized by | 3], from axisymmetric computations
at § = £0.5 and £5 and from 3D computations for 5 = +5. In Stokes flow, max |w/3| =
9]8]/4, as indicated by the dashed line to which the data collapses as Re — 0. The dotted
line indicates a slope of one-half, revealing that w ~ v/Re at large Re.

and behind pullers if |3| > 1. Streamlines separate from the squirmer surface at the point
where the stroke v4(#) changes sign (Magar et al. 2003).

The flow patterns and swimming speed observed as Re is increased depend critically on
(8. For pushers at Re > 1, the majority of the vorticity, along with the upstream closed-
streamline region that is present if § < —1, is concentrated into a laminar boundary layer
of thickness O(1/+v/Re). This vorticity is then transported into a narrow downstream wake
due to the motion of the swimming stroke (figures 6a and 7a). The streamlines outside the
boundary layer and wake tend toward a potential flow profile, and no standing wake eddy
is present (figures 4a and 5a). Thus, the flow around a pusher apparently resembles that
past an inviscid spherical bubble at large Rey, which exhibits the same characteristics
(Moore 1963; Leal 1989). The key similarity is that the mobile surfaces of a bubble
and a pusher squirmer cause advection of vorticity downstream, thus preventing it from
accumulating into a recirculating wake. However, for a bubble, the shear-free surface
produces w ~ O(1), whereas for a squirmer, w ~ O(v/Re) in the boundary layer (figure 8)
due to the fixed nature of the surface velocity profile (swimming stroke). This is akin
to a towed, rigid sphere with a no-slip surface, where the greater amount of boundary
layer vorticity results in flow separation and the appearance of a wake eddy if Rey 2 10,
which grows with Rey (Dennis & Walker 1971; Fornberg 1988). These phenomena are
avoided by a streamlined no-slip body, but for a pusher, the strong vorticity advection
due to the propulsive surface motion interestingly achieves a similar effect. Despite the
bluff body shape and O(v/Re) surface vorticity of a pusher, no wake eddy is produced.

The flow around pullers with 0 < 8 < 1 may be described likewise. As Re is increased,
the boundary layer and wake become smaller in extent, and the majority of the flow
domain becomes irrotational (figures 5b and 7b). Again, vorticity is efficiently swept
downstream by the mobile surface with a (monotonic) swimming stroke vs(6) that is
directed along the path of the flow. Consequently, pushers and pullers with 5 < 1 reach
a terminal (dimensionless) swimming speed (i.e., a dimensional swimming speed that is
proportional to By).

The axisymmetric flow that is observed around pullers with 3 > 1 as Re increases
is very different. A trailing vortical wake bubble is indeed present and grows with Re
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(figure 4b). Thus, for pullers with 8 > 1, the flow does not become irrotational within the
majority of the flow domain as Re becomes large. As a result, the swimming speed of a
B > 1 squirmer does not attain a terminal value. The wake eddy is caused by the reversal
of vg along the rear half of the squirmer surface, which hinders the advection of vorticity
downstream, and causes its accumulation behind the squirmer. This resembles flow past
a rigid bluff body towed by an external force, where fluid deceleration along the no-slip
surface has the same effect. Indeed, if the flow is restricted to be axisymmetric, the wake
bubble resembles a Hill’s spherical vortex at Re = 1000, where w/p is constant in the
region of closed streamlines and w = 0 elsewhere (figure 6b). Batchelor (1956) proposed
that such flow structures exist in the wake of bluff bodies in steady, axisymmetric flow
at large Reynolds numbers. The computations of Fornberg (1988) show the presence of
a Hill’s vortex-like wake structure behind a sphere held fixed in a uniform flow, within
which w/p is nearly constant once Rey is sufficiently large. Moreover, it is shown that
such large Reynolds number axisymmetric flows result in very low drag forces relative to
that observed in 3D flows beyond the onset of flow instabilities. The observation that U
increases with Re for an axisymmetric 8 = 5 pusher when Re 2 O(1) (figure 3) indicates
that the trailing vortex behind a 8 > 1 puller is analogous to that behind a towed sphere;
the wake eddy acts to decrease the overall drag. Note that the point of flow separation
along the surface of a squirmer always occurs where v4(0) changes sign regardless of Re
(figure 4), whereas it depends on Rey for a no-slip sphere.

4.3. Transition to 3D and unsteady flow

Figure 9 and table 1 detail the transition of the flow around a squirmer from steady and
axisymmetric to unsteady and 3D and are derived from unsteady, 3D flow simulations.
The critical values of Re at which the axisymmetry breaks (Re*") and at which the
flow becomes unsteady (Re'“?) are shown. For 8 > 1 pullers, ReY < Re(? and a
monotonic decrease of Re*?) and Re(®® with 3 is observed. Moreover, Re(“") and Re(°?
both increase rapidly as (8 is decreased toward unity such that 8 = 1 appears to be
an asymptote; pushers and pullers with 5 < 1 produce steady, axisymmetric flows that
remain stable up to at least Re = 1000.

This highlights another apparent similarity between the flow past a f < 1 squirmer
and an inviscid spherical bubble. For the latter, the asymptotic analysis of Moore (1963)
suggested that a potential flow is recovered as Reyy — oo. Specific studies have also been
carried out to determine how the wake structure and flow stability vary with aspect
ratio for oblate spheroidal bubbles (Dandy & Leal 1986; Blanco & Magnaudet 1995;
Magnaudet & Mougin 2007). It was revealed that only bubbles with an aspect ratio larger
than 1.65 and 2.21 exhibit a standing wake eddy and an unstable wake, respectively. The
reason is that a sufficient amount of vorticity (produced at the bubble surface in an
amount proportional to the surface curvature) must accumulate in its wake for these
transitions to occur. For a squirmer, a comparatively large O(\/ﬁ) amount of boundary
layer vorticity is generated, whereas it is O(1) for a spherical bubble, so the stability
of the flow past pushers and § < 1 pullers despite this fact is an intriguing result.
Again, vorticity is strongly advected downstream by the propulsive surface velocity,
preventing its accumulation in the wake, and the stability of the steady, axisymmetric
flow is preserved.

However, this does not imply stability at all Re. For no-slip objects where the vorticity
is similarly O(\/E), turbulent boundary layers develop when Re is very large, even for
streamlined objects such as airfoils or flat plates where there is no instability caused by
a wake eddy. For example, the boundary layer of a no-slip sphere becomes turbulent at
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Figure 9: Flow state as a function of 8 and Re. The points of transition, marked with an
“x” and interpolated by the solid lines, were obtained numerically (see also table 1).

B 1.1 1.2 1.5 2.0 3.0 5.0
Re(eD) 725 432 170 83.0 40.3 21.0
Re(e® 818 528 210 95.3 47.8 24.2

Re(® — Re) 93 96 40 12.3 7.5 3.2

Table 1: Numerically obtained critical values of Re where the flow becomes 3D (Re(°Y)
and unsteady (Re'“?) (see also figure 9).

Rey =~ 10° (Deen 1998, p. 512). For this reason, it is very possible that the laminar
boundary layer of a squirmer will also become turbulent at sufficiently large Re, except,
perhaps, in the singular § = 0 case where potential flow results identically. Such a
phenomenon likely occurs well above the maximum Re = 1000 considered in this work,
and hence is not further discussed here.

Given the previously noted similarities of the steady, axisymmetric flows around a
B > 1 puller to that past a no-slip sphere, one might also expect that the transitions
to 3D and unsteady flows that occur will also be analogous. This indeed appears to be
the case. For a no-slip sphere, the flow first bifurcates at Regl) ~ 105 (Natarajan &
Acrivos 1993; Tomboulides & Orszag 2000), resulting in a steady, 3D flow that exhibits
planar symmetry and two counter-rotating vorticies in the wake. The symmetry plane
passes through the axis of translation, but its orientation is arbitrary due to the initial
axisymmetry of the flow. The scenario is the same for 5 > 1 pullers, and planar flow
symmetry is apparent in figure 10a. The only difference is that Re(et) depends on [ in the
latter case. A second transition from steady to unsteady flow takes place at Regm ~ 140
in the case of a no-slip sphere (Natarajan & Acrivos 1993; Tomboulides & Orszag 2000),
and the same happens for a 8 > 1 puller at Re(“? = Re(®? (8). In both cases, the planar
flow symmetry persists, and as Re (or Rey) is further increased, shedding of the wake
vorticies begins to occur (figure 10b). Table 1 reveals that the quantity Re(°? — Re(eV)
decreases significantly as § is increased; the difference is about 40 at 8 = 1.5 and decreases
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(a) Re = 22.6 (b) Re = 100 (c) Re = 158

Figure 10: The streamwise component of the vorticity for a 8 = 5 puller at an isocontour
of w, = +1.05. In (a), the flow is planar symmetric and steady (Re*" < Re < Re(“?).
Two counter rotating vorticies are present in the wake. In (b), the flow is also planar
symmetric but unsteady (Re > Re(d)), and the wake structure is more complicated;
a pair of vorticies is being shed downstream from the wake. Finally in (c), the planar
symmetry is broken and the flow appears to be almost chaotic in nature.

to only 3.2 at 8 = 5. The flow is more quickly destabilized when the value of § is larger,
and hence there is only a narrow range of Re where it exhibits a steady, 3D state.

Once the flow enters a unsteady and/or 3D state, the squirmer will no longer be force-
free or torque-free in general. Examining the hydrodynamic forces and torques which arise
in the vicinity of Re(*Y) and Re(*? yields some interesting observations. Figure 11 shows
the lift, defined as the force perpendicular to the direction of translation, for a 5 = 5 puller
started from rest, in which case Re(“) = 21.0 and Re(“? = 24.2. If Re*V) < Re < Re(?,
as in parts (a) and (b), a constant lift force is generated once the flow reaches a steady-
state. Some small oscillations that eventually die out are observed at Re = 24.0 but not
at Re = 21.7. If Re > Re(cz), the flow is unsteady, and hence the lift does not reach a
constant value in parts (c) and (d) of figure 11. At Re = 25.3, the lift is oscillatory but
always acts along the same direction, while at Re = 26.7, the lift periodically reverses
direction. The torque generated on the squirmer, plotted in figure 12, clearly follows the
same pattern as the lift, although it is offset by 90°. The lift and torque are perpendicular
due to the planar flow symmetry; the lift is in the symmetry plane, while the torque is
normal to it (the symmetry can be seen visually in figures 10a and 10b).

Hydrodynamic forces acting parallel to the direction of swimming also cause oscillations
in the swimming speed when Re > Re*? . The time-dependent speed of a $ = 5 puller
accelerating from rest is shown in figure 13a. Note that these oscillations have double the
frequency of that in the lift and torque. It is also apparent that the average normalized
swimming speed decreases significantly with increasing Re. This can be ascribed to vortex
shedding; the drag-reducing effect of the vorticity-trapping wake bubble observed in
(unstable) axisymmetric flows is lost as the vorticity is instead shed downstream. This
explains the deviation of the unsteady, 3D simulations from the axisymmetric ones seen
in figure 3 at approximately the same point at which the flow becomes unsteady.

From the dominant dimensional frequency f of the oscillations in the lift force, we
define the Strouhal number as St = 3fa/(2B;), which is plotted for a § = 5 puller in
figure 13b. A rapid initial decrease of St occurs just as Re exceeds Re(“?) and unsteady
flow is established. At slightly higher Re, St rebounds and maintains a value between
0.024 and 0.029 between Re = 60 and Re = 160. This can be roughly compared to flow
past a no-slip sphere where Sty = fa/U = 0.067 at Rey = 150 (Natarajan & Acrivos
1993; Tomboulides & Orszag 2000).

It is also apparent from figure 13a that the flow at § = 5 transitions from having
just a single frequency at Re = 63 to appearing nearly chaotic at Re 158. Also,
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Figure 11: Magnitude of the lift force F| normalized by 2Bjau/3 (solid) and the
azimuthal angle ¢ r —pro at which it acts (dashed) for a 8 = 5 squirmer accelerating from
rest at time ¢ = 0. Time is normalized by 3a/(2By). Here, @ o represents the (arbitrary)
initial angle of the lift when it first becomes nonzero. In (a) and (b), Re!*") < Re < Re(“?,
and a constant steady-state lift force is observed. In (c) and (d), Re > Re(®? | and the
lift force is oscillatory. In (c), the direction of the lift remains constant, while in (d) it
periodically reverses direction.
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Figure 12: Analogous to figure 11 above, but now the magnitude of the hydrodynamic
torque T' (normalized by 2B1a?u/3) is plotted along with the angle o1 — ¢ that the
torque forms with the initial lift force. For all Re shown, the torque is perpendicular to
both the direction of translation and the lift.

the planar symmetry observed at Re = 100 (figure 10b) is clearly broken at Re = 158
(figure 10c). Similar transitions occur for flow past a no-slip sphere in the range 300 <
Rey < 500, and the fluctuations in the flow become increasingly irregular as Re is further
increased, signifying the beginnings of turbulence (Tomboulides & Orszag 2000). This is
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Figure 13: (a) Swimming speed vs. time for a 8 = 5 puller accelerating from rest (3D
simulation). Time is normalized by 3a/(2B1). (b) The Strouhal number St vs. Re for a
B =5 puller.

also observed for a 8 = 5 puller at Re = 1000, as the increasingly chaotic nature of the
flow causes increasingly broadband fluctuations in the swimming speed.

4.4. Power expenditure and hydrodynamic efficiency

The dimensionless power P expended by a squirmer versus Re for § = 0, 0.5, and
=+5 is shown in figure 14a. This is calculated as the rate of work done on the fluid by the
tangential motion of the squirmer surface,

P = —/Sn -0 - (vsep) dS, (4.1)

where P is normalized by 4B?ap/9. In axisymmetric flow, (4.1) simplifies to
s
P= 27'[/ (205 — Wp=1)vs sin 6 d6. (4.2)
0

Additionally, power expended by the squirmer is dissipated viscously by the fluid. The
dimensionless rate of viscous dissipation @ in the flow around a tangentially deforming
spherical body can be given in terms of the vorticity and surface velocity (Stone 1993;
Stone & Samuel 1996),

qﬁ:/a;vudvz/w~wdv+2/v§ds, (4.3)
Vv |4 S

and at steady-state, @ = P. This implies that a squirmer that minimizes the amount of
vorticity that it generates in the fluid will also minimize its power expenditure.

In fact, a neutral (8 = 0) squirmer expends the least amount of energy at all Re
since it generates no vorticity. In this case, integrating (4.2) gives P|g=¢ = 127 for
all Re. We may also integrate (4.2) to give the power expenditure in Stokes flow,
Plre=o = 127(2 + B?)/2 (Wang & Ardekani 2012), which gives the limits approached
by the data in figure 14a as Re — 0. As Re is increased, P increases (if 5 # 0) due
to increased vorticity generation. As shown in figure 8, |w|max increases monotonically,
scaling with v/Re within the boundary layer at large Re. From (4.2) and (4.3), we expect
the same scaling for P, which is indeed observed in figure 14a. We also observe that
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Figure 14: Power P expended by a squirmer versus Re (a), and the Lighthill efficiency
nr versus the translational Reynolds number Rey = oUa/pu (b). Here, P* is the power
necessary to tow a sphere in steady, axisymmetric flow. A neutral (5 = 0) squirmer is
indicated by the solid green line (with no markers) and has P = 127 at all Re.

P(B, Re) > P(B,0) for all Re > 0. One might conjecture that this behavior is predicted
by the Helmholtz minimum dissipation theorem (Batchelor 1967), which guarantees that
a Stokes flow field dissipates less energy than any other incompressible flow field with
the same boundary velocities. However, the far-field boundary velocity for a squirmer is
given by its swimming speed U, which generally depends on Re, so the theorem does
not apply. Nonetheless, the observation that P is minimized at Re = 0 for a given value
of B is intriguing. Moreover, we observe that P increases monotonically with Re. This
finding may be compared to the monotonic increase of the extensional viscosity of a
dilute suspension of rigid spheres with Re in uniaxial extensional flow. Specifically, the
extensional viscosity also increases monotonically and scales with v/Re at large Re due
to intense O(v/Re) boundary layer vorticity (Ryskin 1980). The extensional viscosity
is proportional to the viscous dissipation rate in the flow. Thus, it is an interesting
observation that the power expended by a squirmer, which is viscously dissipated, behaves
similarly to the extensional viscosity of a dilute suspension of spheres.

The Lighthill (1952) efficiency ny, of a squirmer is defined as the ratio of the power P*
required to tow a no-slip sphere at a speed U to the power P expended by a squirmer to
swim at that same speed. This quantity is plotted in figure 14b. Here, the horizontal axis is
the Reynolds number based on the translational swimming speed, Rey = ReU = gUa/p.
Note that we take P* as the power required to tow a sphere in steady, axisymmetric flow
at the same Rey. At Re = 0, ny = 1/(2 + 3?): pushers and pullers have the same
efficiency. At small Re, asymptotic theory shows that pushers are slightly more efficient
than pullers (Wang & Ardekani 2012). Thus, it would be reasonable to expect that larger
differences in efficiency might be observed at larger Re. Interestingly, our results reveal
that the difference in efficiency between a f = £0.5 pusher and puller is very slight, even
up to Re = 1000. This is somewhat surprising considering that a 8 = —0.5 pusher moves
nearly 10% faster than a 8 = 0.5 puller at Re = 1000. Thus, in this case, a puller and
pusher exert about the same amount of power once differences in speed are taken into
account. Similarly, a 8 = 45 puller and pusher have nearly the same efficiency up to
the point where the steady, axisymmetric flow destabilizes at Rey ~ 20, with that of a
pusher being only slightly greater. If one considers the unstable axisymmetric flow that
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arises beyond Rey = 20, pullers interestingly become more efficient than pushers. The
drag reducing effect of the Hill’s vortex-like wake is responsible. However, if the flow is
allowed to be unsteady and 3D, pushers continue to be more efficient by a margin that
increases with Rey. The vortex shedding that takes place in the wake of a high Re puller
reduces the amount of swimming work that goes into forward propulsion and causes a
subsequent loss of efficiency. This suggests that “pushing” may be more efficient than
“pulling” at larger Reynolds numbers due to the increased flow stability.

One may notice that ny, increases above unity in some cases, indicating that the power
required to tow a sphere exceeds that expended by a squirmer swimming at the same
speed. In Stokes flow, n;, < 3/4 for any spherical swimmer moving only by tangential
surface deformations (Stone & Samuel 1996). For a neutral squirmer at Re = 0, = 1/2.
However, this bound does not apply when Re > 0. Indeed, 71,|g=¢ increases above unity
at Rey = 7, and the same is true for = 0.5 squirmers at Rey = 10. This highlights
the difficulty of swimming against wholly resistive viscous forces (Purcell 1977). For a
squirmer, swimming is always less efficient than being towed by an external force in the
absence of fluid inertia, but may be more efficient when inertia is present.

Finally, we note that the propulsion of a squirmer via tangential surface motion is
drag based. This is in contrast to the flapping and undulatory mechanisms of propulsion
employed by some (usually large Re) swimmers such as fishes, which are lift based.
The efficiency of lift based propulsion can very high in inertial flows where Re is large.
However, this efficiency decreases drastically with Re, and drag based propulsion has
superior efficiency when fluid viscosity is a strong factor (Walker 2002). Thus, without
rigorous calculation, we surmise that the efficiency of a squirmer improves compared to
lift based propulsion as Re is decreased, likely being comparable at moderate Re. This
clearly makes sense from a biological perspective; the ciliated organisms most closely
described by the squirmer model are often microorganisms that swim at small Re,
although ctenophores provide an interesting example of moderate to large Re squirmers.

5. Conclusion

We have demonstrated fundamental differences between the locomotions of pusher
and puller squirmers with a fixed swimming stroke when inertia is important to the flow.
Specifically, it is shown that a pusher, as well as a 8 < 1 puller, does not generate a
standing wake eddy, and also that it produces steady, axisymmetric flow that remains
stable to at least Re = 1000. The vorticity is confined to a laminar boundary layer of
thickness O(v/Re), and the flow becomes largely irrotational as Re increases. This is
due to the strong downstream advection of vorticity by the propulsive surface velocity
profile. Before, such behavior has only been demonstrated for bubbles, which produce
O(1) vorticity. That this also holds for a 8 < 1 squirmer is a key result, as squirmers
produce a much larger O(v/Re) vorticity (similar to a no-slip body).

In contrast, a 8 > 1 puller is ineffective at transporting vorticity from its wake, similar
to a towed, rigid sphere. Thus, it exhibits a recirculating wake region that triggers a
transition to unsteady, 3D flow at a critical Re. A progression of flow patterns is observed
as Re is further increased, which strongly resemble those which occur for a rigid sphere,
until weakly turbulent flow develops when Re ~ O(1000).

Finally, we show that squirmers that minimize vorticity generation generally maximize
their efficiency. In the range of Re where steady, axisymmetric flow is stable, the
swimming efficiency of pushers and pullers is surprisingly similar. However, the vortex
shedding that occurs for § > 1 pullers in unsteady, 3D flow at larger Re reduces their
overall efficiency below that of a pusher where the axisymmetric flow remains stable.
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Figure 15: Convergence of the swimming speed U (a) and max |w| (b) for a § =5 puller
at Re = 1000 computed via a spectral element method for steady, axisymmetric flow.
The horizontal axis represents the degree of the shape functions within each element.
The element thickness in the boundary layer was A,.q = 0.01.

Future work will entail further quantification of squirmers in unsteady, 3D flows; at
sufficiently large Re, the flow around 8 > 1 pullers is expected to become fully turbulent,
similar to flow around a no-slip body. Furthermore, it would be worthwhile to consider
the motion of squirmers that are not bound to move along a single axis of translation.
In this case, the motion of the squirmer would be fully coupled to the flow, and different
swimming paths would be observed depending upon the values of Re and 5. The present
results will be useful in quantifying fluid mixing, production of feeding currents, and
hydrodynamic signaling by the abundance of aquatic swimmers living at Re up to 1000.
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Appendix A: validation of numerical solutions

Convergence of the flow computations with respect to the grid parameters was tested
empirically. First, it was ensured that the distance R, from the squirmer at which
uniform flow was imposed was large enough as to not affect the computed swimming
speed U. Computations were relatively insensitive to this parameter due to the fast
velocity decay from the squirmer surface (~ 1/r? at Re = 0 and ~ 1/r® at large Re,
outside the wake) (Subramanian 2010), provided that the domain was not so small as to
restrict flow near the squirmer body. For the axisymmetric computations, the polynomial
order N of the shape functions within each element was incrementally increased to
convergence (figure 15). In order to fully resolve the boundary layer, it was ensured that
the condition A,o/6 < N2/9 (Gottlieb & Orszag 1977) was satisfied, where A,q is the
element size (perpendicular to the boundary layer) and ¢ is the boundary layer thickness.



A squirmer across Reynolds numbers 21

0.704 ————rr . 0.890 ————rr .
070 (a) ° (b) ®
0.885 |- .
0.700 .
3
> 0.698 | 4 5 0880 .
<
g
0.696 | ° . °
0.875 | .
0.694 - ° .
o ° ® °
0.692 Lol Ll - 0.870 Lo.® P -
1073 1072 1073 1072
A»,«() A’I‘O

Figure 16: Convergence of the swimming speed U (a) and max |w| (b) with respect to the
grid resolution at the squirmer surface for 3D, unsteady flow computed via a second-order
accurate finite-volume method. Here, 5 = —0.5 and Re = 1.

The thickness of the boundary layer was estimated as § = O(1/+v/Re) since the boundary
layer is expected to be laminar. For the second-order accurate finite-volume method
used for 3D computations, a higher mesh resolution is required due to the lower order
approximation, and a satisfactorily converged solutions were reached with A,y = 0.001
(figure 16).

Additional validation of our computational methods was carried out by computing the
drag coefficient of a no-slip sphere in uniform flow and comparing to previously known
results (figure 17). The drag coefficient is defined as Cp = 2Fp/(mea?U?), where Fp
is the drag force and U is the far-field velocity of the oncoming flow. Known values are
provided by the correlation Cp = (1/12/Rers + 0.5407)2 (Abraham 1970). Additionally,
values in (potentially unstable) steady, axisymmetric flow up to Rey = 2500 are provided
by Fornberg (1988). The computational meshes used for our computations were the same
as those used for the squirmer computations at Re = 1000. The results of the comparison
show good agreement. Note that when Rey 2 500, C'p becomes nearly constant, and the
reported computations reproduce this feature.
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