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The total force exerted on a small rigid body by an acoustic field in a viscous fluid is addressed

analytically in the limit where the typical size of the particle is smaller than both the viscous

diffusion length scale and the acoustic wavelength. In this low-frequency limit, such a force can

be calculated provided the effect of the acoustic steady streaming is negligible. Using the Eulerian

linear expansion of Lagrangian hydrodynamic quantities (velocity and pressure), the force on a small

solid sphere free to move in an acoustic field is first calculated in the case of progressive and standing

waves, and it is compared to past results. The proposed method is then extended to the case of

more complex shapes with three planes of symmetry. For a symmetric body oriented with one of

its axis along the wave direction, the acoustic force exerted by a progressive wave is affected by the

particle shape at leading order. In contrast, for a standing wave (with the same orientation), the

force experienced by the particle at leading order is the same as the one experienced by a sphere of

same volume and density.

I. INTRODUCTION

Over the last two decades, there has been a significant renewed interest in the study of small particles migrating

in acoustic fields because of the wide array of possible applications at the intersection of medicine, micro-engineering

and microfluidics [1]. Future drug delivery techniques could for instance involve acoustically propelled vesicles, used

as micro-carriers [2, 3]. For both medical or engineering purposes, the use of micro-particles requires the ability to

propel or organize them at a microscopic scale. Both purposes can be achieved by the mean of acoustic fields, using
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either progressive or standing waves [4, 5].

The force experienced by a rigid spherical particle in an acoustic field is an old problem, first addressed by King [6]

in the case of an inviscid fluid. King’s theory has shown good agreement with experiments [7], but these experiments

were conducted in conditions where viscosity in the fluid and elasticity of the solid where both negligible. The problem

of the force experienced by an elastic particle in an acoustic field has been extensively investigated (theorically and

experimentally) by Hasagawa & Yosioka [8]. The effects of viscosity have been first considered by Westervelt [9, 10].

Westervelt found that, in the case of a viscous fluid and for a plane progressive wave, the force was several orders

of magnitude larger than predicted by King. However, as pointed out by Doinikov [11], Westervelt’s conclusions,

although they are correct, result from two wrong arguments. First, he considered the case of a fixed particle whereas

the motion of the sphere, which is free to oscillate under the effect of the incident field, has a decisive contribution to

the final value of the force. Secondly, Westervelt dealt with the case of large viscous diffusion lengths (relative to the

radius of the sphere) while King’s approach is valid for inviscid fluids i.e. in the limit of asymptotically small viscous

lengths. Westervelt’s results and King’s theory concern thus different physical regimes.

A number of other studies tackled the problem of the force experienced on a free sphere placed in a viscous fluid

(kinematic viscosity ν) under the effect of an acoustic radiation (frequency f = ω/2π). In most of these works, the

effect of the acoustic streaming around the sphere is neglected [11]. For instance, Guz [12, 13] neglected the acoustic

streaming just in the domain a/δ � 1, where a is the sphere radius and δ = (ν/ω)1/2 is the viscous diffusion length

– a regime in which its contribution steps in at leading order. Danilov [14, 15] attempted to fill the gap by taking

into account the acoustic streaming in the case of a fixed sphere and completed his original work by deriving an

expression for the force in the case of a free solid sphere. Although the method of derivation is quite involved, some

of the conclusions agree qualitatively with more recent studies on the same topic. In particular, a change in the sign

of the total force when switching from small to large viscous lengths was predicted [14, 15]. Doinikov [11, 16] then

addressed the problem of rigid and deformable spheres free to move in a viscous fluid. The method used in each paper

is an extension of King’s method, leading to results valid in all situations where the amplitude of oscillation of the

fluid particles is smaller than the sphere radius. Thermal effects were later taken into account [17]. The case of a

plane progressive wave is treated as an example, and thermal effects are shown to introduce an additional term in the

expression for the total force. This term turns out to be zero in the case when either sphere is rigid or when the heat

capacity ratio of the fluid equals 1 (the speed of sound is a real constant). Doinikov’s calculation has the advantage

of being very general, but it is difficult to extend it to the case of more complex geometries.
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More recently, Settnes & Bruus [18] proposed a method to derive of an analytical expression for the force experienced

by a solid sphere in a viscous fluid valid for any value of ε = a/δ. Indeed, Doinikov [11] only provides convenient

expressions for the total force which are asymptotically valid in the limiting cases ε� 1 and ε� 1. Settnes & Bruus

fill that gap and provide a simple expression of the total force which should be valid without restriction for any value

of the ratio a/δ. Their method consists in solving a problem of far field (irrotational) scattering and then finding

explicitly the unknown coefficients of the irrotational solution by matching far field solution to the viscous near field

solution (i.e. the solution valid for r < δ). The work is done in a general framework, without specifying the shape

of the incident radiation (progressive or stationary). The general solution is then applied to the cases of stationary

and progressive incident waves. The solutions obtained by Settnes & Bruus in the cases of progressive and standing

incident waves are compared to the expressions derived in the present article in §III C (Eqs. 50 and 54).

In this paper, we propose a method to calculate the total force experienced by a non-spherical particle of typical size

a (in this case, a can be seen as the radius of the sphere of equivalent volume) in an incident acoustic field (progressive

or standing wave, see figure 1), for a particular class of symmetric shapes in the case of large viscous length scales,

i.e. δ/a� 1. Limiting the study to the large-δ limit enables us to evaluate the effect of a change in shape for various

object such as ellipsoids, cylinders, disks and, more generally, any shape having three planes of symmetry. We also

stay in the so-called Rayleigh limit (or long-wave limit) where the acoustic wavelength is larger than the viscous

wavelength and the particle radius, so that, in this hydrodynamic limit, the effects of fluid compressibility are not

taken into account at leading order, but come in as quadratic corrections.

The paper is organized as follow. In section II we calculate the first-order acoustic field, i.e. the solution to the

inviscid nonlinear wave equation at first order in Mach number. The results, which can be found in several articles

[9, 19, 20], are written in a dimensionless form and expanded in Mach number. By doing this, we are able to identify

the terms which have to be retained for the derivation of the total force. The calculation of the total force experienced

by a small solid sphere is then presented in section III. The first part is devoted to the calculation of the leading-order

particle dynamics, required for the evaluation of the Lagrangian advective terms in the total force. We then calculate

the force in the case of plane progressive and standing waves. The case of symmetric objects is dealt with in section

IV. As in section III, the first part is devoted to the dynamics of the particle at leading order, and we then derive

the explicit form of the acoustic pressure. Order-of-magnitude estimates and practical situations in which the limit

δ/a� 1 is relevant are discussed in the last section. Solutions to the first-order nonlinear wave equation are given in

appendix A while acoustic streaming is addressed in appendix B.



4

Before proceeding, let us focus on the nondimensionalization. In the sections where we are primarily interested

in the acoustic field (e.g. in §II), the acoustic wavelength will be chosen as typical length scale, a choice which of

course impacts the scaling of stresses and forces. In the section where we focus on the physical processes occurring at

the particle scale, which is the case when we are interested in the dynamics of the particle at leading order (§§III B

and IV A), the particle radius (or its typical size) will be chosen as the nondimensionalizing length scale, and the

typical force will then scale accordingly. In the whole article, we use tildes to refer to dimensional field, force and

displacement variables. Corresponding dimensionless quantities are noted without a tilde while constants are always

noted without a tilde.

II. FIRST-ORDER MEAN ACOUSTIC FIELD

In this section, we first ignore the coupling with the solid particle and consider a one-dimensional harmonic acoustic

field whose direction of propagation is aligned with the x-axis. The wavenumber k0 = k0ex satisfies the linear

dispersion relation k0 = ω/c0, where ω denotes the pulsation of the source and c0 the speed of sound in the medium.

The imaginary part of k0 is neglected, which means that the influence of viscosities (shear and bulk) on the incident

acoustic field are not taken into account. For the sake of simplicity, the speed of sound and the viscosity are both

assumed to be independent from the fluid density. For an ideal gas, the latter assumptions are equivalent to the

condition γ = 1, where γ denotes the ratio of the specific heats of the medium. This assumptions means that the only

nonlinearity is the one coming from the compressibility of the fluid (and thus no adiabatic nonlinearity). We finally

assume that the velocity amplitude of the sound wave, say ξ0ω, is small compared to the speed of sound in the fluid.

This last assumption enables us to consider the Mach number, M = ξ0ω/c0, as the small acoustic parameter of the

problem.

As we are interested in steady quadratic processes, solutions to the acoustic equations must be sought to the first

order in M , in order to obtain the mean acoustic pressure and velocity quadratic in the displacements. The objective

of this section is to present in a dimensionless form Westervelt’s general method [9] to access the mean (first-order)

Eulerian acoustic field using dimensionless quantities.

Let us denote by ξ̃ the Lagrangian displacement of a fluid particle. The Lagragian wave equation, written to order

O(M), takes the form [9, 20]

c−2
0 ξ̃t̃t̃ − ξ̃x̃x̃ = −[ξ̃2x̃]x̃. (1)
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This equation can be made dimensionless, by choosing ξ0, ω−1 and k−1
0 for typical displacement, time and distance,

which yields

ξtt − ξxx = −M [ξ2x]x, (2)

where ξ is the dimensionless Lagrangian particle displacement. As expected, the nonlinear term vanishes for c0 →∞,

since it originates from the compressible nature of the fluid. Equation (2) must then be completed by the proper set

of boundary conditions, depending on the practical situation of interest. We write now the Lagrangian displacement

field ξ as a perturbation expansion in M , namely

ξ = ξ(0) +Mξ(1) +O(M2). (3)

The leading order solution is the solution to the classical linear wave equation, whereas the first order solution ξ(1) is

forced by the nonlinear term, −M [ξ(0)
x

2]x. Thus, the equations at order O(1) and O(M) are

ξ(0)
tt − ξ(0)

xx = 0, (4)

ξ(1)
tt − ξ(1)

xx = − [ξ(0)
x

2]x. (5)

In principle, once the previous equations are solved, one can find any Eulerian quantity Ẽ(x̃, t̃), provided the corre-

sponding Lagrangian quantity is available to order O(M). Indeed, the Lagrangian representation L̃ of a physical

quantity (temperature, pressure, velocity...) is specified on a moving material point. In other words, L̃(t̃) is the value

of the quantity assessed at the actual position of the material particle at time t̃. If ξ̃(t̃) denotes the small displacement

of such a particle from a fixed position x̃0, one can write L̃(t̃) = Ẽ(x̃0 + ξ̃(t̃), t̃). Expanding the latter expression with

respect to ξ̃ yields (the time dependance of ξ̃ has been omitted for notation convenience)

L̃(t̃) = Ẽ(x̃0, t̃) + ξ̃Ẽx̃ +
1
2
ξ̃2Ẽx̃x̃ + · · · , (6)

where Ẽx̃ = ∂x̃Ẽ |x̃0 and Ẽx̃x̃ = ∂x̃x̃Ẽ |x̃0 . Provided that ξ is small enough, only the first order term can be kept in Eq.

(6), which simplifies to

L̃(t̃) = Ẽ(x̃0, t̃) + ξ̃Ẽx̃. (7)

Denoting by Ẽ the Eulerian quantity Ẽ(x̃0, t̃) and L̃ the Lagrangian quantity L̃(t̃), one gets

Ẽ = L̃ − ξ̃Ẽx̃, (8)

which, to first order in ξ̃ can be rewritten as

Ẽ = L̃ − ξ̃L̃x̃, (9)
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since from Eq. (8) itself, Ẽξ̃ = L̃ξ̃ at zeroth-order in ξ̃.

Equation (9) can be written in the dimensionless form

E = L −M ξLx, (10)

By expanding L in a power series of the Mach number, equation (10) eventually takes the form

E = L(0) +M [L(1) − ξ(0)L(0)
x ]. (11)

We now use relation (11) to derive the expressions of the steady Eulerian components for velocity, density and pressure.

Each quantity will be further evaluated in the case of plane progressive and standing waves.

1. Mean velocity

If u denotes the dimensionless Eulerian velocity, equation (11) takes the form

u = ξ(0)
t +M [ξ(1)

t − ξ(0)ξ(0)
tx ], (12)

since ξt is the Lagrangian velocity.

The solution to equations (4-5) in the case of a standing wave have been given by Fubini, who used a method

due to Airy [21]. A broad outline of classical Fubini’s result is presented in appendix A. Using Fubini’s solution for

(ξ(0), ξ(1)) in equation (12) and taking the time average leads to the following result for the mean velocity in a plane

progressive wave

〈u〉pw = M 〈u(1)〉pw = −1
2
M, (13)

where we used the subscript pw to denote progressive wave. The counterintuitive minus sign in the mean velocity

(13) comes from the Eulerian nature of u. A comprehensive explanation of this apparent paradox is provided in Ref.

[20]. Note that if the Lagrangian velocity is bounded in time, the first two terms in (12) vanish when time-averaged

so that the only contribution to the Eulerian velocity comes from the convective term.

The case of a plane standing wave can be analyzed in the same fashion (see appendix A). For such a wave, the

mean velocity turns out to be zero everywhere, that is

〈u〉sw = 〈u(1)〉sw = 0, (14)

where now sw stands for standing wave.
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2. Mean pressure

While the application of (11) is immediate for the velocity, the explicit form of the Lagrangian pressure must be

derived to obtain the mean (second order) Eulerian pressure. In order to do so, let us start by writing the dimensionless

Lagrangian density perturbation to the mean fluid density, ρ̃, as a function of the Lagrangian displacement ξ̃. The

continuity relation can be written in a dimensional form as [22]

ρ0 + ρ̃ = ρ0(1 + ξ̃x)−1. (15)

Using again ξ0 (amplitude of the displacement), k−1
0 and ρ0M as typical quantities to make dimensionless the dis-

placement ξ̃, the coordinate x̃ and the density difference ρ̃, leads to the following dimensionless form of Eq. (15)

1
M

+ ρ =
1
M

1
1 +Mξx

· (16)

Now, expanding the factor 1/(1 + Mξx) to order O(M2) (in which the expression ξx = ξ(0)
x + Mξ(1)

x to order O(M)

has been first introduced) leads to the dimensionless form of Eq. (15) as

ρ = −ξ(0)
x +M [ξ(0)

x
2 − ξ(1)

x ]. (17)

This relation enables us to get the expression of the Eulerian density as

ρ = −ξ(0)
x +M [ξ(0)

x
2 + ξ(0)ξ(0)

xx − ξ(1)
x ]. (18)

Since the sound speed, c0, is a constant, the pressure difference p̃ and the density difference ρ̃ are related to each other

by the simple relation p̃ = ρ̃ c20 . Using the natural quantity ρ0c
2
0M to nondimensionalize the pressure difference, one

obtains the expression of the Eulerian pressure to order O(M) as

p = −ξ(0)
x +M [ξ(0)

x
2 + ξ(0)ξ(0)

xx − ξ(1)
x ]. (19)

Again, using Fubini’s solution for a plane progressive wave in the previous equation and taking the average in time,

leads to

〈p〉pw = M 〈p(1)〉 = −1
4
M. (20)

Thus, the mean Eulerian pressure in a plane progressive wave is uniform (and negative) throughout the beam.

For a plane standing wave of the form

ξ(0) = sinx cos t, (21)
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it can be shown that the steady part of the second order solution to the nonlinear wave equation is (see again appendix

A)

〈ξ(1)〉 =
1
8

sin 2x. (22)

Taking the time average of (19), using (21) and the previous expression for 〈ξ(1)〉 leads to the expression of the mean

Eulerian pressure in a plane standing wave as

〈p〉sw = M 〈p(1)〉 =
1
4
M cos 2x. (23)

Even if they are expressed here in a dimensionless form, the results presented in section II – specifically expressions

(13), (14), (20) and (23) – are all classical. The goal of section II was to remind to the reader of the expressions of

the rectified (stationary) terms involved in the expression of the total force derived below for small spheres and more

complicated bodies.

III. TOTAL FORCE ON A SMALL SPHERE

We now consider the case of a small rigid sphere of radius a free to move in a viscous Newtonian fluid with density

ρ0, dynamic viscosity η and kinematic viscosity ν = η/ρ0 (see figure 2). The density of the sphere is denote ρs. Here,

and in the rest of the paper, the typical distance (ν/ω)1/2 over which the vorticity diffuses through the action of

viscous stresses is assumed to be much larger than the particle size. The dimensionless ratio ε = (a2ω/ν)1/2 will thus

be assumed to be small compared to one.

For the incompressible limit to be valid at order O(1), the wavelength of the acoustic radiation is assumed to be

much greater than the sphere radius, which can be written as k = k0a� 1. The location of the particle, with regard

to its equilibrium position x̃0, is denoted r̃ and we write its velocity q̃. The amplitude of the fundamental harmonic

response of the particle to the acoustic field, r̃(0), is also assumed to be small compared to the particle radius. This

condition is automatically satisfied provided that the amplitude of the acoustic wave, ξ0, is also smaller than the

particle radius. At order O(1), the sphere will have no net motion (i.e. 〈q(0)〉 = 0), and its net dynamics will result

from the balance between the total force and steady viscous drag at order O(M).

A. Steady pressure-velocity field past the sphere

The total force exerted on small bodies results from two main contributions. First, the particle experiences the
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stresses exerted by the streaming flow. This flow arises from the coupling of the leading order flow - which results

from the superimposition of the incident and perturbative (or scattered) flows - with itself through the nonlinear term

of the Navier-Stokes equation. The steady streaming flow created by an oscillating sphere in an infinite medium is a

classical problem [23–25]. As shown in appendix B in the case of symmetric bodies which are symmetrically oriented

in an acoustic field, the contribution of the steady streaming stress to the final evaluation of the total force can be

neglected in the limit ε � 1. The second contribution comes from to the oscillatory displacement of the particle

in the pressure/velocity gradient field. This nonlinear Lagrangian effect, which generally yields steady terms in the

expression of the total force, is what could be properly named “acoustic force” since it is intimately linked to the

acoustic nature of the incident radiation. Note that the acoustic force (as defined above) has a non-zero contribution

in both limits ε� 1 and ε� 1 [6].

Here, we focus on the pressure/velocity field experienced by the particle in its own frame of reference, i.e. the

dimensionless fields u(x0 + r, t) and px(x0 + r, t) which would be measured in time at the particle center P (see figure

2). So, let us consider the dimensional velocity ũ(x̃0 + r̃, t) “seen” by the particle in its own frame of reference. The

previous expression can be expanded to first order in r̃ and one gets

ũ(x̃0 + r̃(t), t) = ũ(x̃0, t) + r̃(t)ũx̃(x̃0, t). (24)

As the velocity field, the distance x̃ and the displacement r̃ are made dimensionless using ξ0ω, k−1
0 and ξ0 respectively,

equation (25) can be writtem in the following dimensionless form:

u(x0 + r(t), t) = u(x0, t) +M r(t)ux(x0, t), (25)

since M = ξ0k0. Thus, expanding u and ux to first order in Mach number leads to the following exression, valid to

first order in M

u(x0 + r, t) = u(0)(x0, t)

+M [u(1)(x0, t) + r(0)(t)u(0)
x (x0, t)]. (26)

The order O(M) expansion for the pressure gradient can be derived in the same way and one obtains

px(x0 + r, t) = p(0)
x (x0, t)

+M [p(1)
x (x0, t) + r(0)(t)p(0)

xx(x0, t)]. (27)

In Eqs (26) and (27), the O(1) terms are purely harmonic of pulsation 1 (i.e. ω if we use dimensional quantities)

while all O(M) quadratic terms contain a double harmonic and a mean contribution. So, the O(1) harmonic term will
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determine the leading order dynamical response of the particle, r(0), whilst steady components of each O(M) term,

namely 〈u(1)〉, 〈p(1)
x 〉, 〈r(0)u(0)

x 〉 and 〈r(0)p(0)
xx〉 will be involved in the calculation of the total force.

B. Dynamical response at leading order

First, let us derive the dimensionless form of relationship between velocity and pressure for the incident field.

Whereas the relevant quantity for pressure and distance were ρ0c
2
0M and k−1

0 in section II, here we choose instead

the viscous steady stress ηξ0ωa−1 and the size a of the particle, since we perform a local analysis (i.e. at the particle

scale). Using the same typical velocity as the one used in section II (for the particle displacement is a priori of the

same order as the fluid dislacement), namely ξ0ω leads to

p(0)
x = −ε2u(0)

t , (28)

which is the dimensionless form of the linarized Euler equation

ρ0ũ
(0)
t = −p̃(0)

x . (29)

Now, in order to derive the dynamic response of the particle at leading order, let us first consider the force experienced

by a particle oscillating in a uniform oscillating Stokes flow field. If we neglect the compressibility of the fluid, the

perturbed flow resulting from the presence of the sphere is ruled by the unsteady Stoke’s equations. Choosing a, ω−1,

ξ0ω as typical length, time and velocity scales, the dimensionless unsteady Stoke’s equations are

ε2
∂v

∂t
= −∇$ +∇2v, ∇ · v = 0, (30)

where (v, $) denote the velocity and pressure disturbance field in the reference frame of the laboratory. For a particle

moving at velocity q ex in a uniform field u(t) ex, the previous set of equations is completed by the boundary conditions

v = u ex at infinity, and v = q ex on S. (31)

The problem can be formulated in a similar fashion in the frame of reference of the surrounding fluid (i.e. where

the fluid is motionless at infinity). In such a frame, the Stokes equation keep their original form but an extra inertial

force density, −ε2u̇ ex, must be added on the right-hand side of the first equation. This force density can be written

as the gradient of an additional inertial pressure field, pi = ε2u̇ x ex, and can be integrated in the global pressure

gradient term. If then (vu, $u) denotes the global disturbed field in the frame of reference of the surrounding fluid,

we get

ε2
∂vu
∂t

= −∇$u +∇2vu, ∇ · vu = 0, (32)
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with the new set of boundary conditions

vu = 0 at infinity, and vu = (q − u) ex on S. (33)

In the following, we use the subscript u to refer to a situation where the fluid velocity vanishes at infinity.

If we assume that both the sphere and the surrounding fluid oscillate in the laboratory frame at the same pulsation,

the second problem is formally the same as the one of a sphere oscillating in a quiescent fluid, the solution to which

is given in number of works (see e.g. [26]). The surrounding uniform velocity field and the particle velocity take the

form ûe−it ex and q̂e−it ex. The integration of the stress tensor corresponding to the field (vu, $u) over the particle

surface leads to the classical expression of the hydrodynamic force exerted on the particle in the reference frame of

the surrounding fluid, F u, nondimensionalized by ηa ξ0ω, as [26, 27]

F̂ u = 6πΩs(ε)(û− q̂) ex, (34)

with Ωs(ε) = 1 + e−iπ/4ε− i
9
ε2.

In order to obtain the force experienced by the particle in the reference frame of the laboratory, F , one must add to

the right-hand side of the previous equation an extra term corresponding to the the integration of the inertial pressure

field, pi = ε2u̇ x ex, over the surface of the particle. Since the pressure field p is linear, this term can be written in a

convenient form −V dpi/dx, where V is the volume of the particle. For the sphere, V = (4/3)π, so the the additional

term leads to the force

F̂ = 6πΩs(ε)(û− q̂) ex + i
4
3
π ε2û ex, (35)

which can be re-written in the condensed form

F̂ = 6π [Λs(ε) û− Ωs(ε) q̂] ex, (36)

with Λs(ε) = 1 + e−iπ/4ε− i
3
ε2.

This relation was first given in a more general framework by Mazur and Bedeaux [28] and re-derived by Kim

and Karrila [26]. The method above demonstrates a straightforward route to obtaining the total force on a particle

oscillating in a uniform Stokes flow, itself oscillating at the same frequency. Note that this method still holds for any

oscillating flow (uniform or not), provided the terms quadratic in space can be neglected in the surrounding flow - in

other words, as long as the Faxen’s terms can be neglected in the expression of the force. The final formula makes

clear the double origin of the force exerted on the particle. The first term comes from the velocity of the particle
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relative to the fluid. The second one is related to the pressure field that makes the surrounding fluid flow (whether

the particle is present or not). If the particle is following the oscillating fluid and q̂ = û, the only force comes from

the external pressure field (i.e. the term −V dpi/dx) since the particle does not disturb the flow.

We now return to our main problem of interest, namely the spherical particle moving under the effect of the acoustic

field. The O(1) displacement of the spherical particle moving in an acoustic field must satisfy the Newton’s law as

4
3
π a3ρs ξ0ω

2 q̇ = 6πη a ξ0ω [Λs(ε) û(0) − Ωs(ε) q̂(0)], (37)

where q̇ is the derivative of the velocity with respect to the dimensionless time. This can be rewritten in the more

condensed form

ˆ̇q(0) =
9
2
β ε−2[Λs(ε) û(0) − Ωs(ε) q̂(0)], (38)

where β = ρ0/ρs is the ratio between fluid and particle densities. In equation (38) the velocity field û and the particle

velocity q̂ involved in (36) have been replaced by the O(1) quantities û(0) and q̂(0), which simply means that Faxen’s

term are neglected at this order, which is justified as long as the Mach number is small as compared to 1.

From equation (38), the displacement r̂(0) = −iq̂(0) is given by

r̂(0) = Γs(ε) û(0), (39)

where Γs(ε) = − 9β Ωu(ε)
2ε2 + 9iβ Ω(ε)

· (40)

Our result must be compared to the solution proposed by Doinikov [11] in the general framework of arbitrary ε and

Mach number. The difference between our results and Doinikov’s solution is shown in figure 3 with the parameters

c0 = 103 m s−1 and a = 10−6 m. Specifically, in figures 3a,b we plot the quantities ∆R and ∆I defined as

∆R = 2
Re[r̂(0)]− Re[r̂(0)

D ]
Re[r̂(0)] + Re[r̂(0)

D ]
, (41)

and

∆I = 2
Im[r̂(0)]− Im[r̂(0)

D ]
Im[r̂(0)] + Im[r̂(0)

D ]
, (42)

where r̂(0)
D is the displacement computed from Doinikov’s article. The divergence between the two solutions occurs as

soon as the particle does probe the compressibility of the fluid, namely beyond ωa/c0 ∼ 1, and the difference between

the solutions becomes large beyond ε ' (ac0/ν)1/2 ' 30. To conclude, we note that we can derive the expressions of

the real and imaginary parts of Γs in the limit ε� 1, as we need them to calculate the asymptotic expansion of the
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acoustic force. They are

Re[Γs] =
2
9
β − 1
β

ε2 − 2
9
√

2
β − 1
β

ε3 +O(ε5), (43)

Im[Γs] = 1 +
2

9
√

2
β − 1
β

ε3 +O(ε4). (44)

C. Expression of the total force

Considering the analysis of the local steady field experience by the sphere presented in §III A, the total dimensional

force experienced by the particle balancing the steady drag at quadratic order in ξ0 is given by

F̃tot = 6πηa (〈r̃(0)ũ(0)
x 〉 + 〈ũ(1)〉)

−Ṽ (〈p̃(1)
x 〉 − 〈r̃(0)p̃(0)

xx〉), (45)

where the subscript tot stands for total. By choosing k−1
0 , ω−1, ξ0ω and ρ0c

2
0M , F ? = ρ0(ξ0c0)2(k0a)3 as typical

length, time, velocity, pressure and force scales, the previous expression now takes the form

Ftot =
4
3
π

[
9
2
ε−2 (〈r(0)u(0)

x 〉 + 〈u(1)〉)

−〈p(1)
x 〉 − 〈r(0)p(0)

xx〉
]
. (46)

The latter expression is what is called total force in the present article, that is the sum of all the forces experienced

by the particle which counter-balance the steady viscous drag at order O(M).

a. Progressive wave

In the case of a plane progressive wave, the O(1) quantities involved in expression (46) take the form

u(0)
x = i ei(x−t) and p(0)

xx = −ei(x−t). (47)

Using expressions (13), (20), (40) and (47) in the general expression for the force, equation (46), yields

Ftot,pw =
4
3
π

[
9
2
ε−2

(
1
2

Im[Γs]− 1
2

)
− 1

2
Re[Γs]

]
, (48)

which, using equations (43) and (44), can finally be transformed into

Ftot,pw =
2
3
π
β − 1
β

ε/
√

2 +O(ε2), (49)

valid in the limit ε� 1. Its dimensional form is given by

F̃tot,pw =
2
3
π F ?

β − 1
β

ε/
√

2 +O(ε2), (50)
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This result has to be compared to the one given by Doinikov [11] in the relevant limit. Our result and the one in

Ref. [11] are identical to within a prefactor of 11/5. We believe that this difference might be due to the truncations

made in Ref. [11] in order to approximate the Di functions in the original article. These truncations would give only

an approximate result for the O(ε3) terms in Γs which are required to obtain the final O(ε) result, equation (50).

The general trends of the present theory are also consistent with the result derived by Settnes & Bruus [18].

In particular, both expressions are proportional to F ?. The main difference comes from the dependence of the

prefactor with regard to χ(β, ε) = [(1− β)/β] ε. Settnes & Bruus find a total force proportional to [χ(β, ε)]2 whereas

we/Doinikov find a linear dependence in χ(β, ε). This has two mains implications. First, in Settnes & Bruus’ article,

no sign reversal of the force is observed when the particle density becomes lower than the fluid density. Second, the

force goes faster to zero, as the frequency decreases. We think that the difference of scaling in χ(β, ε) arises from the

lack of Basset term in matching inner and outer solutions, forcing Settnes & Bruus to go further in the expansion to

get a non-zero term.

b. Standing wave

In the case of a plane standing wave, the O(1) quantities involved in expression (46) take the following form

u(0)
x = sinx e−it and p(0)

xx = i cosx e−it. (51)

Using expressions (14), (23), (40) and (51) in the general expression (46) yields a dimensionless force

Ftot,sw =
4
3
π sin 2x

[
9
8
ε−2 Re[Γs] +

1
2
− 1

4
Im[Γs]

]
, (52)

which, using (43) and (44), can finally be transformed into

Ftot,sw =
1

3β
π sin 2x[(2β − 1) + (1− β) ε/

√
2] +O(ε2), (53)

which is valid for small ε. Its dimensional form is

F̃tot,sw =
1

3β
π F ? sin 2kx̃0[(2β − 1)

+ (1− β) ε/
√

2] +O(ε2). (54)

Again, this result has to be compared to the one given by Doinikov [11] in the same limit, and we see that both

expressions are equivalent at leading order. They also agree qualitatively to order O(ε) to within the same 11/5

prefactor as discussed above.
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The result in Eq. (54) is also in perfect accordance with the expression of Settnes & Bruus at leading order.

However, the corrective term from Settnes & Bruus (not given in their paper) can be shown to be again proportional

to [χ(β, ε)]2 whereas we/Doinikov obtain a corrective term linear in χ(β, ε). Note that it seems to be a general feature

of the low ε theory that the force experienced in a progressive wave is of the same form as the corrective term in the

expression of the force experienced in a standing wave. in the case of a standing wave, the three expressions (present

approach - Doinikov - Settnes & Bruus) are identical at leading order but differ by the shape of the corrective term,

which is not problematic except for β ' 1/2 (when the corrective term becomes dominant).

IV. TOTAL FORCE ON SYMMETRIC BODIES

We now show that the method outlined above can be generalized to non-spherical rigid bodies with certain symme-

tries in their shapes such that the forces arising from steady streaming can be neglected. We consider shapes which

are instantaneously invariant under the transformation ΠxΠyΠz, where Πx, Πy and Πz are the reflections through the

planes yz, xz and xy including the origin respectively. This invariance is automatically satisfied for bodies possessing

three distinct planes of symmetry, including arbitrary ellipsoids, symmetric dumbells, cylinders, disks etc. In what

follows, we refer to these bodies as ‘symmetric’.

A. Dynamical response at leading order

Consider a non-spherical symmetric body of volume Ṽ. The typical length scale chosen to non-dimensionalize is

the radius, a, of the equivalent sphere defined by (4/3)πa3 = Ṽ. The key parameter ε is again defined as (a2ω/ν)1/2,

with a being the equivalent sphere radius.

The problem of computing the instantaneous drag force experienced by a (non rotating) particle oscillating in a

quiescent fluid has been addressed by several authors. Kanwal [29] first showed that the instantaneous drag force

exerted on an axisymmetric body oscillating along its axis of symmetry with a dimensionless velocity q = q̂e−it, could

be written in the following form

F̂ u = −6πA
[
1 +A e−iπ/4 ε

]
q̂ +O(ε2), (55)

where A denotes the dimensionless steady Stokes drag coefficient. Here the force is made dimensionless using the

scaling η a ξ0ω, so that for the sphere, A = 1 and equation (55) is equivalent to the Stokes formula in which only

the first two terms are retained. Williams [30] noticed that Kanwal’s expression was not valid for bodies of arbitrary
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shapes and derived the tensorial form of (55), which holds for all type of body at arbitrary fixed orientation [26], as

F̂ u = −6π
[
A+A2e−iπ/4 ε

]
q̂ +O(ε2), (56)

where A is the steady Stokes tensor. Both expressions (55) and (56) are valid to order O(ε) only.

Lawrence and Weinbaum [31] calculated the expression of the instantaneous drag on prolate and oblate near-spheres

oscillating along their axis of symmetry, deriving a result valid for any ε. That result was generalized to arbitrary near-

spheres by Zhang and Stone [32]. In Zhang’s work, the near-sphere is defined by its polar equation r = 1 + ε f(θ, φ),

and the instantaneous drag takes the form

F̂ u = −6π
[
Ωs(ε) δ

− 3
8π
ε

(
e−iπ/4ε+ 1

)2 ∫
S
f nn dS

]
q̂, (57)

valid at order O(ε) for any ε. Equation (57) and the result from Ref. [31] for a spheroid are equivalent at order

O(ε)[33]. The previous expressions of the drag are valid either for near-spheres at arbitrary ε or for arbitrary shapes

(and aspect ratios) at small ε, and provided the steady drag is known. Lawrence and Weinbaum [34] proposed the

following ad-hoc composite formula in order to fill the gap

F̂ u ' −6π
[
A+B e−iπ/4ε− iM ε2

+ (A2 −B)
e−iπ/4ε

1 + e−iπ/4ε

]
q̂, (58)

where B is Basset’s tensor and M is the added-mass tensor. Luckily, and as shown below, the expressions of B and

M are in fact not required in order to calculate the total force at small ε.

For small values of ε, the previous expression can thus be approximated by

F̂ u = −6π
[
A+A2e−iπ/4 ε− iA′ε2

−A′′
∑
n>2

(−e−iπ/4ε)n
]
q̂, (59)

with A′ = M +A2 −B and A′′ = A2 −B. Following the same steps as in §III B, the force experienced by the rigid
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body oscillating at velocity q = q̂e−it in a uniform oscillating flow field u = û e−it can be written as

F̂ = 6π [Λ(ε) û−Ω(ε) q̂], (60)

with Ω(ε) = A+ e−iπ/4εA2

− iA′ε2 −A′′
∑
n>2

(−e−iπ/4ε)n, (61)

and Λ(ε) = Ω(ε)− 2
9

iε2δ. (62)

For the sake of simplicity, we now assume that there is no hydrodynamic coupling between translation and rotation.

This is strictly true at order O(ε) for a near sphere in an oscillating viscous flow [32] or for an arbitrary spheroid in a

steady uniform creeping flow [26]. The expression for the displacement of a sphere at leading order had been obtained

from equation (38). Likewise, the displacement of a symmetric body will obtained by solving the equation (Newton’s

law)

ˆ̇q =
9
2
βε−2 [Λ(ε) û−Ω(ε) q̂], (63)

which is the tensorial version of equation (38). In the natural reference system of the body (e1, e2, e3), the sym-

metric tensors A, A′ and A′′ have diagonal representations [A1, A2, A3], [A′1, A
′
2, A

′
3] and [A′′1 , A

′′
2 , A

′′
3 ] respectively.

Consequently, tensors Ω and Λ also have diagonal representations in this basis, namely [Ω1, Ω2, Ω3] and [Λ1, Λ2, Λ3]

with

Ωi = Ai +A2
i e
−iπ/4ε−iA′iε

2

+A′′i
∑
n>2

(−e−iπ/4ε)n, (64)

and Λi = Ωi −
2
9

iε2. (65)

Denoting ei the axis of symmetry oriented along the direction of the wave vector, equation (63) reduces to

ˆ̇qi =
9
2
βε−2 [Λi(ε) û− Ωi(ε) q̂i], (66)

the solution of which is formally identical to expression (40), that is

r̂(0)
i = Γi(ε)û(0), (67)

where Γi(ε) = − 9β Λi(ε)
2ε2 + 9iβ Ωi(ε)

· (68)
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As in the case of a sphere, the real and imaginary parts of Γi can be expanded in the small parameter ε, and one gets

Re[Γi] =
2

9Ai
β − 1
β

ε2 − 2
9
√

2
β − 1
β

ε3 +O(ε4), (69)

Im[Γi] = 1 +
2

9
√

2
β − 1
β

ε3 +O(ε5). (70)

Notably, the tensors A′ and A′′ are not involved in the ε-expansion of Γi at order O(ε3).

B. General expression for the total force

Expression (46) can be generalized to the case of a symmetric body arbitrarily oriented relative to the direction of

the acoustic radiation and one obtains

F tot =
4
3
π

[
9
2
ε−2(A · ex)(〈r(0)u(0)

x 〉+ 〈u(1)〉)

−(〈p(1)
x 〉+ 〈r(0)p(0)

xx〉) ex
]
. (71)

Unlike the case of the sphere, the total force can now have components in the normal directions relative to the wave

vector.

C. Progressive wave

In the case of a particle with its axis ei oriented along x, the y and z components of the force vanish and the

expression for F xtot simplifies to

Ftot,pw =
4
3
π

[
9
2
ε−2Ai

(
1
2

Im[Γi]−
1
2

)
− 1

2
Re[Γi]

]
, (72)

Using the expressions of real and imaginary parts of Γi, the previous expression becomes

Ftot,pw =
2
3
πAi

β − 1
β

ε/
√

2, (73)

which, in a dimensional form, becomes

F̃tot,pw =
2
3
π F ?Ai

β − 1
β

ε/
√

2. (74)

We therefore see that the effect of non-sphericity of the particle shows up at leading order, which, in the case of a

progressive wave is O(ε). The non-sphericity of the particle does not modify the direction of the force but it affects

its magnitude. For instance, for a prolate ellipsoid of revolution (axis e1) of aspect ratio 2, A1 = 0.38 and A2 = 0.43.
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Therefore, the radiation force is less efficient on such a prolate ellipsoid (for any orientation) than on a sphere of same

volume (and density). The O(M) steady velocity resulting from the balance between total force and viscous drag will

however not be affected since the latter is proportional to Ai as well.

D. Standing wave

Again, in the case of a particle with its axis ei oriented along x, the y and z components of the force vanish and

the expression for F xtot simplifies to

Ftot,sw =
4
3
π sin 2x0

[
9
8
ε−2AiRe(Γi) +

1
2
− 1

4
Im(Γi)

]
, (75)

which, after using (69) and (70), yields

Ftot,sw =
1

3β
π sin 2x0[(2β − 1) +Ai(1− β) ε/

√
2]. (76)

The dimensional form of the previous equation is

Ftot,sw =
1

3β
π F ? sin 2k0x̃0[(2β − 1) +Ai(1− β) ε/

√
2]. (77)

A symmetric particle oscillating along one of its axis under the effect of a plane standing wave experiences almost

the same force as the equivalent sphere (same volume). It is only the first correction at order ε which is affected by

the difference in shape, as in the case of a progressive wave.

V. DISCUSSION

In the present paper, we derived an expression of the total force in the limit of small ε (i.e. large viscous diffusion

length compared to the particle size), suitable for bodies possessing three planes of symmetry. The practical use of

the expressions we proposed in the cases of progressive and standing waves only requires the knowledge of the steady

(Stokes) drag tensor. After outlining a simple method applied to the classical case of a sphere, we then showed how

to generalize the results to the case of symmetric bodies possessing three planes of symmetry. For a plane progressive

wave, the radiation pressure is shown to be equal to the one experienced by a sphere of same volume and density

multiplied by the dimensionless viscous drag of the particle. In the case of a standing wave, there is almost no effect

of the shape and the radiation pressure at leading order is equal to the one experienced by the equivalent sphere,

with a shape-dependent correction at order O(ε). It is notable that our derivations recover all scalings computed
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in Ref. [11] and thus agree with the assumptions therein. This is to be contrasted with the different approach, and

scalings, proposed in Ref. [35]. Generalizing the results presented in this paper to the case of large ratios a/δ would

be important but difficult since this would require the calculation of the steady streaming generated by oscillating

bodies of arbitrary shape.

For the derivations presented in this article to hold, we have to be in the asymptotic limit

a� δ � k−1
0 . (78)

Equivalently, given a typical size a, and a typical order of magnitude for the speed of sound c0, the frequency of the

acoustic field must be smaller than min[ν/a2, c20/ν], for the double inequality to be satisfied. As a practical example,

consider glycerol for which the kinematic viscosity is ν ' 1.4 10−3 m2s−1, the density ρ ' 1.3 kg m−3, and the speed

of sound is c0 ' 1.9 × 103 m s−1 at ambient temperature. For ω = 107 s−1 (for the conditions in equation (78) to

be satisfied) and an amplitude of displacement ξ0 = 10−8 m (so that ξ0/a � 1), the maximum force experienced by

a spherical particle of silica with one micron radius a (density ρs = 2.2 kg m−3) in the case of a progressive wave is

Ftot,pw = −7.46× 10−15 N whereas it is Ftot,sw = 1.75× 10−14 N in the case of a standing wave. The value of Ftot,pw,

since it is proportional to Ai would be affected by a change of the particle shape. In the case of a progressive incident

wave, a prolate spheroid of aspect ratio 2 (with Ai = 0.38) would experience a total force almost three times as small

as in the spherical case. Note that this difference would be of less practical importance when gravity plays a dominant

role since the weight W = (4/3)πa3 ρs g (1 − β) ≈ −4.15 × 10−14 N is greater than Ftot,pw in magnitude by a factor

of about 5.6. Note also that in a case where the buoyancy plays no role, the drift velocity induced by a progressive

radiation would not change since the counteracting drag force is proportional to Ai as well. Conversely, the value of

the total force in the case of a standing wave is very slightly affected by a change of a particle shape, since Ftot,pw

does not depend on Ai at leading order. Only the drift velocity would be altered since the drag is proportional to Ai.

A change in shape will thus modify the value of the total force experienced by a particle in a progressive wave but

will not affect its drift velocity. By contrast, such a change will have almost no effect on the total force generated by

a standing wave, but will alter the drift velocity of the particle through its viscous drag coefficient. From a practical

standpoint, the total force exerted by an acoustic radiation on small symmetric bodies, that is the ability for an

acoustic radiation to levitate, and allow actuation of particle at the micron-scale, could be significantly affected by

the shape of the body.
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Appendix A: Acoustic field at order O(M)

We review here Fubini’s solution to the nonlinear wave equation in the case of a plane progressive wave [21]. The

O(1) and O(M) solutions are the ones to be used in equations (12) and (19) to get the results (13) and (20). The

second part of the appendix is devoted to the case of a plane standing wave and results (13) and (20) are derived.

We consider first the situation of a semi-infinite pipe full of fluid closed by an oscillating wall. The boundary

condition in displacement imposed at the wall is given by

ξ = 0, ξt = 0 for t = 0, x = 0, (A1)

ξ(t) = 1− cos t for t > 0, x = 0. (A2)

The solution to system (4-5) can be shown to be of the following form [21]

ξ(0) = 1− cos(t− x), (A3)

ξ(1) =
1
4
x [1− cos 2(t− x)]. (A4)

Using the previous forms of ξ(0) and ξ(1) in equations (12) and (19) and taking the average in time leads to the

expressions (13) and (20) of the mean velocity an pressure in the case of a plane progressive wave.

We consider now a plane standing wave of the form

ξ(0) = sinx cos t. (A5)

As already stated in §II 1, as long as the Lagrangian velocity is bounded (in time), the first two terms in equation (12)

vanish when time averaged. The convective term −ξ(0)ξ(0)
tx has also a zero time average, such that the mean Eulerian

velocity is zero until order O(M).

The Eulerian pressure can be calculated by introducing (A5) in the nonlinear wave equation (5). We consider, as

previously done by Westervelt [9], that the the dissipation is large enough to keep the magnitude of the higher-order
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solutions smaller than the magnitude of the O(1) solution. So, introducing (A5) in (2) and taking average in time

leads to

〈ξ(1)
xx 〉 = −1

2
sin(2x). (A6)

After integration, we get

〈ξ(1)〉 = −1
8

sin(2x). (A7)

Introducing (A5) and (A7) in equation (19) then leads to the expression (23) of the Eulerian pressure in a standing

wave.

Appendix B: Acoustic streaming at small ε

The effects of the steady streaming induced by the oscillations of a symmetric particle of equivalent radius a under

the effect of an acoustic field are investigated in the limit of small ε. The net force acting on the particle is shown to

be negligible at order O(ε), as long as the required criteria of symmetry are satisfied. Here we address the situation

of a particle in a plane standing wave of the form ũ(x) = ξ0ω sin(kx̃), but the case a progressive wave can be treated

similarly.

The incident velocity field can be expanded in the vicinity of the average position x0 of the particle, which yields

ũ(x) = ξ0ω sin k0x̃0 − k0 (x− x̃0) cos k0x̃0 +O(k2
0 ). (B1)

In the frame of reference of the particle, using (40) and neglectig the particle displacement relative to the particle

radius, the previous expression transforms into

ũ(x) = ξ0ω[1 + iΓs(ε)] sin k0x̃0

− ξ0ω k0 (x− x̃0) cos k0x̃0 +O(k2
0 ). (B2)

In the small ε limit, the quantity α = i(1 + iΓs) is equivalent to

α =
2
9

1− β
β

ε2. (B3)

By taking a, ξ0ω as typical distance and velocity, the field ũ can be written in the following dimensionless form:

u(x) = iα sin kx0 − k (x− x0) cos kx0 +O(k2), (B4)
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where k = k0a. In the reference frame of the particle, the incident field is the sum of a uniform field of order

α (considering the amplitude ξ0ω chosen for the nondimensionalization), and a linear (compressible) component of

amplitude k.

Choosing the quantities ρ0M and ρ0ξ0aω
2 as typical density perturbation and stress and defining the the small

parameter ε = ξ0/a, the Navier-Stokes equations takes the form

(1 + εkρ)
[
∂v

∂t
+ ε (v ·∇)v

]
= ∇ · σ, (B5)

k
∂ρ

∂t
+ ∇ · v + εk∇ · (ρv) = 0. (B6)

p = ρ, (B7)

To quantify the net effect of the steady streaming on the particle in the limit ε � 1, we assume that ε is the small

parameter of the problem. So, we seek the perturbation solution to the previous system by expanding the velocity

pressure and density as powers of ε

v =v(0) + εv(1) +O(ε2), (B8)

p =p(0) + ε p(1) +O(ε2), (B9)

ρ =ρ(0) + ε ρ(1) +O(ε2), (B10)

and, as a consequence of (B8) and (B9), σ = σ(0) + εσ(1) +O(ε2).

At order O(1), the system (B8 - B9) yields

∂v(0)

∂t
= ∇ · σ(0), (B11)

k
∂ρ(0)

∂t
+ ∇ · v(0) = 0, (B12)

p(0) = ρ(0). (B13)

These equation are the dimensionless forms of those in Ref. [11]. As suggested by Lamb, v(0) can be written as

the sum of an irrotationnal and a zero gradient term. We can further write v(0) as the sum of two flows, each one

corresponding to the symmetric and antisymmetric parts of the incident field (B4):

v(0) = α v(0)
a + k v(0)

s . (B14)

To order O(ε), equation (B11) yields

ρ(0)k
∂v(0)

∂t
+
∂v(1)

∂t
+ (v(0) ·∇)v(0) = ∇ · σ(1), (B15)
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which, when using (B12) and taking the average in time, leads to

∇.〈σ(1)〉 = ∇ · 〈v(0)v(0)〉. (B16)

Using (B14) in the previous equation, and considering that, due to the global symmetry of the system, only the

crossed products v(0)
a v

(0)
s will lead to a non-zero net force on the particle, one can deduce the order of magnitude 〈σ(1)〉

of the steady part of the antisymetric stress tensor, namely 〈σ(1)〉 ∼ εkα. Coming back to dimensional quantities, one

gets

〈σ̃(1)〉 ∼ ε ρ0ξ0aω
2 kα. (B17)

Multiplying the previous expression by the typical surface a2 provides the order of magnitude of the dimensional

steady streaming force F̃SS:

F̃SS ∼ F ?
1− β
β

ε2. (B18)

where F ? = ρ0(ξ0c0)2(k0a)3. Therefore, for small values of ε, the steady streaming term steps in the expression of

the total force at order ε2. This is why expressions (49) and (53) are correct at order O(ε).
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FIG. 1: Sketch of a particle acted on by (a) a plane progressive wave, (b) a standing wave. the position of the particle is refered

to as x̃0.

FIG. 2: Local geometry in the case of a sphere of radius a and definition of the displacement variable r̃. The densities of the

particle and the fluid are denoted by ρs and ρ0 respectively.

FIG. 3: Comparison between expression (40) and Doinikov’s solution. The difference is small provided compressibility effects

are negligible. In the present case, ∆R and ∆I have been plotted for c = 103 m s−1 and a = 10−6 m.
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