
Construction of Global Optimization Constrained NLP Test Cases from
Unconstrained Problems

Martin S.C. Chan a, Ehecatl Antonio del Rio-Chanona a, Fabio Fiorelli a, Harvey
Arellano-Garcia b, Vassilios S. Vassiliadis a∗

aDepartment of Chemical Engineering and Biotechnology, Pembroke Street, Cambridge CB2 3RA, UK
bDepartment of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK

Abstract
This paper presents a novel construction technique for constrained nonconvex Nonlinear Program-
ming Problem (NLP) test cases, derived from the evaluation tree structure of standardized bound
constrained problems for which the global solution is known. It is demonstrated in a step-by-
step procedure how first an equality constrained problem can be derived from an unconstrained
one, with bounds imposed on all variables, using the Directed Acyclic Graph (DAG) of the uncon-
strained objective function and the use of interval arithmetic to derive bounds for the new variables
introduced. An advantage of the proposed methodology is that several standard unconstrained
global optimization test cases can be constructed for varying number of optimization variables,
thus leading to adjustable size derived NLP’s. Further to this in a second step it is demonstrated
how any subset of the equalities derived can be relaxed into inequalities giving an equivalent op-
timization problem. Finally, in a third step it is demonstrated how, by reducing the number of
equality constraints derived, it is possible to obtain more complex expressions in the constraints
and objective function. The methodology is highlighted throughout by motivating examples and
a sample code in MathematicaTM is provided in the Appendix.
Keywords: NLP problems, global optimization, constrained nonconvex optimization,
unconstrained nonconvex optimization

1. Introduction

Global optimization is of great significance in scientific and engineering practice. The global
optimizer may correspond to a structural conformation of a system, such as the folded form of
a protein or molecule, which is the lowest energy configuration observed in nature and is the
form defining its functional properties. Similarly, in human markets and economic activities, it is
obviously important to discover the most economical solution to any routing, design or scheduling
problem, as settling down for a local minimum/maximum would represent a loss of utility in
comparison to what could be achieved if the global solution was found.

However, global optimization is not an easy task, as even in continuous variable optimization it
entails a combinatorial search if the global minimum is to be guaranteed deterministically. Many
effective methods for deterministic global optimization have been developed, and references giving
extensive coverage of the topic are Floudas [1] and Tawarmalani and Sahinidis [2]. The testing

∗Corresponding author. email: vsv20@cam.ac.uk, Fax:(+44)(0)1223334796

Preprint submitted to Elsevier March 17, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77412218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

of global optimization software, either using deterministic or stochastic methods, requires the
availability of test cases of varying complexity and size. For unconstrained global optimization
there are numerous standard test functions with known global solutions such as More et al. [3]
or Ronkkonen et al. [4], and it is relatively simple to design new ones. However, in the case of
constrained global optimization, although some test problems are available [5, 6], it is difficult to
procure an assortment of standardized constrained test problems with varying degrees of difficulty.

Our focus in this work is to present a construction technique which transforms any bound
constrained problem (bounds may be added without much effort if the global solution is known)
into an equivalent constrained Nonlinear Programming Problem (NLP). Equivalence is a term used
in the sense of having identical global optimizers to the original problem.

This paper is organized as follows. In section 2 the core of the method proposed is presented.
After that, in section 3 an example will be provided, which transforms a well known benchmark
unconstrained problem into a constrained equivalent function. Then in section 4 further details
are presented to explain how the method was programmed and deployed. Finally, in section 5 the
results of the present effort are summarized, underlining the novel contributions. An appendix is
provided with the code used in the course of the work.

2. Methodology

The methodology proposed in this work starts with any analytic objective function, correspond-
ing to a bound constrained optimization problem, and analyzes its evaluation tree. We restrict
our attention to binary evaluation trees, otherwise known also as Directed Acyclic Graphs (DAG),
of the function evaluation. The methodology followed is similar to Smith and Pantelides [7] and
Liberti and Pantelides [8], who used DAG’s to design a deterministic global optimization method,
although our purpose here is to construct constrained NLP test cases of varying complexity and
size.

The methodology is based on the fact that any analytic function (i.e. which can be expressed
as a simple set of instructions on a computer involving arithmetic operations and unary functions
– functions involving a single variable as argument) can have its evaluation represented as a binary
tree. It is noted that there may be more than one way to represent a function as a binary tree,
but they are all equivalent. The binary tree representation requires for each node the evaluation
to have two children nodes, a left and a right child, and evaluation proceeds from the leaves of the
tree (the actual variables occurring in the function) evaluating higher dependent nodes until the
root of the tree is reached (the objective function of the unconstrained problem).

2.1. Deriving NLP’s with equality constraints and bounds
To construct the maximal size NLP problem corresponding to the objective function of the

unconstrained problem we proceed as follows:
1. Assign a new variable vi, i = 1, 2, . . . ,m to the m inner nodes of the tree, excluding the

objective function evaluation which is at the root of the DAG. We could assign a new variable
to the root as well, but that would mean the objective function of the resulting NLP would
be comprised simply of that new variable. We propose to avoid having this formulation and
rather keep a potentially nonlinear function as the new objective of the resulting NLP.

2. For each new variable in each inner node write down the arithmetic operation it is equal to
with evaluation of the node as an equality constraint, for nodes i = 1, 2, . . . ,m.

3. Reaching the root of the tree, write down the arithmetic evaluation giving its value as the
objective function of the resulting NLP problem.

2.2 Deriving NLP’s with equalities, inequalities and bounds 3

4. Given bounds for the original variables of the problem, xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n use
interval arithmetic to propagate them through the tree to calculate bounds for the variables
of the inner nodes, vLi ≤ vi ≤ vUi , i = 1, 2, . . . ,m. It is noted that bounds for the root
of the tree (the objective function) can be derived also in this fashion. It is also noted that
bounds derived using interval arithmetic in this manner using the DAG will be loose.

5. Given the known global optimizer of the original optimization problem, x∗i , i = 1, 2, . . . , n,
use the evaluation tree to calculate all the corresponding optimal values of the new variables
v∗i , i = 1, 2, . . . ,m and confirm the objective function value at the optimum.

6. Given the optimal point (x∗, v∗) one may appropriately restrict around it the bounds found
in step 4 above.

The procedure thus starts from an original optimization problem given by:

min
x∈Rn

f(x) (1a)

subject to:

xL ≤ x ≤ xU (1b)

and derives the following equality constrained NLP problem (with bounds):

min
x∈Rn,v∈Rm

f(x, v) (2a)

subject to:

hi(x, v) = 0 (2b)

xL ≤ x ≤ xU (2c)

vL ≤ v ≤ vU (2d)

The equality constraints hi(·, ·) and the objective function f(·, ·) will be of simple form. These
will involve either arithmetic operations or power exponentiation between two arguments (the
children nodes of the corresponding node i), or a nonlinear function (e.g. sin, cos, tan, exp, log,
pow) of a single argument. If more complicated forms are desired, it is possible to carry up to
node i the expressions of parts of the subtree rooted at node i down to the original variables x of
the unconstrained problem. This may be done in such a way that either the number of constraints
remains the same, or it is reduced by substituting the entire node expression explicitly for the
original variables. The derivation of these more complex constraints is presented in section 3
where a motivating example is used to highlight the methodology, and related options are detailed
for its implementation in MathematicaTM which is presented in the section 4.

2.2. Deriving NLP’s with equalities, inequalities and bounds
Knowing the global solution of an equality constrained NLP allows one to reformulate some of

the equalities into inequalities following analysis of the values of their Lagrange multipliers at the
solution.

2.2 Deriving NLP’s with equalities, inequalities and bounds 4

Compacting the variable vectors into z = (xT , vT)T the Lagrangian of the NLP in equations
(2a)–(2d) is given by equation (3), without including the bounds as constraints as it is assumed
here that they are inactive for simplicity of presentation:

L(z, λ) = f(z) +
m∑
i=1

λihi(z) (3)

where λi is the Lagrange multiplier associated with equality constraint hi.

Lagrange multipliers of equality constraints are sign free, while if we had inequality constraints
added to the problem such that hi(z) ≤ 0 and the corresponding optimal Lagrange multiplier
should be λ∗i ≥ 0. Similarly if we had constraints added to the problem having the form
−hi(z) ≤ 0 then in the Lagrangian we would have had terms −λihi(z) again with the
requirement that λ∗i ≥ 0.

Thus the equality constrained case is such that if we have a positive multiplier at the solution we
can relax the equality constraint as hi(z) ≤ 0, or if the multiplier is negative relax it as −hi(z) ≤ 0
(or hi(z) ≥ 0). In this way we may choose arbitrarily how many of the constraints we wish to
write as equalities and how many as inequalities in the resulting NLP.

The procedure for this modification of the resulting NLP is as follows:

1. Set the number of inequalities desired, mI , such that m = mI +mE where mE is the number
of equalities. Choose the partitioning of indices i such that the set I is the set of constraint
indices to be treated as inequalities, and E is the set of constraint indices to be treated as
equalities.

2. Obtain the optimal Lagrange multipliers for the equality constrained problem, λ∗ ∈ Rm, in
equations (2a)–(2d).

3. Write the new optimization problem.

The resulting optimization problem is given as:

min
z∈Rn+m

f(z) (4a)

subject to:

hi(z) = 0, ∀ i ∈ E (4b)
sign [λ∗i] · hi(z) ≤ 0, ∀ i ∈ I (4c)

zL ≤ z ≤ zU (4d)

where zL =
(
(xL)T , (vL)T

)T
and zU =

(
(xU)T , (vU)T

)T
.

It is noted that the optimal Lagrange multipliers in step 2 above can be obtained either by
calling any NLP solver to find a solution for the optimization problem initialized at the known
globally optimal solution z∗ =

(
(x∗)T , (v∗)T

)
. If the given global solution is trusted then by solving

a feasibility problem for the Karush-Kuhn-Tucker (KKT) necessary conditions.
The KKT necessary condition for the problem in equations (2a)–(2d), assuming that the bounds

are inactive at the global solution, is given by:

5

∇zf(z∗) +
m∑
i=1

λ∗i∇zhi(z∗) = 0 (5)

The system in equation (5) , is an overdetermined system of linear equalities. There are m
unknowns, the λ∗ variables, and the gradient vectors have n + m entries. A suitable pivoting
procedure can be used to eliminate the equations so that the m columns have m pivots and the
remaining equations are identically equal to zero. The latter condition when there are numerical
errors, e.g. due to truncation of the reported solution and limited precision of calculating the gra-
dients, will have to be checked within a numerical tolerance in the pivoting (Gaussian elimination)
algorithm used.

Alternatively, a feasibility Linear Programming (LP) problem can be set up and solved to find
λ∗. For example, using minimization of the infinity norm of the equality violations in the KKT
gradient system we get:

min
λ∈Rm,ε∈R1

ε (6a)

subject to:

−ε1 ≤ ∇zf(z∗) +
m∑
i=1

λ∗i∇zhi(z∗) ≤ +ε1 (6b)

ε ≥ 0 (6c)

where 1 = (1, 1, . . . , 1)T ∈ Rn+m is a vector with entries all equal to 1.

The above LP problem has 2(n + m) constraints, one bound, and m + 1 variables. The value
of the objective at the solution, ε∗, is indicative of the satisfaction of the KKT conditions at the
given global solution. Determination of the optimal Lagrange multipliers is only necessary to get
their correct signs as they define the directionality of the relaxed inequalities of the modified NLP
problem.

It is noted that the inequality constraints constructed as above will be active (binding) at the
global solution z∗. It is possible to easily include further inactive inequalities (non-binding) at the
global solution as follows.

Select a number mI′ of arbitrary functions gi(z) involving any number of the total variables
of the system (x and v, indicated by the total vector z), with index i belonging to index set I ′.
Calculate the values of gi(z∗) at the globally optimal point and append the following (inactive)
inequality constraints to the NLP of equations (4a)–(4d):

−sign [gi(z∗)] · gi(z) ≤ 0, ∀ i ∈ I ′ (7)

This completes the construction procedure.

3. Motivating example

We consider the Extended Rosenbrock Function (More et al. [3]) for 4 variables:

6

Table 1: Rosenbrock example equality constraints and optimal Lagrange multipliers
i hi(x) λ∗i i hi(x) λ∗i
1 v1 − x2

1 0 10 v10 − x2
3 0

2 v2 + v1 0 11 v11 + v10 0
3 v3 − v2 − x2 0 12 v12 − v11 − x4 0
4 v4 − v2

3 −100 13 v13 − v2
12 −100

5 v5 − 100v4 −1 14 v14 − 100v13 −1
6 v6 + x1 0 15 v15 + x3 0
7 v7 − v6 − 1 0 16 v16 − v15 − 1 0
8 v8 − v2

7 −1 17 v17 − v2
16 −1

9 v9 − v5 − v8 −1 18 v18 − v14 − v17 −1

f =
2∑
i=1

100(x2i − x2
2i−1)2 + (1− x2i−1)2

= 2− 2x1 + x2
1 + 100x4

1 − 200x2
1x2 + 100x2

2

−2x3 + x2
3 + 100x4

3 − 200x2
3x4 + 100x2

4 (8)

A binary tree representation of this function is given in Figure 1 where the interior nodes’
variables are indicated to the left of each inner node. The problem results in 27 interior nodes in
the binary tree.

The resulting equality constraints are given in Table 1, along with the corresponding optimal
Lagrange multipliers. The objective function is f = v9 +v18. The optimal values of all the variables
at the global minimum are given in Table 2, along with the intervals calculated for all the variables
based on the intervals of the x variables as input.

Finally, additional non-binding constraints at the global solution can be constructed as shown
in Table 3. In adding such loose inequalities at the solution, one has to be careful that the variables
value range is a subset of the definition domain of the functions introduced.

4. Implementation

The implementation was carried out in MathematicaTM (version 8.0), in which operators are
overloaded to record the elementary operations (this includes addition, subtraction, division, mul-
tiplication and also the exponential, logarithmic and trigonometric functions) when they act on
objects with the head ADOO. This has been done using the “TagSet” :/ = command. When a
function is called with an argument of the type ADOO, an evaluation trace of the function will be
saved to the list “trace”, not dissimilar to the trace processed by the reverse accumulation mode
of automatic differentiation [9].

Any particular element of the evaluation trace is also a list, corresponding to an elementary
function (an intermediate variable). Each will contain the result, index of the arguments of the
operation and an arbitrarily assigned operation ID. Where an argument of an elementary function
is a constant, the value is stored as a string in the trace. The elements are sorted in order of
evaluation, with the last element corresponding to the value of the function (and consequently the
objective function in the NLP). Essentially, the evaluation trace is a k × 4 array, where k is the
number of elementary functions that composes the overall function. The equalities can then be

7

v 1
1

4x

3x
2

v 1
4

v 1
3

2

1

3x

2
v 1

2

v 5
v 8

v 2
2x

1x
2

2

1
2

v 3

v 4

v 1
7

v 1
6

1
0

v

v 1
5

1x

v 9
�
+

�
+

v 1
8
�
+

v 7
�
+

�
+

v 6

�
*

�
*

�
*

�
*

�
*

�
*

�
p
o
w

�
p
o
w

1v

�
p
o
w

�
p
o
w

�
p
o
w

�
p
o
w

1
0
0

1
0
0

−
1�
+

�
+

−
1

−
1

−
1

f

Fi
gu

re
1:

R
os

en
br

oc
k

fu
nc

tio
n

bi
na

ry
tr

ee
re

pr
es

en
ta

tio
n

8

Table
2:

R
osenbrock

exam
ple

variable
values

and
intervals

variable
x

1
x

2
x

3
x

4
optim

alvalue
1

1
1

1
interval

[−
5,5]

[−
5,5]

[−
5,5]

[−
5,5]

variable
v

1
v

2
v

3
v

4
v

5
v

6
v

7
v

8
v

9
optim

alvalue
1

−
1

0
0

0
−

1
0

0
0

interval
[0,25]

[−
25,0]

[−
30,5]

[0,900]
[0,90000]

[−
5,5]

[−
4,6]

[0,36]
[0,90036]

variable
v

10
v

11
v

12
v

13
v

14
v

15
v

16
v

17
v

18
optim

alvalue
1

−
1

0
0

0
−

1
0

0
0

interval
[0,25]

[−
25,0]

[−
30,5]

[0,900]
[0,90000]

[−
5,5]

[−
4,6]

[0,36]
[0,90036]

variable
f

optim
alvalue

0
interval

[0,180072]

9

Table 3: Rosenbrock example non-binding inequalities construction
i gi(z) gi(z∗) constraint imposed
1 −v2x1

x3
+ e−x3v1x3 1.36788 −g1(z) ≤ 0

2 log [v10] v4 + v15x1x3x4 −1 +g2(z) ≤ 0
3 sin [x2x4]− cos [v5v9]x1x3 −0.158529 +g3(z) ≤ 0
4 e

v1
v2 (−x2x4 + x1x2x3x4) + tan [v11x1] −1.55741 +g4(z) ≤ 0

written as follows: v[[i]] == trace[[i,1]] (i.e. the expression of the i-th intermediate variable
is the i-th row of the first column in trace).

There are two optional routines allowing for more variation in the constraints generated. The
first is allowing a chosen number of randomly selected constraints to have their expressions col-
lapsed to be in terms of the x variables, whilst deleting the constraints contained in the subtree with
the collapsed expression at its root. The routine finds the appropriate constraints to be deleted
by the scanning through the information stored in the evaluation trace. Note that this routine
will relabel the index of the constraints. Since the constraints are selected simultaneously, it may
turn out that some expressions, which were selected to be collapsed, are deleted, resulting in fewer
than the chosen number of constants being collapsed. The second option allows the conversion of
equalities to inequalities if the optimum solution Lagrange multipliers are provided.

Appendix 5 presents the operator overloading code in MathematicaTM, which needs to be run so
as to render the related subroutines memory-resident. Appendix 5 presents an example of the usage
of the code produced. In the example shown, some auxiliary routines are employed to augment the
FindMinimum optimization solver of MathematicaTM which in its current version (version 8.0) does
not provide the values of Lagrange multiplier. Although the additional routines are not included in
this paper, their operation and output are explained in comments where necessary in the example
code. The first printout of the optimization solver has been skipped to avoid excessive cluttering,
but the solutions are available later in the execution of the code.

5. Conclusions

This paper presents a methodology for the systematic construction of NLP test problems for
global optimization. This is based on analysis of the evaluation tree of standard unconstrained
global optimization cases, and construction of appropriate expressions that serve as equality con-
straints. Using the Lagrange multipliers at the know global optimal solution, it is possible to relax
any number of these into binding inequality constraints.

Further options are offered with this methodology to “collapse” any number of nodes in the
evaluation tree to produce more complicated algebraic expressions for derived equality constraints.
Finally, knowledge of the globally optimal solution allows one to add extra inequality constraints
that are by construction designed to be inactive at the solution.

The methodology proposed is an effective way to generate arbitrary size NLP test problems
for global optimization studies. This is based on the fact that several standard unconstrained
global optimization test cases can be constructed for varying number of optimization variables,
thus leading to adjustable size derived NLP’s.

Appendix A. MathematicaTM code listing

10

(* OL Operators , instead of using b[variable value] to give the variable i.d.
as before , we instead propagate the i.d. explicitly with the variable . Each
variable will become a tuple and each operator (except for the ’index ’
operation , the first one) will act on tuples . *)

(* This is the same code as in the reverse mode automatic differentiation
EXCEPT NOW RECORDS A ELEMENTARY FUNCTION TO TRACE (e.g. v[2]+v[4]) *)

trace = {}; Clear[a]; Clear[c]; Clear[aDOO];
aDOO /: aDOO[x_][[i_]] := {

c = x[[i]];
Subscript [v, c] = c;
aDOO [{c, c}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }] + aDOO [{x2_ , i2_ }] := {
i++;
c = Subscript [v, i1] + Subscript [v, i2];
trace = Append [trace , {c, i1 , i2 , 1}];
aDOO [{c, i}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }] - aDOO [{x2_ , i2_ }] := {
i++;
c = Subscript [v, i1] - Subscript [v, i2];
trace = Append [trace , {c, i1 , i2 , 2}];
aDOO [{c, i}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }]* aDOO [{x2_ , i2_ }] := {
i++;
c = Subscript [v, i1]* Subscript [v, i2];
trace = Append [trace , {c, i1 , i2 , 3}];
aDOO [{c, i}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }]^ aDOO [{x2_ , i2_ }] := {
i++;
c = Subscript [v, i1]^ Subscript [v, i2];
trace = Append [trace , {c, i1 , i2 , 4}];
aDOO [{c, i}] }[[1]];

aDOO /: Sin[aDOO [{x1_ , i1_ }]] := {
i++;
c = Sin[Subscript [v, i1]];
trace = Append [trace , {c, i1 , Null , 5}];
aDOO [{c, i}] }[[1]];

aDOO /: Cos[aDOO [{x1_ , i1_ }]] := {
i++;
c = Cos[Subscript [v, i1]];
trace = Append [trace , {c, i1 , Null , 6}];
aDOO [{c, i}] }[[1]];

aDOO /: Exp[aDOO [{x1_ , i1_ }]] := {
i++;
c = Exp[Subscript [v, i1]];
trace = Append [trace , {c, i1 , Null , 7}];
aDOO [{c, i}] }[[1]];

aDOO /: Log[aDOO [{x1_ , i1_ }]] := {
i++;
c = Log[Subscript [v, i1]];
trace = Append [trace , {c, i1 , Null , 9}];
aDOO [{c, i}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }] + x2_ := {
i++;
c = Subscript [v, i1] + x2;
trace = Append [trace , {c, i1 , ToString [x2] <> "@", 1}];

11

aDOO [{c, i}] }[[1]];
aDOO /: aDOO [{x1_ , i1_ }] - x2_ := {

i++;
c = Subscript [v, i1] - x2;
trace = Append [trace , {c, i1 , ToString [x2] <> "@", 2}];
aDOO [{c, i}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }]* x2_ := {
i++;
c = Subscript [v, i1]*x2;
trace = Append [trace , {c, i1 , ToString [x2] <> "@", 3}];
aDOO [{c, i}] }[[1]];

aDOO /: aDOO [{x1_ , i1_ }]^ n_ := {
i++;
c = Subscript [v, i1]^n;
trace = Append [trace , {c, i1 , ToString [n] <> "@", 4}];
aDOO [{c, i}] }[[1]];

aDOO /: Value[aDOO[x_]] := x;
aDOO /: Dimensions [aDOO[x_]] := Dimensions [x];

(* This routine uses overloaded operators to load function and input variables
in order to produce the evaluation trace for subsequent routines to analyse
*)

loadTrace [function_ , vars_] := Block [{ trace = {}, a, i = 0, c, CPUTime },

(* sample the CPU time *)
CPUTime = TimeUsed [];

function [aDOO[vars]];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" Function " <> ToString [function] <> " loaded \n"];
Print [" Number of operations = ", Length [trace]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

trace]

(* This routine analyses "trace" and outputs the first pass constraints in
the form h_i(v)=0 *)

generateConstraints1 [trace_] :=
Block [{ expressions = {}, equations , constraints , CPUTime , i, objective },

(* sample the CPU time *)
CPUTime = TimeUsed [];

(* Write each constraint in the form " Subscript [h, i](v)==0" into " equations "
*)

For[i = 1, i < Length [trace], i++,
AppendTo [expressions , Subscript [v, i] - trace [[i, 1]]]];

equations = Thread [(expressions) == 0];

(* Label each constraint with " Subscript [h, i]" *)

12

constraints = Transpose [{ Table ["h" <> ToString [i], {i, Length [equations]}],
equations }];

(* Extract the objective function *)
objective = trace [[Length [trace], 1]];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" First pass constraint statistics \n"];
Print [" Objective function = ", objective];
Print [" Number of variables = ", Length [constraints],

" intermediate ", "+ ", Length [xvars], " input "];
Print [" Number of constraints = ", Length [constraints]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

{ constraints , objective }]

(* This routine replaces Mathematica ’s in -built Solve [] function to produce the
list " solvsubst ". This seems to be substantially faster than Solve []. I

felt that " solvsubst " should be global variable as it is called for in a few
separate routines . This requires "trace" to be loaded . *)

varSolve [trace_] := Block [{ vvars , i, n, temp , solvsubst , CPUTime },

(* sample the CPU time *)
CPUTime = TimeUsed [];

(* Number of variables "n" *)
n = Length [trace] - 1;

(* Create temporary list of variables "temp" which will contain the collapsed
expressions .

This essentially replaces the Solve [] function , and is a lot faster *)
vvars = Table[Subscript [v, i], {i, n}];

For[i = 1, i <= n, i++,
Subscript [v, i] = trace [[i, 1]]];

temp = vvars; Clear[Subscript];

(* Create substitution list " solvsubst ", " Subscript [v, i] -> (x variables)"
*)

solvsubst = {};

For[i = 1, i <= n, i++,
solvsubst = Append [solvsubst , Subscript [v, i] -> temp [[i]]]];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" Substitution rules for intermediate variables in terms of input

variables \n"];

13

Print [" Number of input variables = ", Length [xvars]];
Print [" Number of intermediate variables = ", Length [vvars]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

solvsubst]

(* This routine finds the optimal solution point for the intermediate variables
given the known solution point of the x variables . This also requires "

trace" and " solvsubst " to be loaded . *)
optimalSolutionPoint [trace_ , xvars_ , xvals_ , solvsubst_] :=

Block [{i, Subscript , vvars , n, substintervvalx , expressions , equations ,
OptimalValsTable , OptimalIntervTable , CPUTime , temp , substx },

(* sample the CPU time *)
CPUTime = TimeUsed [];

(* Number of variables "n" *)
n = Length [trace] - 1;

(* Create temporary list of variables "temp" which will contain the collapsed
expressions .

This essentially replaces the Solve [] function , and is a lot faster *)
vvars = Table[Subscript [v, i], {i, n}];

(* Calculate and write optimal variable values to " OptimalValsTable ",
alongside their respective variable symbols *)

substx = Thread [xvars -> xvals];
OptimalValsTable = Transpose [{ Join[xvars , vvars], Join[xvars , vvars] /.

solvsubst /. substx }];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" Optimal solution point\n"];
Print [" Number of variables = ", Length [OptimalValsTable]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

OptimalValsTable]

(* This routine finds the intervals of the intermediate variables given the
intervals of the x variables . This also requires "trace" and " solvsubst " to
be loaded . *)

variableIntervals [trace_ , xvars_ , substintervx_ , solvsubst_] :=
Block [{i, Subscript , vvars , n, substintervvalx , intervalallsubst ,

expressions , equations , OptimalValsTable , OptimalIntervTable , CPUTime ,
temp},

(* sample the CPU time *)
CPUTime = TimeUsed [];

(* Number of variables "n" *)
n = Length [trace] - 1;

14

(* Create temporary list of variables "temp" which will contain the collapsed
expressions . This essentially replaces the Solve [] function , and is a lot
faster *)

vvars = Table[Subscript [v, i], {i, n}];

(* Find intervals of all variables given intervals of the initial variables
*)

substintervvalx = Thread [xvars -> substintervx];

intervalallsubst = Join[substintervvalx , solvsubst /. substintervvalx];

OptimalIntervTable = Transpose [{ Join[xvars , vvars], Join[xvars , vvars] /.
intervalallsubst }];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" Variable intervals \n"];
Print [" Number of intervals = ", Length [OptimalIntervTable]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

OptimalIntervTable]

(* This routine will collapse variables (expressing them in terms of the x
variables). The variables will be selected randomly , the user specifies the
number of variables in the " number " argument when calling the routine . The
resulting redundant variables will then be identified and deleted . This also

requires "trace" and " solvsubst " to be loaded . Note that in some cases ,
variables that are selected to be collapsed may also be deleted as a result
of other variables being selected (this becomes more probable as the " number
" becomes larger). *)

collapseConstraints [trace_ , constraints_ , solvsubst_ , number_] :=
Block [{ variationIDs , k, i, deletevars = {}, tempconstraints , CPUTime , scan ,

dep},

(* sample the CPU time *)
CPUTime = TimeUsed [];

variationIDs = RandomSample [Table[i, {i, Length [constraints]}], number];

(* This loop performs the substitution for each variable ID stored in the
list " variationIDs " *)

tempconstraints = constraints ;

For[i = 1, i <= Length [variationIDs], i++,
k = variationIDs [[i]];
tempconstraints [[k, 2]] = Subscript [v, k] - (Subscript [v, k] /. solvsubst

[[k]]) == 0];

(* ====================================== *)
(* Now define this function that will produce the intermediate variables that

a given variable is dependent on "scan[j]" looks at the j’th row in the
array "trace", then at the 2nd and 3rd columns in that row. If those

15

elements are integers , that means that that Subscript [v, j] is dependent
on those elements , and records the elements to "list ". It then repeats
this operation for each of those elements . *)

scan[j_] := Block [{f},
f = trace [[j, 2]];
If[IntegerQ [f], { AppendTo [list , f], scan[f]}];

f = trace [[j, 3]];
If[IntegerQ [f], { AppendTo [list , f], scan[f]}];];

(* "dep[i]" produces the list of variables that Subscript [v, i] depends on *)
dep[i_] := Block [{ list = {}}, scan[i]; list];

(* ====================================== *)
(* Using the function that has just been defined above , this loop records

which variables should be deleted , as they have been ’carried up ’ to
variables that have been ’lumped ’ *)

For[i = 1, i <= Length [variationIDs], i++,
k = variationIDs [[i]];
deletevars = Join[deletevars , dep[k]];
deletevars = Union[deletevars]];

(* Deletes the redundant variables identified by " deletevars " *)
tempconstraints = Delete [tempconstraints , Thread [{ deletevars }]];

(* Relabel the Subscript [h, i] labels in constraints from 1 to the new number
of constraints *)

tempconstraints = Delete [Transpose [tempconstraints], {1}];

tempconstraints = Transpose [{ Table ["h" <> ToString [i],
{i, Length [tempconstraints [[1]]]}] , tempconstraints [[1]]}];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" Collapsing variables (and subsequently deleting variables)

\n"];
Print [" Number of variables collapsed = ", number];
Print [" Former IDs of variables collapsed = ", Sort[variationIDs]];
Print [" Number of variables deleted = ", Length [deletevars]];
Print [" Former IDs of variables deleted = ", Sort[deletevars]];
Print [" New number of constraints = ", Length [tempconstraints]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

{ tempconstraints , deletevars }]

(* This section choose " number " of constraints to be converted to inequalities ,
given their respective Lagrange multipliers . This also requires "trace", "

constraints ", " lagrangemultipliers " to be loaded . " deletevars " is only
required if constraints have been deleted from the collapse expressions
routine , input 0 if this is not the case. *)

inequalityConstraints [trace_ , constraints_ , lagrangemultipliers_ , number_ ,
deletevars_] :=

16

Block [{ equationIDs , inequalityIDs , k, temp , expressions = {},
deletedexpressions , CPUTime , zeromultipliers = {}},

(* sample the CPU time *)
CPUTime = TimeUsed [];

(* Write each expression to " expressions " from "trace" *)
For[i = 1, i < Length [trace], i++,

AppendTo [expressions , Subscript [v, i] - trace [[i, 1]]]];

(* This decides if deletevars is a list or 0, and sets deletedexpression to
the appropriate case *)

If[ListQ[deletevars],
deletedexpressions = Delete [expressions , Thread [{ deletevars }]],
deletedexpressions = expressions];

(* Choose randomly the i’th constraints that will be converted to
inequalities *)

equationIDs = Table[i, {i, Length [constraints]}];
inequalityIDs = RandomSample [equationIDs , number];

(* This alters the i’th entry of the list "temp" (which is actually "
constraints ") to become inequalities , as chosen by the list "
inequalityIDs " *)

temp = constraints ;
For[i = 1, i <= Length [inequalityIDs], i++, k = inequalityIDs [[i]];

(* If the lagrange multiplier is zero , do not change the respective
constraint , leave it as an equality and save the ID to " zeromultipliers "

*)
If[lagrangemultipliers [[k]] == 0,

AppendTo [zeromultipliers , k],
temp [[k, 2]] = Sign[lagrangemultipliers [[k]]]* deletedexpressions [[k]]

<= 0]];

(* sample the CPU time from start of run *)
CPUTime = TimeUsed [] - CPUTime ;

Print ["=="];
Print [" Converting equalities to inequalities \n"];
Print [" Number of inequalities converted = ",

number - Length [zeromultipliers]];
Print [" IDs of equalities converted to inequalities = ",

Sort[inequalityIDs]];
Print [" IDs of equalities that have a Lagrange multiplier

of zero = ", Sort[zeromultipliers]];
Print [" Number of constraints = ", Length [temp]];
Print ["\ nCPU time (seconds) = ", CPUTime];
Print ["=="];

temp]

Appendix B. Example run

* Initiate input variables and define function to be analysed in this
Block. The contents of this Block is specific only to our example
problem *)

17

Block [{n},
(* Choose number of variables "n" *) n=24;
(* Define x variables , their optimum values and their bounds *)

xvals=Table [1,{n}]; xvars=Table[Subscript [x, i],{i,1,n}];
substintervx =Table[Interval [{ -5 ,5}] ,{ Length [xvars]}];

(* This is the Rosenbrock function with "n" variables *)
RF[n_ ,x_]:=\!\(* UnderoverscriptBox [\(\[Sum]\) , \(j = 1\) , \(n/2\)

]\((100*\((x [\([\) \(2 j\) \(]\)] - x [\([\) \(2 j - 1\) \(]\)]^2) \)^2
+ \((1 - x [\([\) \(\((2 j)\) - 1\) \(]\)])\) ^2) \)\);

f[x_]:= Expand [Simplify [RF[Length [xvars],x]]];]

(* Execute routine and save into "trace" *)
trace= loadTrace [f,xvars];

==
Function f loaded
Number of operations = 119
CPU time (seconds) = 0.015
==

(*" Execute routine and save constraints into " constraints ", and the
objective function into " objective " "*) { constraints , objective }=
generateConstraints1 [trace];

==
First pass constraint statistics
Objective function = Subscript [v, 116]+ Subscript [v, 118]
Number of variables = 118 intermediate + 24 input
Number of constraints = 118
CPU time (seconds) = 0.
==

(*" Execute routine and save the substitution rules into " solvsubst ",
and the objective function into " objective " "*) solvsubst = varSolve
[trace];

"=="
" Substitution rules for intermediate variables in terms of input

variables \n"
" Number of input variables = "24
" Number of intermediate variables = "118
"\ nCPU time (seconds) = "0.04699999999999993 ‘
"=="

(* Execute routine and save optimal variable values into " optimalvalues
" *) optimalvalues = optimalSolutionPoint [trace ,xvars ,xvals ,
solvsubst];
"=="

" Optimal solution point\n" " Number of variables = "142
"\ nCPU time (seconds) = "0.016000000000000014 ‘
"=="

(* This creates the " variables " list in the right format to be used by
the NLP solver *)

Thread [Insert [Transpose [optimalvalues],-INF ,2]];
variables = Thread [Insert [Transpose [%],INF ,3]];

18

(* Execute routine and save variable intervals into " intervals " *)
intervals = variableIntervals [trace ,xvars , substintervx , solvsubst

];
"=="

" Variable intervals \n" " Number of intervals = "142
"\ nCPU time (seconds) = "0.‘
"=="

(* Execute routine and save new set of constraints into " newconstraints
". As an example , the number of variables collapsed is set to 3 here
. A list of the deleted variables is saved for use in the inequality

section . *) { newconstraintscollapsed , deletevars }=
collapseConstraints [trace , constraints ,solvsubst ,3];

(* Uncomment the line below to analyse " newconstraints " in the NLP
solver (or alternatively change " constraints " to "
newconstraintscollapsed " in the argument of NLPParse [] *)

constraints = newconstraintscollapsed ;
"=="
" Collapsing variables (and subsequently deleting variables)\n"
" Number of variables collapsed = "3
" Former IDs of variables collapsed = "{82 ,83 ,118}
" Number of variables deleted = "89
" Former IDs of variables deleted = "
{1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,
25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 ,

49 ,50 ,51 ,52 ,53 ,54 ,55 ,56 ,57 ,58 ,59 ,60 ,61 ,62 ,63 ,64 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,72 ,

73 ,74 ,75 ,76 ,77 ,78 ,79 ,80 ,81 ,82 ,109 ,110 ,111 ,112 ,113 ,114 ,117}
"New number of constraints = "29
"\ nCPU time (seconds) = "0.015000000000000124 ‘
"=="

(* The following set of cells is simply using the NLP solver to get the
Lagrange multipliers . The required objects " objective ", "

constraints ", " variables " have already been created prior to this
cell. The rest of the required objects are created here now. *)

paramvalues ={};
parameters ={};

(* Call the parser to parse the model *) { ProblemModel , ProblemVariables
}= NLPParse [" Test1",objective , constraints ,variables ,parameters ,True];

"=="
"NLP PARSER INTERFACE FOR FindMinimum \n" "NLP Problem Name = "
"Test1"
"\n" " Number of parameters = "0
" Number of variables = "142
" Number of constraints = "29
" Number of bounds = "0
"\ nCPU time (seconds) = "0.016000000000000014 ‘
"=="

(* Find solution of the optimization problem *)
{ ProblemObjOptValue , VarSubstitutionOptSol }= FindMinimum [

ProblemModel@@paramvalues , ProblemVariables@@paramvalues , AccuracyGoal

19

- >{8 ,10} , PrecisionGoal ->10, MaxIterations - >2000]

(* Extract solution into a vector *)
sol= NLPSubstListToVector [VarSubstitutionOptSol]
{1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,
1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,1.‘,-1.‘,0.‘,
0.‘,0.‘,-1.‘,0.‘,0.‘,0.‘,1.‘,-1.‘,0.‘,0.‘,0.‘,-1.‘,0.‘,
0.‘,0.‘,1.‘,-1.‘,0.‘,0.‘,0.‘,-1.‘,0.‘,0.‘,0.‘,1.‘,-1.‘,
0.‘,0.‘,0.‘,-1.‘,0.‘,0.‘,0.‘,1.‘,-1.‘,0.‘,0.‘,0.‘,-1.‘,
0.‘,0.‘,0.‘,1.‘,-1.‘,0.‘,0.‘,0.‘,-1.‘,0.‘,0.‘,0.‘,1.‘,
-1.‘,0.‘,0.‘,0.‘,-1.‘,0.‘,0.‘,0.‘,1.‘,-1.‘,0.‘,0.‘,0.‘,
-1.‘,0.‘,0.‘,0.‘,1.‘,-1.‘,0.‘,0.‘,0.‘,-1.‘,0.‘,0.‘,0.‘,
1. ‘ , -1. ‘ ,0. ‘ , -6.902532920683853 ‘*^ -32 , -6.902532920683853 ‘*^ -30 ,
-1. ‘ ,0. ‘ ,0. ‘ , -6.902532920683853 ‘*^ -30 ,1. ‘ , -1. ‘ ,0. ‘ ,
9.860761315262648 ‘*^ -33 ,9.860761315262648 ‘*^ -31 , -1. ‘ ,0. ‘ ,0. ‘ ,
9.860761315262648 ‘*^ -31 , 1. ‘ , -1. ‘ ,0. ‘ ,9.860761315262648 ‘*^ -33 ,
9.860761315262648 ‘*^ -31 , -1. ‘ ,0. ‘ ,0. ‘ ,9.860761315262648 ‘*^ -31 ,0. ‘
,0. ‘ ,0. ‘ ,0. ‘ ,0. ‘ ,0. ‘ , -5.9164567891575885 ‘*^ -30 ,
-4.930380657631324 ‘*^ -30 ,0. ‘ ,0. ‘}

NLPObjectiveConstraintParser [" Test1",True];

"=="
"NLP CONSTRAINTS AND OBJECTIVE PARSER \n"
"NLP Problem Name = "" Test1 ""\n"
" Number of constraints = "29
" of which \"==\" are = "29
" of which \" <=\" are = "0 "
of which \" >=\" are = "0
" Number of bounds = "0
" of which lower bounds are = "0
" of which upper bounds are = "0
"\ nCPU time (seconds) = "0.016000000000000014 ‘
"=="

(* Call the Constraint and objective gradient setup routine *)
NLPGradientParser [" Test1",True];
"=="
"NLP CONSTRAINTS AND OBJECTIVE GRADIENTS PARSER \n"
"NLP Problem Name = "
"Test1 ""\n"
" Number of variables = "142
" Number of constraints = "29
" Number objective gradient nonzeros = "2
" Number constraints Jacobian nonzeros = "83
"\ nCPU time (seconds) = "0.‘
"=="
(* display things *) Print[NLPModel [" Test1 "]["

ConstraintGradientVarIncidence "]]; Print[NLPModel [" Test1 "]["
ObjectiveGradientVarIncidence "]];

{{1 ,19} ,{1 ,107} ,{2 ,20} ,{2 ,107} ,{2 ,108} ,{3 ,108} ,{3 ,109} ,{4 ,109} ,
{4 ,110} ,{5 ,19} ,{5 ,111} ,{6 ,111} ,{6 ,112} ,{7 ,112} ,{7 ,113} ,{8 ,110} ,
{8 ,113} ,{8 ,114} ,{9 ,21} ,{9 ,115} ,{10 ,115} ,{10 ,116} ,{11 ,22} ,{11 ,116} ,
{11 ,117} ,{12 ,117} ,{12 ,118} ,{13 ,118} ,{13 ,119} ,{14 ,21} ,{14 ,120} ,
{15 ,120} ,{15 ,121} ,{16 ,121} ,{16 ,122} ,{17 ,119} ,{17 ,122} ,{17 ,123} ,
{18 ,23} ,{18 ,124} ,{19 ,124} ,{19 ,125} ,{20 ,24} ,{20 ,125} ,{20 ,126} ,

20

{21 ,126} ,{21 ,127} ,{22 ,127} ,{22 ,128} ,{23 ,23} ,{23 ,129} ,{24 ,129} ,
{24 ,130} ,{25 ,130} ,{25 ,131} ,{26 ,128} ,{26 ,131} ,{26 ,132} ,{27 ,114} ,
{27 ,123} ,{27 ,139} ,{28 ,132} ,{28 ,139} ,{28 ,140} ,{29 ,1} ,{29 ,2} ,
{29 ,3} ,{29 ,4} ,{29 ,5} ,{29 ,6} ,{29 ,7} ,{29 ,8} ,{29 ,9} ,{29 ,10} ,{29 ,11} ,
{29 ,12} ,{29 ,13} ,{29 ,14} ,{29 ,15} ,{29 ,16} ,{29 ,17} ,{29 ,18} ,{29 ,142}}
{140 ,142}
NLPModel [" Test1 "][" ConstGradNumFast "] @@Join [sol , paramvalues]
{2.‘,1.‘,-1.‘,-1.‘,1.‘,0.‘,1.‘,-100.‘,1.‘,1.‘,1.‘,-1.‘,1.‘,0.‘
,1.‘,-1.‘,-1.‘,1.‘,-2.‘,1.‘,1.‘,1.‘,-1.‘,-1.‘,1.‘,0.‘,1.‘,-100.‘,
1.‘,1.‘,1.‘,-1.‘,1.‘,0.‘,1.‘,-1.‘,-1.‘,1.‘,-2.‘,1.‘,1.‘,1.‘,-1.‘,
-1.‘,1.‘,0.‘,1.‘,-100.‘,1.‘,1.‘,1.‘,-1.‘,1.‘,0.‘,1.‘,-1.‘,-1.‘,1.‘,
-1.‘,-1.‘,1.‘,-1.‘,-1.‘,1.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,
0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,0.‘,1.‘}

NLPModel [" Test1 "][" ObjGradNumFast "] @@Join [sol , paramvalues] {1 ,1}
(* Call the solution analyser to find out the active constraints
(without Lagrange multiplier calculation) *)

NLPModelEvaluation [" Test1",sol , paramvalues ,N[10^ -6] , True]
"==="
" CONSTRAINT ANALYSIS ROUTINE FOR GIVEN\ nVARIABLES AND PARAMETERS VALUES

\n"
" Number of active constraints = "29
" Number of total constraints = "29
" Constraint norm = "8.874685183736382 ‘*^ -32
"\n"
" Number of active bounds constraints = "0
" Number of total bounds constraints = "0
" Bounds norm = "0.‘
"\ nCPU time (seconds) = "0.015000000000000124 ‘
"==="

(* display some things *)
Print[NLPModel [" Test1 "][" BoundsActivity "]];
Print[NLPModel [" Test1 "][" ConstraintActivity "]];
{}
{{1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,
17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29} ,{} ,{}}
NLPModelLagrangeMultipliers [" Test1 ",True]
"==="
" LAGRANGE MULTIPLIER CALCULATION ROUTINE \n"
" Successful completion ."
" Fitting tolerance returned = "2.2440382885235977 ‘*^ -13
" Number of constraint multipliers = "29
" Number of bounds multipliers = "0
"\ nCPU time (seconds) = "0.016000000000000014 ‘
"===" True
(* display some things *)
Print[NLPModel [" Test1 "][" ConstraintLagrangeMultipliers "]];
Print[NLPModel [" Test1 "][" BoundsLagrangeMultipliers "]];
{ -1.1220191442617988 ‘*^ -13 ,1.26329502414535 ‘*^ -13 ,
-99.99999999988583 ‘ , -0.9999999999988903 ‘ ,
4.4880765770471953 ‘*^ -13 ,2.2440382885235977 ‘*^ -13 ,
-0.9999999999988965 ‘ , -0.9999999999991618 ‘ ,
-1.1220191442617988 ‘*^ -13 , -1.3063161663495748 ‘*^ -13 ,
-2.2440382885235977 ‘*^ -13 , -99.9999999998905 ‘ ,

21

-0.9999999999989071 ‘ , -4.4880765770471953 ‘*^ -13 ,
-2.2440382885235977 ‘*^ -13 , -0.9999999999988965 ‘ ,
-0.9999999999991597 ‘ , -1.1220191442617988 ‘*^ -13 ,
-1.1933509735939651 ‘*^ -13 , -2.2440382885235977 ‘*^ -13 ,
-99.99999999992002 ‘ , -0.9999999999992026 ‘ ,
-4.4880765770471953 ‘*^ -13 , -2.2440382885235977 ‘*^ -13 ,
-0.9999999999997154 ‘ , -0.9999999999994227 ‘ ,
-0.9999999999994307 ‘ , -0.9999999999996991 ‘ ,
-0.9999999999997756 ‘} {}
Transpose [{

Table[i,{i, Length [constraints]}],
NLPModel [" Test1 "][" ConstraintLagrangeMultipliers "] }]

{{1 , -1.1220191442617988 ‘*^ -13} ,{2 ,1.26329502414535 ‘*^ -13} ,
{3 , -99.99999999988583 ‘} ,{4 , -0.9999999999988903 ‘} ,
{5 ,4.4880765770471953 ‘*^ -13} ,{6 ,2.2440382885235977 ‘*^ -13} ,
{7 , -0.9999999999988965 ‘} ,{8 , -0.9999999999991618 ‘} ,
{9 , -1.1220191442617988 ‘*^ -13} ,{10 , -1.3063161663495748 ‘*^ -13} ,
{11 , -2.2440382885235977 ‘*^ -13} ,{12 , -99.9999999998905 ‘} ,
{13 , -0.9999999999989071 ‘} ,{14 , -4.4880765770471953 ‘*^ -13} ,
{15 , -2.2440382885235977 ‘*^ -13} ,{16 , -0.9999999999988965 ‘} ,
{17 , -0.9999999999991597 ‘} ,{18 , -1.1220191442617988 ‘*^ -13} ,
{19 , -1.1933509735939651 ‘*^ -13} ,{20 , -2.2440382885235977 ‘*^ -13} ,
{21 , -99.99999999992002 ‘} ,{22 , -0.9999999999992026 ‘} ,
{23 , -4.4880765770471953 ‘*^ -13} ,{24 , -2.2440382885235977 ‘*^ -13} ,
{25 , -0.9999999999997154 ‘} ,{26 , -0.9999999999994227 ‘} ,
{27 , -0.9999999999994307 ‘} ,{28 , -0.9999999999996991 ‘} ,
{29 , -0.9999999999997756 ‘}}

(* Save Lagrange multipliers to a list to be accessed by the inequality
generator *) lagrangemultipliers = NLPModel [" Test1 "]["

ConstraintLagrangeMultipliers "];
(* Executes routine and saves the updated set of constraints to "

newconstraintsinequalities ".
Note some constraints became "True" if their respective Lagrange

multiplier = 0, these entries have been deleted . *)
newconstraintsinequalities = inequalityConstraints [trace , constraints ,
lagrangemultipliers ,3, deletevars];

(* Uncomment the line below to analyse " newconstraintsinequalities " in
the NLP solver (or alternatively change " constraints " to "
newconstraintsinequalities " in the argument of NLPParse [] *)

constraints = newconstraintsinequalities ;
"=="

" Converting equalities to inequalities \n"
" Number of inequalities converted = "3
"IDs of equalities converted to inequalities = "{3 ,26 ,29}
"IDs of equalities that have a Lagrange multiplier of zero = "{}
" Number of constraints = "29
"\ nCPU time (seconds) = "0.‘
"=="

References

[1] C. Floudas, Deterministic Global Optimization: Theory, Methods and Applications, Kluwer
Academic Publishers, 2000.

22

[2] M. Tawarmalani, N. Sahinidis, Convexification and Global Optimization in Continuous and
Mixed-Integer Nonlinear Programming, Kluwer Academic Publishers, 2002.

[3] J. More, B. Garbow, K. Hillstrom, Testing Unconstrained Optimization Software, ACM Trans-
actions on Mathematical Software 7 (1981) 17–41.

[4] J. Ronkkonen, X. Li, V. Kyrki, J. Lampinen, A Framework for Generating Tunable Test Func-
tions for Multimodal Optimization, Soft Computing - A Fusion of Foundations, Methodologies
and Applications - Special Issue on Evolutionary Optimization and Learning 15 (2011) 1689–
1706.

[5] The Optimization Firm, NLP and MINLP test problems, URL
http://www.minlp.com/nlp-and-minlp-test-problems, 2016.

[6] A. Neumaier, Global Optimization Test Problems, URL
http://www.mat.univie.ac.at/ neum/glopt/test.html, 2016.

[7] E. Smith, C. Pantelides, A Symbolic Reformulation/Spatial Branch-and-Bound Algorithm for
the Global Optimisation of Nonconvex MINLPs, Computers and Chemical Engineering 23
(1999) 457–478.

[8] L. Liberti, C. Pantelides, An Exact Reformulation Algorithm for Large Nonconvex NLPs In-
volving Bilinear Terms, Journal of Global Optimization 36 (2006) 1689–1706.

[9] G. Corliss, A. Griewank, Operator Overloading as an Enabling Technology for Automatic
Differentiation, Tech. Rep. CRPC-TR93431, Center for Research for Parallel Computing, Rice
University, Houston,TX,USA, 1993.

