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Abstract 

Hashin-Shtrikman based bounds and estimates are obtained for the linear and non-linear effective 

properties of composites in the form of a thin coating or sandwich layer.  It is assumed that the thickness 

of the layer is of the same order of magnitude as the correlation length between phases, and size effects 

thereby result.  Boundary layers exist within the coating adjacent to the substrate and to the free surface 

(in the case of a coating).  Attention is focused on two-dimensional problems by considering anti-plane 

shear of an isotropic 2-phase composite on a single-phase substrate, with microstructure prismatic 

along the direction of anti-plane shear. 

 

1.  Introduction 

Surface coatings and embedded layers are ubiquitous in engineering components, and serve a wide 

range of functions from environmental protection to low friction and wear resistance.  Indeed, the field 

of surface engineering involves the manufacture of coatings with a wide range of multifunctional 

properties.  The coating may be stiffer (and stronger) than that of the substrate, for example the surface 

layer of aluminium alloys can be converted to aluminium oxide by anodisation.  Or, the coating may 

be softer and more compliant, such as zinc-coated steel, paints, low friction polymer coatings (such as 

                                                        

1 The paper is written to mark that N.A. Fleck received The Euromech Solid Mechanics Prize 

2015 and that J.R. Willis received The Euromech Solid Mechanics Prize 2012.  
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PTFE on steel or aluminium alloy) and thermal barrier coatings.  A related geometry to the surface 

coating is the embedded layer sandwiched between two substrates.  This geometry is also ubiquitous 

and is representative of adhesive joints, the mortar between the bricks of a building, and interphases at 

grain boundaries inter alia.   

Frequently, a coating comprises a multi-phase composite with, for example, particulate reinforcement 

in order to increase its stiffness and strength.  The question arises:  what are the effective properties of 

a composite coating?  A common assumption is to use the effective properties of the bulk composite 

for that of the coating.  Whilst this assumption is accurate when the correlation length of each phase is 

much less than the coating thickness, it is less accurate when the two length scales are of comparable 

magnitude.  The presence of the substrate or a free surface perturbs the stress field within the composite 

coating.  This can be re-phrased in a more mathematical manner, as follows.  The usual Hashin-

Shtrikman variational approach for the bulk properties of a composite makes use of the infinite-body 

Green’s function in order to determine the ensemble-averaged strain field in terms of a polarization in 

stress from one phase to the next.  For the embedded layer, the infinite-body Green’s function is 

employed, whereas for a surface coating the half-space Greens function is exploited.   

The purpose of this study is to make accurate predictions for the effective properties of a surface 

composite coating or an embedded composite layer, taking into account the presence of the substrate 

of differing properties, whether linear or non-linear.  Effective properties and associated bounds are 

generated for composite coatings and for composite sandwich layers of finite thickness, based on the 

Hashin-Shtrikman approach, but suitably modified to account for the presence of a free surface in the 

case of a coating and of substrates in the case of a sandwich layer.  First, the linear properties are 

generated and then the method is modified to generate bounds and estimates for a non-linear composite 

coating.  We shall limit our scoping study to two-dimensional problems by considering anti-plane shear 

of an isotropic 2-phase composite on a single-phase substrate, with microstructure prismatic along the 

direction of anti-plane shear.   

 

2.  Statement of problem: a composite half-space in antiplane shear: the 2D linear case 

We shall consider the anti-plane shear response of a coating of height h made from a random M-phase 

composite, adhered to a monolithic substrate of height H h  made from phase 1M   material.  The 

outer top surface of the coating is subjected to a longitudinal shear traction y 
, while the base of the 

substrate is rigidly held without displacement, see Fig. 1a.  Both the coating and substrate are initially 
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treated as linear elastic, with the non-linear behaviour addressed in a subsequent section.  The origin 

of a Cartesian reference frame  , ,x y z  is placed on the top external surface of the coating, with the y-

direction aligned with the outward normal to the external surface.  Thus, the coating extends over 

0h y   , and the underlying substrate occupies  H h y h     .  The z-axis aligns with the 

direction of anti-plane shear.  Results will be presented in the limit /H h   but the recognition that 

H is actually finite is needed to ensure convergence of certain integrals during the derivation. 

A closely related problem is an M-phase composite layer of thickness h sandwiched between two 

substrates made from phase 1M  , with the assembled stack subjected to a longitudinal shear traction 

y 
, see Fig. 1b.  For this case, the origin of a Cartesian reference frame  , ,x y z  is placed on the upper 

interface of the coating, such that the coating extends over 0h y   , as shown in the figure.  In our 

study, we shall focus on the coating problem of Fig. 1a but shall include the analysis and results for the 

sandwich layer at appropriate steps in the development. 

The distribution of phases within the coating is taken to be isotropic, and each phase has a linear, 

isotropic response.  In contrast, the isotropic substrate beneath the coating is taken to be homogeneous.  

We seek the effective properties of the coating.  The single non-vanishing displacement u(x,y)  is in 

the z-direction.  The resulting (engineering) shear strain has components  ,x xe u  and ,y ye u  and 

the work-conjugate stress has the shear components x zx   and y zy  , respectively.  For later 

convenience, a Greek suffix takes the values of x or y, and a repeated Greek suffix denotes summation, 

in accordance with the usual Einstein notation.  For example, ,u  denotes ,xu  or ,yu ;   denotes 

x   or y ;  and ,u  denotes , ,xx yyu u . 

The coating comprises an M-phase random composite, and each phase r is isotropic and of shear 

modulus r .  The substrate is homogeneous and isotropic, and is made from phase 1M   of shear 

modulus 1M  .  No variation in microstructure and material properties exists along the z-axis;  recall 

that the applied surface shear traction y 
 is also along this direction.  The stress components   at a 

given point  ,x yx  are related to the strain components at that point according to  

    ,e u              (2.1) 

where   x  takes the value r  if x lies in material of type r.  Thus, 
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where the characteristic function  r x  takes the value of unity if material r is at x and equals zero 

otherwise.  We seek the overall effective response of the layer and substrate.  First, we record the 

expressions for the bulk composite, as a benchmark. 

 

2.1  A summary of the effective response of an M-phase composite in shear 

It is instructive to compare the stiffness of the composite coating with that of the bulk composite.  In 

order to do so, we assemble here the well-established results for the bulk response of a composite of 

volume fraction rp  for each phase r.  For completeness, we write the elementary bounds in the above 

notation.  The elementary bounds imply a uniform strain distribution within the coating of magnitude 

/y ye    where 
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for the Voigt bound, and  
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for the Reuss bound. 

Hashin-Shtrikman bounds and estimates for the effective shear modulus of an M-phase composite have 

been derived by Hill (1964, 1965) and Walpole (1969).  For a comparison medium of shear modulus 

0  the Hashin-Shtrikman estimate reads 
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       (2.5) 

The Hashin-Shtrikman upper bound HS  is attained by setting 0  to the largest value of shear 

modulus over all phases.  Likewise, the Hashin-Shtrikman lower bound HS  is attained by setting 0  

to the smallest value of shear modulus over all phases.  And the self-consistent estimate SC  is 
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obtained by identifying 0  with HS  in (2.5) and then solving for HS ; a convenient way to 

accomplish this in the general case is to employ iteration to convergence of (2.5). 

Now re-write (2.5) for the case of a 2-phase composite, and assume without loss of generality that 

2 1/ 1    .  Then, 
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In this case the self-consistent estimate takes the explicit form 
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3.  The effective response of a linear M-phase composite coating and sandwich layer 

Now consider the problem of a linear M-phase composite, either in the form of a coating (of height h) 

on a substrate of phase 1M  , or sandwiched between two substrates of phase 1M  , recall Fig. 1.  

The outer top surface of the coating is subjected to a longitudinal shear traction y 
, see Fig. 1a or the 

sandwiched layer is subjected to the traction y 
, see Fig. 1b.  We shall introduce below the notion of 

a correlation length    between phases, and predict the effect of the presence of the free surface and 

substrate of the coating upon its effective properties:  we shall calculate the effective shear modulus of 

the coating (and sandwich layer) as a function of the ratio / h .  The Hashin-Shtrikman approach is 

adopted as follows. 

Introduce a linear comparison material for the composite layer and the monolithic substrate(s), of 

shear modulus 0 , and re-write the constitutive relations (2.1) in the form  

           0e e        x x x x     (3.1) 

in terms of a polarization field   x .  Equilibrium dictates that the displacement field u(x,y)  satisfies  
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    0 , , 0u             (3.2) 

Consider first the case of the coating.  A solution to (3.2) is obtained in terms of a Green's function 

 ,G x x  for a point load at  ,x y   within a slab ( ) 0H h y     made from the linear comparison 

solid of shear modulus 0 .  Define G  such that it satisfies 

     0 , 0G    x x       (3.3) 

where   is the usual 2D Dirac delta function.  The solution of (3.3) can be expressed as 

        , , ,IG G G   x x x x x x       (3.4) 

where 

     0 12 , ; , ln 1/G x y x y r     ;    
2 22

1r x x y y        (3.5) 

The ‘image’ term IG  is chosen so that G  satisfies the appropriate boundary conditions, namely that 

, 0yG   when 0y   and 0G   when ( )y H h   , for all ( ( ),0)y H h   .  Its complete explicit 

form will not be needed but it is noted, for future use, that it reduces to 

2 2 2
0 2 22 ( , ; , ) ~ ln(1/ ) ; ( ) ( )IG x x y y r c r x x y y             (3.6) 

as /H h   , with y  and y  of order h  (and so x  and x  lie within or close to the surface layer). 

Here, c  is a constant that depends on H  but its exact value will not be needed in what follows.  For 

the problem of the sandwich layer, IG  is different but in the limit just mentioned it reduces to zero 

and thus may be disregarded entirely. 

Multiply (3.2) by G, multiply (3.3) by u, and subtract one from the other to obtain 

              0 , 0 , 0 , , 0, ,
u G G u G u G u    

       

                        ,,u G      x x x x x x    (3.7) 

Now integrate (3.7) over the domain   occupied by the coating and underlying substrate, and integrate 

by parts to obtain 

 0
( , )

( ) ( ) ( ) ,
G

u u d
x
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where 

 0 0 , 0 ,( ) ( ) ( ) .u dS G u n u G n      


     x x    (3.9) 

Note that the boundary conditions imposed for G  ensure that the integral in (3.8) involves only the  

prescribed boundary data, and 0u  is the solution of the given boundary value problem, for the 

‘comparison’ body with shear modulus 0 . For the present simple boundary conditions, it is known 

directly that  0 0( ) /yy H hu     x . 

The engineering shear strain follows immediately as 

   
     

 
0 2 ,u u G

e d
x x x x

 
   




     
     

       


x x x x
x x x              (3.10) 

in which the singularity at x x  in the last integral is interpreted in the sense of distributions.   Upon 

introducing the generalized function  

   
 2 ,

,
G

x x


 


 

 

x x
x x                  (3.11) 

 (3.10) can be formally re-expressed as  

       0 ,e e d   
     x x x x x  ,              (3.12) 

where 0 0xe   and 
0

0/y ye   . 

 

3.1  The statistics of the composite and the Hashin-Shtrikman approximation for the polarization 

field 

The composite is taken to be a random medium, such that  r x  is a random field.  The probability 

that material r is at x is given by the ensemble average of  r x , written as  

      r rp x x                   (3.13) 

Similarly, the probability of finding simultaneously material of type r at x and type s at x  is 
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        ,rs r sp   x x x x                 (3.14) 

The substrate ( 1r M  ) is included within this framework by taking 1( ) 1M  x  if x is in the 

substrate and zero otherwise.  Then, 1( ) 1Mp  x  in the substrate and zero in the coating, 

1 1( , ) ( ) ( )M s M sp p p  x x x x  and 1 1( , ) ( ) ( )rM r Mp p p  x x x x .   

We shall take the composite material from which the coating is made to be statistically uniform (i.e. 

the statistics are those of a stationary random process), such that  rp x  is independent of the position 

x, and equals the volume fraction rp  of phase r ;  likewise,  rsp x, x  depends only upon the relative 

position  x x  and can be rewritten as  rsp x x .  In this initial study we shall consider a 

statistically isotropic composite, such that the  rsp x x  depends only upon the radial separation 

x x , with the property that  rs r sp p px  as x  assuming that no long-range order exists. 

Symmetry dictates that 
 

0
r

x  , and so it only remains to solve for  r
y .  Now make the Hashin-

Shtrikman type approximation that the polarization  y  has the value 
   
r

y y  within each phase r , so 

that we may write 

          
1

1

M
r

y y r
r

y  




 x x                  (3.15) 

and proceed to solve for 
   
r

y y .  Upon making use of (2.1), the relation (3.1) can be re-expressed as 

       
1

0y ye   


 x x                  (3.16) 

Substitution of (2.1) into (3.12) provides for phase r, 
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1 0
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x x x x x x x x . (3.17) 

This system is over-determined and has no exact solution.  An approximation which takes into account 

two-point statistics is obtained by ensemble averaging, to give 

                
1
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 x x, x x, x x  .     (3.18) 
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An alternative derivation of this equation, based on the minimum energy principle, is given in 

Section 5.   

It remains to solve for the polarization  r
y  in each phase.  Some further reduction of (3.18) is possible, 

by noting that the two point correlation function  rsp x, x  tends to the limit r sp p   as  x x  

and tends to the value rs rp  (no sum on r) as 0 x x .  Accordingly, we re-write  rsp x, x  as 

     ,rs rs r sp p p  x, x x x                 (3.19) 

and re-express (3.18) as 

               
1 0

0 1 2

r rr
r r y y rp I I e p  


     x x x              (3.20) 
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x x x, x x x              (3.22) 

This last sum extends only to M because 1 1 0rM M s    . 

Since  s
y  is a function only of the co-ordinate y, (3.21) can be evaluated directly to give  
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  x                (3.23) 

by the following argument.  Note first that G  depends on , x x  only in the combination x x  and 

by itself satisfies (3.3).  The image term IG  has a more complex structure but IG G G   depends 

on ,x x  only in the combination x x , and its Fourier transform 

   ( , ; ) ( , ; )i xG y y e G x y y dx



                  (3.24) 

is readily found to be 



 10 

 
| || | | |( ) | |( )

0 0 0

( , ; ) tanh | | ( ) tanh | | ( ) 1 .
2 | | 2 | | 2 | |

y y y y y ye e e
G y y H h H h

  

  
     

     

      
              (3.25) 
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The result 
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1
( )yydx y y
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follows immediately by setting 0  .  Consequently, 
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x x
             (3.28) 

and (3.23) follows immediately.  For the substrate, we take 1r M   and equation (3.20) gives 

  
1 1 ( 1) 0

1 0 0 0[( ) ( ) ] ( ) / .M
M y y yy e        
                   (3.29) 

It is easily checked that this delivers the exact strain 1/y Me  
  in the substrate, regardless of the 

choice of 0 . 

 

For the coating, some further reduction of (3.22) is needed. Since both x  and x  are confined to the 

coating, the asymptotic approximation (3.6) for IG  is employed.  The integrand of (3.22) is singular 

and must be interpreted in the sense of generalized functions.  Expand  rs x, x  about the point 

x x  such that 

          , ,rs rs rs rs          x, x x x x, x x x               (3.30) 

and note that  
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     ,rs r rs sp p    x x   (no sum on r)             (3.31) 

For numerical convenience, we partition the domain of integration in (3.22) into a small square D, of 

side length d and centred on x x , and a second domain  D  comprising the surface coating and 

substrate, but external to the square domain centred on x x .  Then, (3.22) reads 

   
           D D2

r r r
I I I   x x x               (3.32) 

where 
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Provided the square domain is sufficiently small (we shall take 
3/ 10d h   in subsequent numerical 

simulations) the integral (3.33) over D is dominated by the contribution from the singularity in 

 2 ,G

y y

 

 

x x
 at x x .  In particular, note that  
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by the following argument.  Recall from (3.5(i)) that  ,G x x  is radially symmetric about x x .  

Consequently, 
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and integration of (3.3) over D provides 
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The result (3.35) follows immediately.  Upon making use of (3.31) the expression for (3.33) simplifies 

to  

    
         D

0 1
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M
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r rs s y
s

I p p 




  x x   (no sum on r)           (3.38) 

Now substitute (3.23), (3.34) and (3.38) into (3.20), to obtain the governing integral equation 
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for the polarization    
r

y x  in each phase r =1, 2,…, M.   

The ensemble average strain  ye x  in the coating can be determined from the polarization 

distribution    
r

y x  as follows.  Upon taking the ensemble average of (3.12) we obtain 
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y y yy s y
s

e e d p 




 
     

  
x x x x, x x            (3.40) 

Since  s
y  is a function only of the co-ordinate y, (3.40) simplifies to  

            0

0 1

1 M
s

y y s y
s

e y e y p y y




             (3.41) 

Note that, within the Hashin-Shtrikman approximation, the response of the coating does not depend 

upon the properties of the substrate. 

 

Additional assumption:  the two phase composite 

At this stage in the calculation we specialise to the case of a two phase medium, M =2, with isotropic 

statistics in order to simplify the third term on the left-hand side of (3.39).  First, note the connections 

              11 1 1 12 1 2 21 1 2 22 2 2 1 2p p p p p p p p p p p p p p h r         x x x x  (3.42) 
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where the correlation functions can be expressed by a specified radial function  h r  since the statistics 

are taken to be isotropic.  Substitution of these connections into (3.19) gives 

    11 22 12 21 1 2p p h r            (3.43) 

For simplicity, we shall follow the choice made by Smyshlyaev and Fleck (1995) and Drugan (2003), 

and take 

       /rh r e    (3.44) 

so that   is a correlation length scale for the microstructure.  (Drugan showed that the exponential 

two-point correlation function gives excellent agreement with the result calculated from the Verlet-

Weis improvement to the Percus-Yevick model in 3D, see Figure 1 of Drugan (2003).  We assume a 

similar functional form in the 2D case.) 

 

4.  Hashin-Shtrikman bounds and self-consistent estimates 

There remains choice in the value of shear modulus for the comparison medium.  First, take the case 

0 1  , second 0 2   and third, consider the self-consistent case.  

(i)  The choice 0 1  .  The polarization    
1

y y   vanishes in phase 1.  Then,    
2

y y   within phase 

2 of the coating is obtained by substituting (3.43) into (3.39), to give 

          
  

 
           
2 22

1 1

2 1 1

2 1 C
y yy y yD

p
d p h r


   





 

       
   x x x, x x    (4.1) 

where 2 1/    and the domain of integration C  is restricted to that of the coating since the 

contribution from the substrate vanishes.  The strain distribution within the coating follows 

immediately from (3.41) to give, 

  
   
2

2

1

y y
y

p y
e y

 



 
       (4.2) 

in addition to a uniform strain of   1/ye y    (and vanishing polarisation) within the substrate. 

Note that this solution corresponds to a Hashin-Shtrikman lower bound on energy for the case where 

phase 2 is stiffer than phase 1.  Similarly, the solution corresponds to a Hashin-Shtrikman upper bound 
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on energy for the case where phase 2 is more compliant that phase 1.  The effective average shear 

modulus across the coating   is obtained from the average value of  ye y  across the coating, such 

that 

  

 
0

y

yh

h

e y dy











      (4.3) 

The integral equation (4.1) is solved using standard MATLAB routines by sub-dividing the thickness 

of the coating into a large number n of sub-layers, and by assuming that    
2

y y   is piecewise constant 

within each sub-layer.  The operator  x ,xyy   is expressed in algebraic form by substituting (3.4) 

into (3.11), but the expression is omitted here for the sake of brevity.   

(ii)  The choice 0 2  .  Then, the polarization vanishes in phase 2 of the coating.  The polarization 

   
1

y y   within the coating is obtained by substituting (3.43) into (3.39), to give 
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y yy y yD
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   x x x, x x      (4.5) 

where the domain of integration C  is again restricted to that of the coating.  The strain distribution 

within the coating follows immediately from (3.41) to give 

  
   
1

1

2

y y
y

p y
e y

 



 
       (4.6) 

Note that this solution corresponds to a Hashin-Shtrikman lower bound on energy for the case where 

phase 1 is stiffer than phase 2.  Similarly, the solution corresponds to a Hashin-Shtrikman upper bound 

on energy for the case where phase 1 is more compliant that phase 2.  The effective average shear 

modulus across the coating   is again given by (4.3).  

As discussed above for case (i), the integral equation (4.5) is solved using standard MATLAB routines 

by sub-dividing the thickness of the coating into a large number n of sub-layers, and by assuming that 

   
1

y y   is piecewise constant within each sub-layer. After    
1

y y   has been determined, the strain 

distribution  ye y  within the coating is calculated via (4.6). 



 15 

(iii)  A self-consistent estimate is obtained by judicious choice of the shear modulus of the comparison 

solid 0  in (3.39).  We propose an iterative procedure, such that the average shear modulus over the 

height of the coating   is calculated for any assumed value of linear comparison solid, 0 .  As an 

initial guess, we equate 0  to the Hashin-Shtrikman self-consistent value for a bulk composite.  Then, 

we solve for    
r

y y   within each phase r =1, 2 of the coating by solving the pair of integral equations 

(3.39).  The ensemble average shear strain distribution within the coating is specified by (3.41).  Next, 

take the average value of  over the height h of the coating and denote this as ye .  Then, the 

average shear modulus is /y ye   and we update our choice for 0 .  In turn,    
r

y y  ,  ye y  

and   are calculated for the updated value of 0 , and so on until a converged solution is obtained for 

0 .   

 

5.  Non-linear variational principle 

5.1  Upper bound 

Consider a composite with an isotropic distribution of isotropic non-linear phases.  Assume that each  

phase has a power-law response, such that the strain energy density for phase r is given by 

  
1

0

01

N

r
r

e e
w e

N e





 
  

  
       (5.1) 

in terms of a strength r , hardening exponent N<1 and an effective strain  

  
1/2

e e e           (5.2) 

We obtain an approximate solution in this case by developing a scheme that takes some ideas from the 

procedure of Ponte Castañeda (1991, 1992) for finding an upper-bound estimate for the nonlinear 

response of a statistically-uniform composite.  This starts from a variational principle for a finite body, 

so we define the domain V  to be our layered structure, restricted to the range L x L   , with .L H   

Zero tractions will be applied on the ends x L  .  The problem for this finite body can be formulated 

as the minimum energy principle 

ey ¢y( )
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Vu K
U d w e e

V
  



  
  x x      (5.3) 

where 

 

1

( , ) ( ) ( )
M

r r
r

w e w e  


x x        (5.4) 

in the composite layer, and takes the form (5.1), with 1r M   in the substrate.  K  is the set of 

displacements that are zero on the base ( )y H h    of the substrate, and 
0
  is any stress field that 

satisfies the equilibrium equation and the traction boundary conditions; in the present context, we adopt 

0 0x   and
0
y y  . 

Now following Ponte Castañeda (1991, 1992), we introduce a comparison linear composite with the 

same microgeometry as the actual composite.  This linear composite has energy density function  

 1 2
2

 ( , ) ( ) ,Lw e e x x        (5.5) 

where ( ) x  takes the value r  in phase r .  It follows immediately that 

                     01
inf ( , ) max{ ( , ) ( , )}L LVu K e

U d w e w e w e e
V 

    


 
    

  
 x x x x     (5.6) 

for any choice of the parameters r .  Explicitly, in phase r , the maximum in (5.6) is attained when 

   

1

1

0 0

Nr

r

e

e e





 
  
 

      (5.7) 

and routine manipulation gives 
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1
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{ ( , ) ( , )}

2(1 )
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N

Nr
L r

e r

N
w e w e e

N e
 








 
   

  
x x  .   (5.8) 

The infimum over u  in (5.6) cannot be calculated explicitly but it can be approximated using the 

Hashin-Shtrikman methodology already described, which employs a trial displacement field generated 

by the representation (3.9) relative to a comparison medium with shear modulus 0  [except that   is 
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replaced by the domain V  of width 2L ] in conjunction with the approximation (3.15) for  . 

Explicitly2, in terms of  , 

      2 01
02

1
inf [ ( )] max{ ( , ) ( , ) }[ y y LV e

U d e e w e w e
V 

 


        x x x x  

               0 11 1
02 2

( ) ( )( ( ) ) ( ) ( ) ( , ) ( )]
V

e d                     x x x x x x x x x   (5.9) 

The infimum here is attained when the parameters defining   satisfy (3.18) (or equivalently (3.39)), 

and then 

             0 2 0 01 1
02 2

1
[ ] ( ) max{ ( , ) ( , )} .[ ]y y y y LV e

U d e e e w e w e
V 

            x x x x              (5.10) 

It is known already, from study of the linear problem, that the coating and substrate do not interact in 

this Hashin-Shtrikman approximation. Consider first the integral over the region SV  occupied by the 

substrate, in the limit as L  .  There is only one phase, 1r M  , and so only one polarization 

which satisfies equation (3.29).   

It follows that 

            0 2 0 01 1
02 2

1
[ ] ( ) max{ ( , ) ( , )}

S
y y y y LV e

d e e e w e w e
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.              (5.11) 

This expression is minimised with respect to 1M   when 

  

1 1

1 0 1( ) ( ) .

N

N N
M M ye  




                 (5.12) 

Substituted back into (5.11), this produces the result 

                                                        

2  This calculation uses the long-established identity 0      - see for instance Willis (1977). 
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                 (5.13) 

which is the exact complementary energy density in the substrate. 

Consider now the contribution to U  from the coating.  It is convenient to define HS
CU  as the right side 

of (5.9), except that V  is replaced by CV , that is, the intersection of V  with the coating.  Evaluation 

of the infimum follows exactly as in the linear case and, in the limit as L  , reduces to  
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01 1
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              (5.14) 

where  

 
0( ) ( )1

( )r r
y yh
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h

 


                  (5.15) 

and ( ) ( )r
y y  satisfy equations (3.18).  With this notation,  

 
0 0 ( )

0
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                  (5.16) 

and it is elementary to check that (5.14) reduces to 
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              (5.17) 

where   is defined as in (4.3).  Note that HS
LU  2 /( ) 2y    represents the average over the 

coating of the potential energy associated with loading the comparison linear composite. Optimisation 

of (5.17) with respect to the parameters r  is further pursued in the case 2M   . 

 

2-phase composite layer 

Further reduction is possible for the case of a two-phase layer, as follows. For the Hashin-Shtrikman 

upper bound, choose 0 1   and write 2 1/s   . Then for the Hashin-Shtrikman upper bound, 
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we require 0 1s  .  Since   is homogeneous of degree 1 in 1 2( , )  , we can write 

 1 ( )g s   ,                  (5.18) 

where the function ( )g s  is known numerically from (3.2a).  Choosing 1  so as to minimise (5.17), 

with s  fixed, gives 

                                

1

2 21 1 2
1 1 11

1 0 1 21 2( ) ( ) ( )
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ye g s p p s   



 

   

  
    

    

              (5.19) 

and then HS
CU  can be expressed as 
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where 
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              (5.21) 

The corresponding value of the average shear strain in the coating is 

 

1

0 .
HS N

yC
y HS

y C

U
e e



 





 
     
   

                (5.22) 

Finally, the minimum of HS
CU  with respect to s , and the corresponding estimate for ye  , are obtained 

by minimising HS
C  as given by equation (5.21).  This is done numerically using the MATLAB routine 

‘fminband’:  its algorithm is based on golden section search and parabolic interpolation.  For the 

presentation of numerical results below, we shall label the minimum value of HS
C  as   . 

 

5.2  Lower estimate and self-consistent estimate 
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A similar procedure to obtain strict Hashin-Shtrikman lower bounds for nonlinear composites is not 

available.  Instead, estimates can be derived based on the linear Hashin-Shtrikman lower bounds and 

self-consistent estimates in the manner suggested by Ponte Castañeda and De Botton (1992).  The idea 

is to evaluate (5.17), with   replaced by the Hashin-Shtrikman lower bound to produce a 'lower 

estimate' for  g s  in (5.21).  Now minimise HS
C  as given by equation (5.21) with respect to s, and 

write the minimum value of HS
C  as    for later presentation of numerical results.  Likewise,   in 

(5.17) is replaced by the Hashin-Shtrikman self-consistent estimate SC  to obtain a self-consistent 

strength HS
SC C   upon minimisation of (5.21) with respect to s. 

 

6.  Results 

We begin by giving selected results for the Hashin-Shtrikman upper bound (HS+), lower bound (HS-) 

and self-consistent approximation (SC) for the linear composite linear composite layer, both in the 

form of a coating and a sandwich layer.  The non-linear case is then reported for selected values of 

strain hardening exponent in the range N = 0 to 0.3.   

 

6.1  Linear composite 

Representative results for the distribution of shear strain within the surface coating are given in Fig. 2 

for 2 1/ 10   , 1 2 0.5p p  , and the correlation length scale   equal to h/10.  Boundary layers of 

thickness about   exist at the boundaries of the coating:  the shear strain is amplified due to the 

presence of the free surface.  In similar fashion, the ensemble-averaged value of shear strain is 

increased adjacent to the lower interface.  This pattern is perhaps not surprising when the substrate is 

‘more compliant’ than the coating.  Conversely, if the substrate is ‘less compliant’ than the coating, the 

opposite trend might be expected. What must always be true is that the ensemble mean stress y   

must equal y 
 , for any value of y, including y h  .  The strain profile, however, depends on the 

‘effective response’ of the layer, which is sensitive to non-local interactions and so should depend on 

the modulus of the substrate.  That it does not is a consequence of the Hashin-Shtrikman approximation. 

Since, however, this approximation is based on a variational structure (outlined explicitly in section 5), 

it definitely provides bounds (and stationary estimates) for the (complementary) energy, as reflected in 

the ‘effective stiffness’   of the layer as a whole.  More detailed exploration of the effect of the 
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substrate on the effective response would require either allowance for higher-order statistics or direct 

numerical simulation. 

Predictions for the averaged shear stiffness of the coating and sandwich layer, normalized by 1 , are 

plotted as a function of / h  in Fig. 3, for 2 0.5p   and 2 1/ 10   .  Upper bounds, lower bounds 

and self-consistent estimates are included.  All values tend to the corresponding Hashin-Shtrikman 

estimates for the effective modulus of the bulk composite as / 0h  .  For both coating and sandwich 

layer, 1/   decreases with increasing ratio of  /h: the boundary layers increase the local compliance 

and lead to a drop in overall macroscopic stiffness of layer.  The wide separation of the bounds leaves 

uncertainty about the exact value, but all our estimates display the same trend.  Our ‘recommended’ 

estimate is the self-consistent (SC).  We note in passing that for the choice 2 0.5p   the self-consistent 

bulk-value (2.8) reduces to SC 1 2   , which is exact for a material whose phases are distributed 

symmetrically and so can be interchanged, see for example Milton (2002). 

The sensitivity of macroscopic stiffness of the composite layer (averaged over the thickness) is 

explored in Fig. 4, for the extreme cases of / 0,1h  , with 2 1/ 10    and for all values of volume 

fraction 2p  of phase 2.  Results for the coating are given in Fig. 4a and for the sandwich layer in Fig. 

4b.  We emphasise that the choice / 0h   is the conventional formulation for a bulk 2-phase 

composite (boundary layers of vanishing thickness), and is the same for both coating and sandwich 

layer.  For the choice / 1h  , the layer stiffness (whether coating or sandwich layer) is below that of 

the conventional bulk composite ( h   ) but increases with increasing 2p  in a similar manner.  Note 

that the self-consistent estimate is close to HS+ at 2p  close to zero, and lies close to HS- at 2p  close 

to unity, for both / 0h   and 1.   

 

6.2  Non-linear composite 

Estimates HS
C  of the effective flow strength of the coating and sandwich layer are determined by 

minimization of (5.21) with respect to the ratio s of moduli in the linear comparison medium, as detailed 

in section 5, for the case of an upper bound   , lower estimate    and self-consistent estimate .HS
C   

Results are limited to the choice 2 1/ 10    and N=0.1 in Figs. 5 and 6:  1/HS
C   is plotted as a 

function of 2p  (with / 0,1h  ) in Fig. 5 whereas 1/HS
C   is plotted as a function of / h  (with 2p
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=0.5) in Fig. 6.  The plot of 1/HS
C   versus 2p  in Fig. 5 is analogous to that of 1/   versus 2p  in 

Fig. 4, for the linear case, with similar trends.  It is clear from Fig. 5 that the upper bound and lower 

estimate are more widely spaced for the strongly non-linear case (N=0.1) than for the linear case of 

Fig. 4.  There is a moderate drop in both upper bound strength and the self-consistent strength when 

/ h  is increased from zero to unity, due to the emergence of soft boundary layers within the coating 

(Fig. 5a) and sandwich layer (Fig. 5b).  And, as 2p  is increased from zero to unity, the self-consistent 

estimate for HS
C  increases from the lower estimate to the upper bound.   

The sensitivity of effective flow strength of the coating and sandwich layer to length scale / h  is 

shown in Fig. 6.  As for the linear case (recall Fig. 3), the strength drops with increasing / h  for all 

bounds and estimates, and the drop in strength is greater for the coating than for the sandwich layer. 

Finally, it is instructive to plot 1/HS
C   as a function of / h  for selected values of strain hardening 

exponent N, see Fig. 7a for the coating and Fig. 7b for the sandwich layer.  In both plots we limit 

attention to 2 1/ 10    and 2p =0.5.  We note only a mild effect of N upon the strength over the 

practical range 0 0.3N  .  Further, we note that the value 1/HS
C   for the self-consistent estimate 

is independent of N at / 0h  .  Direct analytical minimisation of HS
C  in (5.21) is possible for the 

case 2p =0.5, with the result 1 2
HS
C   , which closely parallels the result  for the linear composite 

1 2SC   . 

 

7.  Concluding Remarks 

A Hashin-Shtrikman variational approach is developed for composite layers, with strict upper and 

lower bounds for the linear solid, and bounds and estimates for the non-linear case.  Our study reveals 

the existence of boundary layers of increased compliance at interfaces, including the free surface.  For 

the non-linear case, the effective strength of the layer is only mildly sensitive to the choice of strain 

hardening exponent.  The analytical development shows explicitly that the linear (and non-linear) 

effective responses of a layer are independent of the choice of substrate modulus.  Further work is 

needed to explore the accuracy of this somewhat surprising result by performing explicit finite element 

simulations or by assuming 3 point statistics (rather than 2-point statistics as assumed here). 
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Figure Captions 

 

Fig. 1.  (a) A coating and (b) a sandwich layer, comprising a two phase composite adhered to a 

substrate, under an imposed longitudinal shear traction y  . 

 

Fig. 2.  Strain distribution within 2-phase composite coating for 2 1/ 10   , 1 2 0.5p p  , 

/ 0.1h  .  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower bound 

and SC denotes self-consistent estimate.   

 

Fig. 3.  Effective shear modulus of composite coating and sandwich layer for 2 1/ 10    and

1 2 0.5p p  .  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower 

bound and SC denotes self-consistent estimate. 

 

Fig. 4.  Effective shear modulus of composite coating and sandwich layer for the choice / 0h  , 1, 

with 2 1/ 10   .  (a)  coating and (b)  sandwich layer.  HS+ denotes Hashin-Shtrikman upper bound, 

HS- denotes Hashin-Shtrikman lower bound and SC denotes self-consistent estimate.  

 

Fig. 5.  Effective strength for N=0.1, 2 1/ 10    and / 0,1h   for (a)  coating and (b)  sandwich 

layer.  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower estimate 

and SC denotes self-consistent estimate. 

 

Fig. 6.  Effective strength of composite coating and sandwich layer for N=0.1, 2 1/ 10    and 

2 0.5p  .  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower 

estimate and SC denotes self-consistent estimate. 

 



 25 

Fig. 7.  Effective strength for 2 1/ 10   , 2 0.5p   and selected values of N for (a)  coating and (b)  

sandwich layer.  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower 

estimate and SC denotes self-consistent estimate. 
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Fig. 1.  (a) A coating and (b) a sandwich layer, comprising a two phase composite adhered to a 

substrate, under an imposed longitudinal shear traction y  . 
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Fig. 2.  Strain distribution within 2-phase composite coating for 2 1/ 10   , 1 2 0.5p p  , 

/ 0.1h  .  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower bound 

and SC denotes self-consistent estimate.   

 

Fig. 3.  Effective shear modulus of composite coating and sandwich layer for 2 1/ 10    and

1 2 0.5p p  .  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower 

bound and SC denotes self-consistent estimate. 



 28 

 

 

Fig. 4.  Effective shear modulus of composite coating and sandwich layer for the choice / 0h  , 1, 

with 2 1/ 10   .  (a)  coating and (b)  sandwich layer.  HS+ denotes Hashin-Shtrikman upper bound, 

HS- denotes Hashin-Shtrikman lower bound and SC denotes self-consistent estimate.  
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Fig. 5.  Effective strength of composite coating and sandwich layer for N=0.1, 2 1/ 10    and 

/ 0,1h   for  (a)  coating and (b)  sandwich layer.  H+ denotes Hashin-Shtrikman upper bound, HS- 

denotes Hashin-Shtrikman lower estimate and SC denotes self-consistent estimate. 
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Fig. 6.  Effective strength of composite coating and sandwich layer for N=0.1, 2 1/ 10    and 

1 2 0.5p p  .  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower 

estimate and SC denotes self-consistent estimate. 
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Fig. 7.  Effective strength for 2 1/ 10   , 2 0.5p   and selected values of N for (a)  coating and (b)  

sandwich layer.  HS+ denotes Hashin-Shtrikman upper bound, HS- denotes Hashin-Shtrikman lower 

estimate and SC denotes self-consistent estimate. 


