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Abstract

A test for time-varying correlation is developed within the frame-

work of a dynamic conditional score (DCS) model for both Gaussian

and Student t-distributions. The test may be interpreted as a La-

grange multiplier test and modified to allow for the estimation of mod-

els for time-varying volatility in the individual series. Unlike standard

moment-based tests, the score-based test statistic includes information

on the level of correlation under the null hypothesis and local power

arguments indicate the benefits of doing so. A simulation study shows

that the performance of the score-based test is strong relative to exist-

ing tests across a range of data generating processes. An application
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to the Hong Kong and South Korean equity markets shows that the

new test reveals changes in correlation that are not detected by the

standard moment-based test.
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1 Introduction

The possibility that the correlations between financial assets are changing

over time is an important issue in many areas of finance, such as portfolio

construction and risk management; see Lumsdaine (2009) for a recent dis-

cussion. The aim here is to provide a test for time-varying correlation that is

powerful, yet simple to implement. The proposed approach is based on the

dynamic conditional score (DCS) models recently developed by Creal et al

(2011, 2013) and Harvey (2013). It is shown that Lagrange multiplier (LM)

tests can be constructed from the autocorrelations of the conditional scores,

with a modified test taking account of estimated dynamic variances. Without

this modification the test is based on a simple portmanteau statistic. The

scores incorporate information on the level of correlation, and local power ar-

guments indicate that the resulting test can be expected to be more powerful

as the unconditional correlation moves away from zero. This is not the case

with the standard moment-based portmanteau test, introduced by Bollerslev

(1990), which simply uses the cross-product of standardised residuals.

The tests are developed for a bivariate Gaussian model, with a subsequent

extension to the bivariate Student t-distribution. Monte Carlo experiments

are used to compare the performance of these tests with existing tests, includ-
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ing those of Tse (2000, 2002) and Bera and Kim (2002). The results show

that, on the whole, the proposed tests perform much better than existing

tests across a range of data generating processes. Although the competing

tests, which include portmanteau tests, residual regression tests and Lagrange

multiplier tests, are based on a variety of approaches, they generally rely on

the cross-product of standardised residuals to identify potential time vari-

ation and so share the same weakness relative to the scores. This point is

highlighted by an application to the Hong Kong and South Korean equity

markets, where it is found that the score-based tests can identify changing

correlations that are undetectable by a moment-based test.

The paper is organised as follows. Section 2 reviews the bivariate DCS

model for time-varying correlation and Section 3 shows how the new tests

can be derived as LM tests within this framework. Section 4 presents the

Monte Carlo results and Section 5 extends the theory and Monte Carlo study

to the bivariate t-distribution. The application is reported in Section 6 and

Section 7 concludes.
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2 The DCS Model for Time-Varying Corre-

lation

Consider a bivariate Gaussian model in which the observations, y1t and y2t,

have zero means and constant variances, but the correlation between them

changes over time. The covariance matrix is

Σtpt−1 =

 σ21 ρt|t−1σ1σ2

ρt|t−1σ1σ2 σ22

 ,

where ρt|t−1 denotes the correlation, which changes in a way that depends on

information available at time t− 1. Rather than working directly with ρt|t−1,

a transformation is applied so as to keep it in the range, −1 < ρt|t−1 < 1.

The link function

ρt|t−1 =
exp(2γt|t−1)− 1

exp(2γt|t−1) + 1
, t = 1, ..., T, (1)

is eminently suitable in that it allows the new variable, γt|t−1, to be uncon-

strained.

The log-density of the t− th pair of observation, conditional on informa-
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tion at time t− 1, is

ln f(y1t, y2t;ψ, λ1, λ2) = − ln 2π − lnσ21 − lnσ22 −
1

2
ln(1− ρ2t|t−1)

− 1

2(1− ρ2t|t−1)

(
y1t

2

σ21
−

2ρt|t−1y1ty2t

σ1σ2
+
y2t

2

σ22

)
,

where ψ denotes the parameters upon which ρt|t−1, and hence γt|t−1, depend.

The score with respect to γt|t−1, that is ∂ ln ft/∂γt|t−1, can be written in

terms of ρt|t−1 as

ut =
1

4
(x1t + x2t)

2
1− ρt|t−1
1 + ρt|t−1

− 1

4
(x1t − x2t)2

1 + ρt|t−1
1− ρt|t−1

+ ρt|t−1, (2)

where xit = yit/σi, i = 1, 2. We can also write

ut =
1

1− ρ2t|t−1

[
(1 + ρ2t|t−1)x1tx2t − ρt|t−1(x21t + x22t)

]
+ ρt|t−1. (3)

It is not diffi cult to see that E(ut) = 0.

The correlation in the DCS model is made to change by letting γt|t−1

be a linear combination of past conditional scores. It can be seen imme-

diately from (3) that the score reduces to x1tx2t when ρt|t−1 = γt|t−1 = 0,

but more generally the term involving squared observations makes important
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Figure 1: Plot of score, u, against correlation, ρ, for x1 = x2 = 2 (dash) and
x1 = 4, x2 = 1.

modifications capturing information on the level of correlation. For example,

x1t = x2t is evidence of strong positive correlation, so there is little reason to

change γt|t−1 when ρt|t−1 is close to one but a big change is needed if ρt|t−1 is

negative; see the dashed line in Figure 1, where x1t = x2t = 2. The solid line,

which is for x1t = 4 and x2t = 1, tells a different story. When ρt|t−1 is close

to one, it needs to be reduced and hence the score is negative. By contrast,

the response of x1tx2t is the same for all values of ρt|t−1.

The most common way of capturing dynamic correlation is by the first-
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order model

γt|t−1 = (1− φ)ω + φγt−1|t−2 + κut−1, t = 2, ..., T, (4)

where ut is the score and with γ1|0 = ω; see Harvey (2013, ch 7). When scale

(standard deviation in a Gaussian model) is time varying, an exponential

link function, ensures that it is always positive. The first-order model is

λi,t|t−1 = ωi(1− φi) + φiλi,t−1|t−2 + κiuit−1, i = 1, 2, (5)

where λi,t|t−1 is the logarithm of scale, λi,1|0 = ωi, and uit = ∂ ln ft/∂λi,t|t−1,

i = 1, 2. The covariance matrix can be broken down into two parts, one for

the scales and the other for the correlation, that isΣtpt−1 = Dtpt−1Rtpt−1Dtpt−1,

where the diagonal matrix Dtpt−1 has elements exp(λ1,t|t−1) and exp(λ2,t|t−1)

and

Rtpt−1 =

 1 ρt|t−1

ρt|t−1 1

 . (6)

Remark 1 The information matrix for λ1, λ2 and γ in the static model de-
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pends only on γ. Expressed in terms of ρ it is

I


λ1

λ2

γ

 =


2−ρ2
1−ρ2

−ρ2
1−ρ2 −ρ

−ρ2
1−ρ2

2−ρ2
1−ρ2 −ρ

−ρ −ρ 1 + ρ2

 . (7)

If the score vector for λ1, λ2 and γ is pre-multiplied by the inverse of the

information matrix, as is often the practice in formulating DCS models, the

modified score for γt|t−1 becomes

ut =
1

1− ρ2t|t−1

[
x1tx2t −

ρt|t−1
2

(x21t + x22t)
]

(8)

In this case, the variance of ut is unity in all time periods and so the con-

dition |φ| < 1 ensures that γt+1|t is covariance stationary. As regards the

volatility equations, (5), the u′its are the same as they would be in a uni-

variate model (apart from a factor of 1/2). In other words the score-driven

approach suggests that the volatility for each series is driven solely by its own

movements.
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3 Testing

The model of the previous section provides a framework for testing for time

varying correlation. Under the null hypothesis of constant correlation in a

Gaussian model with constant variances, the score for γ is

ut =
1

4
(x1t + x2t)

21− r
1 + r

− 1

4
(x1t − x2t)2

1 + r

1− r + r, (9)

where r is the sample correlation and the x′its are standardized observations,

that is xit = yit/si, i = 1, 2, where s2i is the sample variance. The basic

portmanteau statistic is

Qu(P ) = T
P∑
j=1

r2u(j), (10)

where ru(j) is the j−th sample autocorrelation of ut. The Ljung-Box statistic

Q∗u(P ) = T (T + 2)
P∑
j=1

(T − j)−1r2u(j),

may also be used; the asymptotic distribution of both statistics under the null

hypothesis is χ2P . When r = 0 the Qu(P ) statistic reduces to the moment-

based portmanteau test of Bollerslev (1990), because ut = x1tx2t.
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When changing volatility is estimated, the residuals are redefined as xit =

yit/σ̃it, i−1, 2, where the σ̃′its is obtained from an EGARCH volatility model.

We shall see in the first sub-section that Qu(P ) is an LM test under constant

volatility, but with changing volatility an extra term must be added.

The first sub-section below derives the LM test. The second sub-section

uses a local power argument to demonstrate the value of using the scores

to capture information on the level of correlation. This is then followed by

a discussion of the choice of P and the use of an information criterion to

determine a suitable value. The test of Nyblom (1989), which is also based

on the scores of (9), is given in the last sub-section.

3.1 Lagrange multiplier tests

The portmanteau test may be derived as an LM test of the null hypothesis

that κ0 = κ1 = .... = κP−1 = 0, against the alternative κi 6= 0, i = 0, ..., P−1,

in the dynamic model

γtpt−1 = ω + κ0ut−1 + ...+ κP−1ut−P , t = 1, ..., T. (11)
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A model of this kind may be regarded as an approximation to other specifi-

cations, such as (4), which may be expressed as infinite linear combinations

of past scores.

Let θ = (ω, λ1, λ2)
′, where λi = lnσi, i = 1, 2, denote fixed parameters

other than those in κ = (κ0, .., κP−1)
′. The LM test statistic is

LMu(P ) = 1
T

[
∂ lnL/∂κ′ 0′

] Iκκ Iκθ

Iθκ Iθθ


−1 ∂ lnL/∂κ

0

 , (12)

where Iκκ denotes the information matrix for κ for a single observation and

so on. For the t-th observation

∂ ln ft
∂κ

=
∂ ln ft
∂γtpt−1

∂γtpt−1
∂κ

= ut
∂γtpt−1
∂κ
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and so Iκκ is

E

[
∂ ln ft
∂κ

∂ ln ft
∂κ′

]
κ=0

= EEt−1

[
∂ ln ft
∂γtpt−1

∂γtpt−1
∂κ

∂ ln ft
∂γtpt−1

∂γtpt−1
∂κ′

]
= E

[
Et−1

[(
∂ ln ft
∂γtpt−1

)2] ∂γtpt−1
∂κ

∂γtpt−1
∂κ′

]

= E

[(
∂ ln ft
∂γ

)2]
E

[
∂γtpt−1
∂κ

∂γtpt−1
∂κ′

]
= σ2uE

[
∂γtpt−1
∂κ

∂γtpt−1
∂κ′

]
,

where Et−1 denotes the expectation conditional on information at time t− 1

and σ2u is the variance of the score, which, under the null hypothesis, is fixed.

We have

∂γtpt−1
∂κj

=
P∑
i=1

κi−1
∂ut−i
∂κj

+ ut−j−1, j = 0, ..., P − 1,

but under the null hypothesis κ = 0, so ∂γtpt−1/∂κ = ut−1,where ut−1 =

(ut−1, ut−2,..., ut−P )′. Hence

E

(
∂γtpt−1
∂κ

∂γtpt−1
∂κ′

)
= σ2uIP ,
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where IP is a P × P identity matrix, and so Iκκ = σ4uIP . Furthermore

E

[
∂ ln ft
∂θ

∂ ln ft
∂κ′

]
κ=0

= EEt−1

[
∂ ln ft
∂θ

∂ ln ft
∂γtpt−1

∂γtpt−1
∂κ′

]
= E

[
∂ ln ft
∂θ

∂ ln ft
∂γ

]
E(ut−1).

Note that because ω appears in the dynamic equation

∂ ln ft
∂ω

=
∂ ln ft
∂γtpt−1

∂γtpt−1
∂ω

but under the null hypothesis ∂γtpt−1/∂ω = 1.HenceE(∂ ln ft/∂ω.∂ ln ft/∂γ) =

E(u2t ) = σ2u. Similarly E(∂ ln ft/∂λi.∂ ln ft/∂γ) = −ρ, i = 1, 2. Thus Iθκ = 0

because E(ut−1) = 0 and so

LMu(P ) =
1

T

∂ lnL

∂κ′
I−1κκ

∂ lnL

∂κ
. (13)

On substituting for Iκκ and noting that

∂ lnL

∂κj
=
∑ ∂ ln ft

∂γtpt−1

∂γtpt−1
∂κj

=
∑

utut−1−j, j = 0, 1, ..., P − 1,

the Qu(P ) statistic, (10), is obtained.
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Remark 2 Although the form of the link function is important for estima-

tion, it does not affect the LM statistic in (10). Indeed other link functions

could be used.

The above derivation is as Harvey (2013, sub-section 2.5.1), but stated

more generally, and it applies to any time-varying parameter in a DCS model

when the other parameters are fixed1. Now suppose some of the other pa-

rameters, denoted λ, are time-varying, with dynamics depending on a set of

parameters ψ, but not depending on γtpt−1. In the present context this means

that each volatility comes from a univariate model; see the Remark at the end

of Section 2. Suppose, for simplicity, that the only other constant parameter

is ω. Then θ = (ψ′, ω)′. Assuming identifiability under the null hypothesis,

the formula for a partitioned inverse means that the LM statistic, (12), can

be written

LMu(P ) =
1

T

∂ lnL

∂κ′
I−1κκ

∂ lnL

∂κ
+

1

T

∂ lnL

∂κ′

[
I−1κκIκθ

(
Iθθ − I′κθI

−1
κκIκθ

)−1
I′κθI

−1
κκ

] ∂ lnL

∂κ
,

where the second term on the right hand side is positive semi-definite2 re-

1Calvori et al (2014) also propose tests based on conditional scores but develop the
methods in a different direction.

2This follows from that fact that under identifiability, the full information matrix in (12)
will be positive definite. It then follows that the sub matrix I−1κκ and its Schur complement
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sulting in a modified LM statistic that cannot be less than the LM statistic

with fixed λ, which is the portmanteau statistic of (13). Hence the Qu(P )

test is more conservative than the LM test because Qu(P ) ≤ LMu(P ).

The second term in the LM statistic acts as a correction for the estimation

of ψ and it can be shown to be equivalent to the result by Pierce (1982),

which has been used in the GARCH literature to correct specification tests

based on estimated residuals; see, for example, Bera and Zuo (1996) and Tse

(2002). We have Iκθ = [I′κψ, I′κω]′ = [I′κψ, 0′]′ because Iωκ = 0; see above

(13). Following on from Pierce (1982),

E

[
∂ ln ft
∂ψ

∂ ln ft
∂κ′

]
κ=0

= E

[
∂2 ln ft
∂ψ∂κ′

]
κ=0

= E

[
∂

∂ψ

(
∂ ln ft
∂γ

∂γ

∂κ′

)]
= E

[
∂(utu

′
t−1)

∂ψ

]
= E

[
∂ut
∂ψ

ut−1 + ut
∂u′t−1
∂ψ

]
= E

[
∂ut
∂ψ

ut−1

]
+ E

[
Et−1

(
ut
∂u′t−1
∂ψ

)]
= E

[
∂ut
∂ψ

ut−1

]
= E

[
∂2 ln ft
∂ψ∂γ

ut−1

]
.

Once the model has been estimated under the null hypothesis, the above

expression can be approximated numerically.

Suppose that Iλγ does not depend on λ. This is the situation here when

EGARCH models are used; see (7). Consider one of the elements, λi, in λ.

(
Iθθ − IκθI−1κκI′κθ

)−1
will also be positive definite; see Abadir and Magnus(2005, p 228).
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Dropping the subscript on λi, we have

Iψκ = E

[
∂ ln ft
∂ψ

∂ ln ft
∂κ′

]
κ=0

= EEt−1

[
∂ ln ft
∂λtpt−1

∂λtpt−1
∂ψ

∂ ln ft
∂γtpt−1

∂γtpt−1
∂κ′

]
= E

[
Et−1

[
∂ ln ft
∂λtpt−1

∂ ln ft
∂γtpt−1

]
∂λtpt−1
∂ψ

∂γtpt−1
∂κ′

]
= E

[
∂ ln ft
∂λ

∂ ln ft
∂γ

]
E

[
∂λtpt−1
∂ψ

∂γtpt−1
∂κ′

]
= −ρE

[
∂λtpt−1
∂ψ

∂γtpt−1
∂κ′

]
.

The elements in E
[
∂λtpt−1
∂ψ

∂γtpt−1
∂κ′

]
will also depend on ρ because of the corre-

lation between the (contemporaneous) scores. Thus Iψκ 6= 0, unless ρ = 0.

When ρ = 0 the LM statistic reverts to the original portmanteau statistic,

Qu(P ).

3.2 Local Power for P=1

Consider the Gaussian DCS model γt+1|t = ω+κut.We are interested in the

power of the proposed score test for the null hypothesis H0 : κ = κ0 = 0,

against local alternatives of the form κ = δ/
√
T . The asymptotic distrib-

ution of the test statistic, Qu(1), is then χ21(I(κ0)δ
2), a non-central χ2 with

noncentrality parameter I(κ0)δ
2; see Godfrey (1988, p 18). Because I(κ0) is

the element of the information matrix for κ0 = 0, we have I(κ0) = (1 + ρ2)
2.

(Estimation of the variances, σ21 and σ
2
2, makes no difference; see sub-section
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3.1). Thus for a given value of δ, the local power increases as |ρ| → 1. This

property will be apparent in the Monte Carlo results. By contrast, the power

of the moment-based test does not increase with |ρ| .

3.3 Choice of P

Although the portmanteau test is derived against a moving average alterna-

tive, a stationary first-order model of the form, (4), is a more likely candidate

for a dynamic model. In this case, it can be shown that the LM test is the

portmanteau test with P = 1. However, when the process driving γt+1|t is

very persistent, that is φ is close to one, the power may be increased by

setting P to a relatively high value, perhaps selected by a criterion such as

P =
√
T . An alternative way forward is to select P using a consistent infor-

mation criterion, as in Escanciano and Lobato (2009); see appendix. Under

the alternative, such a model selection procedure should select an increasing

number of lags as φ goes to unity. Under the null hypothesis, only the first

lag is selected in large samples with probability one. As a result, the asymp-

totic distribution under the null hypothesis is χ21. Simulation results (not

reported here) indicated that this last approach was the best option and so

it was adopted for all tests based on portmanteau statistics. Such test statis-
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tics will be denoted simply as Qu rather than Qu(P ). The LM statistics are

similarly denoted as LMu(P ) and LMu and the moment-based test statistics

as Qx(P ) and Qx.

3.4 Nyblom test

Nyblom (1989) gives a general test for parameter constancy against a random

walk alternative based on the LM principle. In the present context, the

statistic ends up being based on the same scores as in the portmanteau test.

It can be written

N =
1

T 2σ2u

T∑
j=1

(
T∑
k=j

uk

)2
.

Under the null hypothesis of parameter constancy, the statistic follows a

Cramer-von Mises distribution with a 5% critical value of 0.462. The same

critical value can be used when the scores are constructed from dynamic

volatility estimates. Although the Nyblom test is usually regarded as a test

against a random walk alternative, it can also be interpreted a test against a

very persistent, but stationary, alternative, as in Harvey and Streibel (1998).
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4 Monte Carlo experiments

To evaluate the performance of the proposed testing procedure, a simulation

study was conducted on a number of models. The results are confined to ver-

sions of the tests in which the number of lags is determined by an information

criterion, as in sub-section 3.3. The Ljung-Box form of the portmanteau sta-

tistic was used and volatilities were estimated from univariate GARCH or

EGARCH models3.

Several tests from the existing literature were also considered. These are

as follows.

i) The moment-based portmanteau test, as in Bollerslev (1990), based on

autocorrelations constructed from the cross-product of standardized (volatil-

ity corrected) residuals. As with the score-based tests, the value of P is

selected by an information criterion and so the test statistic is denoted as

Qx. (Since we are using the Box-Ljung form throughout this should actually

be Q∗x to be consistent with the original notation. However, it is neater to

drop the star). The results for a version of the test that corrects for volatility

estimation are omitted as they are very close to those of the Qx test.

3EGARCH models were always used for the DCS test, whereas GARCH models were
used for the other tests when the true model was not the DCS; the exception is the Tse
test where GARCH was used in all cases.
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ii) A residual regression test, RR, proposed by Tse (2002), in which x1x2−

ρ is regressed on P lags. He also provides a correction based on Pierce (1982)

to allow for the estimation of volatility. The third test considered is the LM

test of Tse (2000) based on an alternative model ρt = c + byit−1yjt−1, with

the score vector calculated using a set of recursive equations. Estimation

of the volatility models was based on MLEs for the bivariate time series

and all corrected statistics used numerical derivatives. The results for the

residual regression test are based on a lag length of two in accordance with

Tse (2002)4.

iii) The test of Bera and Kim (2002), denoted BK, gets around the need

to assume a functional form for the time-varying correlations by focussing on

behaviour local to the constant parameter case. They use Taylor approxima-

tions based on the variance of the errors driving the time varying parameters

being small. The test statistic is again constructed from standardized resid-

uals, xit, i = 1, 2, and is given by

BK =

[∑T
t=1(ξ

2
1tξ

2
2t − 1− 2ρ̂2)

]2
4T (1 + 4ρ̂2 + ρ̂4)

,

4All test statistics requiring a choice of lag length were also considered with fixed lag
lengths of 2, 10 and 20 in a series of preliminary simulations. The relative performance
of the various tests was similar for all lag lengths. Hence, only the preferred lag length is
presented.
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where ξ1t = (x1t − ρ̂x2t)/(
√

1− ρ̂2) and ξ2t = (x2t − ρ̂x1t)/(
√

1− ρ̂2).

The simulation study consists of three models with a bivariate normal

conditional distribution, and one, in Section 5, with a t-distribution. The

sample sizes were T = 500 and 1000 with 5, 000 replications used in power

comparisons and 10, 000 in size comparisons.

4.1 DCS model

The DCS model has dynamic equations for the correlation and volatility as in

(4) and (5). The three parameters in the equation for correlation were varied

across the sets ω = [0, 0.9], φ = [0.6, 0.99] and κ = [0.01, 0.1], whereas the

parameters governing the EGARCH volatility dynamics were fixed at ωi = 0,

φi = 0.95 and κi = 0.2, i = 1, 2.5 Only one parameter was changed at a time,

with the base set of parameters given by ω = 0.4, φ = 0.9 and κ = 0.05. Note

that ω = 0.4 and 0.8 correspond to ρ = 0.38 and 0.66 respectively because

ρ = tanhω.

5The values for κ are relatively large but lower values give similar results.
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4.1.1 Size of tests

From the results in Table 1, the LMu test appears to be slightly oversized

in finite samples as does the Qu test, though to lesser extent (because Qu

cannot be greater than LMu). This size distortion, which is due to the use

of the information criterion to choose P and the consequent use of a χ21

critical value, declines as the sample size increases and becomes negligible

for T = 1000. The estimated rejection probabilities of the N test increase as

the correlation increases, whereas those of the moment-based portmanteau

test decrease.

Table 1: Estimated size (×100) of tests for a DCS model with

EGARCH volatility.

Test

ω(ρ) LMu Qu N Qx BK Tse cRR

0 7.08 6.40 4.60 6.50 5.52 6.03 5.18

T = 500 0.4 (0.38) 7.04 6.35 5.48 6.27 5.68 6.21 5.18

0.8 (0.66) 7.35 6.64 7.33 5.95 6.02 6.73 5.86

0 5.94 5.67 4.58 5.9 5.22 5.45 4.70

T = 1000 0.4 (0.38) 6.16 5.90 5.24 5.86 5.26 5.54 5.21

0.8 (0.66) 5.70 5.29 5.95 5.27 6.05 6.66 5.38

23



Note: LMu is score-based LM test, Qu is score-based portmanteau test, N is

Nyblom test, Qx is moment-based (Bollerslev) test, BK is Bera and Kim test,

Tse is Tse test, cRR is (corrected) residual regression test.

4.1.2 Power comparisons

Table 2 shows powers, or, more precisely, estimated probabilities of rejection.

In other words the powers are not size-corrected. The salient feature is the

increasing extent to which the score-based tests dominate the moment-based

tests as ω increases. A clearer impression of the relative performance of the

tests comes from Figure 2 which shows the estimated powers for theQu, LMu,

N and Qx tests for T = 500 as the parameter ω (governing the unconditional

level of correlation) increases from zero to 0.8. We find that the new score-

based tests and the Nyblom test outperform the competition across virtually

the entire range of ω. The power of the score-based tests increases as the

unconditional level of the correlation rises, as indicated by the local power

results of sub-section 3.2, whereas the power of the moment-based test does

not; in fact it shows a slight fall. When T = 500, the Qu and LMu tests

outperform the Nyblom test for ω above 0.5, but when T = 1000 the break-

even value falls to 0.3, as shown in Figure 2. The rejection probabilities with
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the conservative Qu test are only slightly smaller than those for the LMu test

when T = 1000.
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Table 2: Powers of Tests for DCS Model with Different Levels of

Correlation

Test

ω φ κ LMu Qu N Qx BK Tse cRR

0 0.9 0.05 12.4 11.4 18.8 11.6 6.6 7.6 10.5

T = 500 0.4 0.9 0.05 21.0 18.5 21.6 10.0 7.0 9.2 9.8

0.8 0.9 0.05 37.8 34.5 30.4 7.5 11.6 11.7 8.4

0 0.9 0.05 16.5 15.4 19.7 15.3 6.9 7.7 18.3

T = 1000 0.4 0.9 0.05 28.5 26.9 22.7 10.7 9.1 8.8 13.6

0.8 0.9 0.05 55.3 53.2 31.4 6.6 17.3 13.0 8.6

Figures 3 and 4 show the power of the tests as the parameter κ is varied

across the set (0.01, 0.1) with sample sizes T = 500 and T = 1000 respec-

tively. Once again the score-based tests, including the Nyblom test, out-

perform the others across almost the entire range examined. It seems that

the Nyblom test has greater power against smaller deviations from the null.

However as before, the range of values over which the score-based portman-

teau test matches or improves upon the Nyblom test increases as the sample

size reaches T = 1000. Once again the difference between the Qu and LMu

tests is small throughout.
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Figure 2: Power Comparison across ω with φ = 0.9, κ = 0.05, T = 500.
LMu is DCS-LM test, Qu is score-based portmanteau test, Qx is moment-based
portmanteau test and N is Nyblom test.
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Figure 3: Power Comparison across ω with φ = 0.9, κ = 0.05, T = 1000.
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Figure 4: Power Comparison across κ with φ = 0.9, ω = 0.05, T = 500.
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Figure 5: Power Comparison across κ with φ = 0.9, ω = 0.05, T = 1000.
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Figures 5 and 6 show the power of the tests as the parameter φ is varied

across the set (0.6, 0.99) with sample sizes T = 500 and T = 1000 respectively.

Once again, the score-based tests, including the Nyblom test, perform best

overall with the gap increasing with φ. When T = 500, the Qu and LMu

tests are beaten by the Nyblom test for φ > 0.9, but the break-even value of

φ rises to around 0.95 when T = 1000; compare similar findings in Harvey

and Streibel (1998).

Rejection probabilities for the BK, Tse and cRR tests are little better,

and sometimes worse, than those for the Qx test. Results are available on

request.

4.2 Stochastic Correlation

In the second model the correlation is generated from an unobserved compo-

nents Gaussian autoregressive process,

γt = ω(1− φ) + φγt−1 + κηt, ηt ∼ NID(0, 1), (14)
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Figure 6: Power Comparison across φ with κ = 0.05, ω = 0.05, T = 500.
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Figure 7: Power Comparison across φ with κ = 0.05, ω = 0.05, T = 1000.
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in which the correlations, ρt, are again constrained to lie in the range (−1, 1)

by using a transformation of the form (1). We set values for ω = {0, 0.4}, φ =

{0.8, 0.95} and κ = {0.1, 0.15, 0.2}. The time-varying volatility is generated

as in the DCS model with the standardized observations, yit exp(−λi,tpt−1),

i = 1, 2, independent of ηt. The reason for generating correlations in this

way is so that the resulting realizations do not depend in any way on the

conditional score.

Table 3 shows the estimated rejection probabilities for various values of

the parameters ω, φ and κ at sample sizes of 500 and 1000. The findings from

the previous sub-section generally carry over to this setting. Contrasting the

first three rows (ω = 0) with the last three rows (ω = 0.4) of both Panel

A and Panel B shows that the powers of the score-based tests increase with

the level of correlation, ω, whereas that of the Qx test deteriorates, as do the

powers of the Tse and cRR tests. The one exception is the BK test which for

this particular model, but not for the others, does rather well. The Qu and

LMu tests dominate the Nyblom test, even for T = 500; this was not the case

for the DCS model as reported in Table 2. Finally, the relative performance

of the score-based tests improves as φ increases from 0.8 to 0.95, which is

consistent with Figures 5 and 6.
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Table 3: Power Comparison for Stochastic Correlation Model

Panel A: T = 500

ω φ κ LMu Qu N Qx BK Tse cRR

0 0.8 0.2 33.2 31.7 20.2 32.0 47.4 24.7 29.2

0 0.95 0.1 42.5 40.7 48.0 39.6 40.3 27.5 35.9

0 0.95 0.15 80.5 79.4 70.6 77.3 79.2 60.2 75.1

0.4 0.8 0.2 39.9 37.8 22.9 20.7 59.2 24.2 20.0

0.4 0.95 0.1 50.7 48.1 52.5 26.4 50.9 27.2 24.9

0.4 0.95 0.15 84.9 83.2 74.3 61.5 87.0 56.0 59.7

Panel B: T = 1000

ω φ κ LMu Qu N Qx BK Tse cRR

0 0.8 0.2 54.7 53.8 19.6 54.4 72.8 38.6 55.0

0 0.95 0.1 68.2 67.0 51.3 66.3 65.4 43.8 65.9

0 0.95 0.15 97.8 97.6 75.6 97.4 97.4 82.4 97.3

0.4 0.8 0.2 62.2 61.3 23.3 34.5 85.3 34.3 35.2

0.4 0.95 0.1 76.7 75.1 56.1 44.3 78.2 40.0 44.6

0.4 0.95 0.15 98.7 98.5 79.5 88.3 98.9 76.5 88.2
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4.3 Dynamic Conditional Correlation GARCH Model

Because the new tests are derived within the framework of a DCS model

for changing correlation, it could be argued that the results of sub-section

4.1 and, to a lesser extent, those of sub-section 4.2, are weighted in favor

of them. We therefore consider a third model in which the dynamics are

moment-based, following the dynamic conditional correlation (DCC) model

of Engle (2002). As in the DCS model of section 2, the conditional covariance

matrix takes the formΣtpt−1 = Dtpt−1Rtpt−1Dtpt−1, but the standard deviations

in the diagonal matrix, Dtpt−1, are generated by univariate GARCH models,

σ2i,tpt−1 = δi + βiσ
2
i,t−1pt−2 + αiy

2
it−1, i = 1, 2,

and, as in the cDCC modification adopted by Engle and Kelly (2012, p 215),

the time varying correlations are given by

Rtpt−1 = Q̃−1tpt−1Qtpt−1Q̃
−1
tpt−1,

Qtpt−1 = Q(1− α− β) + βQt−1pt−2 + αQ̃t−1pt−2Dt−1pt−2yt−1y
′
t−1Dt−1pt−2Q̃t−1pt−2,
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where y′t = (y1t y2t), Q̃tpt−1 is a diagonal matrix with nonzero elements equal

to the square roots of the corresponding diagonal elements of Qtpt−1 and

Q is the unconditional correlation matrix with unit diagonal elements and

correlation ρ in the off-diagonals. Table 4 shows the rejection probabilities for

a range of values of α, β and ρ with δi = 0.05, βi = 0.85 and αi = 0.1, i = 1, 2.

Generally speaking, the findings from the DCS simulations carry over to this

setting. In particular, the powers of the score-based tests increase with an

increase in the unconditional level of correlation, driven by ρ, whereas the

power of the moment-based Qx test deteriorates, as do the powers of the

other tests based on the product of standardised residuals.
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Table 4: Power Comparison for DCC GARCH Model

Parameter Test

ρ β α LMu Qu N Qx BK Tse cRR

T = 500 0 0.8 0.05 20.7 19.9 13.6 20.2 5.2 18.6 17.4

0 0.8 0.1 67.4 67.0 35.0 67.4 12.4 60.7 65.9

0 0.9 0.05 29.7 28.3 33.6 28.9 7.3 25.2 25.8

0.4 0.8 0.05 24.2 22.9 13.2 13.6 5.9 22.8 13.7

0.4 0.8 0.1 70.9 70.1 36.1 47.6 15.6 65.2 48.9

0.4 0.9 0.05 34.2 32.6 34.0 19.2 8.0 29.2 19.1

T = 1000 0 0.8 0.05 33.8 33.2 13.7 33.5 6.1 30.1 33.7

0 0.8 0.1 92.9 92.5 37.3 92.9 18.0 86.0 93.6

0 0.9 0.05 50.5 49.8 37.1 50.2 9.8 41.5 50.7

0.4 0.8 0.05 37.3 36.8 14.2 22.8 5.8 34.6 23.6

0.4 0.8 0.1 93.3 92.4 39.0 75.5 25.4 89.2 77.5

0.4 0.9 0.05 55.3 54.3 38.8 33.2 11.6 47.2 34.9
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5 Bivariate t-distribution

The above simulations are for Gaussian models and, as such, demonstrate

the advantages of using the scores for a changing correlation test. However,

the conditional distributions of financial asset returns are often heavy-tailed

and a t-distribution is usually a better option. For modeling volatility, the

DCS approach leads to an EGARCH model in which the dynamics of the

logarithm of scale, λ, are driven by

ut =
(ν + 1)yt

2

ν exp(2λtpt−1) + yt2
− 1, ν > 0. (16)

for a zero mean process. Because ut is a linear function of a beta distribution

at the true parameter values, the model is known as Beta-t-EGARCH; see

Harvey (2013, ch 4). The fact that the score function is bounded has the

practical effect of moderating the influence of outliers.

The log-density for the t-th pair of observations from a dynamic bivariate

t-distribution with zero mean, scales exp(λ1,tpt−1) and exp(λ2,tpt−1), correlation

ρt|t−1 and degrees of freedom ν is

ln ft(y1t, y2t) = ln(Γ(ν+2)/2)−ln Γ(ν/2)−ln πν−λ1,tpt−1−λ2,tpt−1−
1

2
ln(1−ρ2t|t−1)+

ν + 2

2
ln(1−bt),

39



where

1− bt = 1/

[
1 +

x1t
2 − 2ρt|t−1x1tx2t + x2t

2

ν(1− ρ2t|t−1)

]

The score for γtpt−1 is now

u†t =
ν + 2

ν
(1− bt)ut + ρt|t−1, (17)

where ut is the Gaussian score in (9). Because 1 − bt → 0 as y1t and/or

y2t → ±∞, these new scores, like those for the λ′i,tpt−1s, are bounded. At

the true parameter values, 1 − bt is distributed as beta(ν/2, 1)); see Harvey

(2013, p211).

A full LM test for constant correlation in the bivariate t model can be

carried out in principle. However, a simple portmanteau test may be more

appealing in practice. Standardized observations can be obtained by fitting

univariate Beta-t-EGARCH models and these can then be used to estimate

the correlation and degrees of freedom in a (static) bivariate t distributtion.

The scores, u†t , are then formed as in (17) but with ρt|t−1 and ν replaced

by their ML estimators. Table 5 compares the performance of the resulting

portmanteau test, denotedQu(t), with that of the Gaussian test portmanteau

test studied in the previous section. The simulations estimate size with 10,000
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replications and power with 5,000. Volatility was generated from Beta-t-

EGARCH models with ν = 8 and parameters ωi = 0, φi = 0.95 and κi = 0.1,

for i = 1, 2. The first two rows of the table show the size of the tests for

two levels of correlation. Both tests are slightly oversized, though reasonably

close to the nominal 5% level, with the discrepancy decreasing when T rises

to 1000. The difference between the Gaussian and t-based tests is much

more evident when considering power: the rejection probabilities for Qu(t)

are much higher.

41



Table 5: Size and Power for a Student t-distribition

T = 500 T = 1000

ω φ κ Qu Qu(t) Qu Qu(t)

0 1 0 6.2 6.3 5.1 5.9

0.4 1 0 7.1 6.2 6.4 5.9

0 0.8 0.05 19.6 31.4 32.6 53.8

0 0.8 0.1 66.2 89.6 92.1 99.7

0 0.95 0.05 37.7 57.4 64.4 87.9

0 0.95 0.1 88.9 98.6 98.9 100

0.4 0.8 0.05 25.2 33.3 38.1 56.5

0.4 0.8 0.1 67.3 89.4 89.6 99.7

0.4 0.95 0.05 46.9 61.7 70.6 89.9

0.4 0.95 0.1 89.7 98.9 98.7 100

6 Application: Hong Kong and South Korea

Stock Indices

To demonstrate the effectiveness of the proposed test statistics, we exam-

ine the stability of the correlation between daily local currency returns of

the Hong Kong (Hang Seng) and South Korean (SET) stock indices from
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Figure 8: Logarithms of Hong Kong (top) and South Korea stock markets
indices from 2/1/1984 to 27/11/2007.

2/1/1984 to 27/11/2007. Because of the length of the series (T = 6237) and

the occurrence of several major events in this time frame6, we also consider a

shorter window between 1/1/2004 and 27/11/2007 (T = 1019): this provides

a tougher challenge for detecting changing correlation7.

Figure 8 shows a plot of the two series. Estimation of a univariate DCS

6This data was modeled in Harvey (2010) by means of a time varying copula. As noted
there, the sample includes i) Black Monday, October 19th, 1987; ii) the speculative attack
on the Hong Kong dollar on October 20th, 1997; and iii) the High Technology Crash of
October 2nd, 2000.

7Data including the recent financial crisis are not considered due to the likelihood that
contagion would lead to sharp changes in the correlation structure that would be easy for
all tests to identify.
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volatility model (Beta-t-EGARCH) for Hong Kong for the full period gave

the following estimates (and standard errors) for the parameters in (5):

ω̃ = 0.0414(0.0038), φ̃ = 0.9903 (0.0024) and κ̃ = 0.0416 (0.0007). Simi-

lar estimates were found for South Korea, namely ω̃ = 0.1765(0.0038), φ̃ =

0.9914(0.0023) and κ̃ = 0.0475 (0.0009). Figure 9 plots the time-varying cor-

relation over the full sample when estimated with a bivariate t DCS model.

The estimates of φ and κ in the dynamic equation for γtpt−1 were 1.0000 and

0.0041 respectively. Short run variation is evident throughout, but there is

a clear increase in the level, starting in the late 1990s. In the sub-sample

after 2004, the estimates of φ and κ were 0.9538 and 0.0313. Again there is

considerable movement in correlation, which ranges from around 0.45 to just

below 0.7.

Table 6 presents the results for score and moment-based tests constructed

using volatility-corrected residuals. For the full sample there is strong evi-

dence for time varying correlation. The prob.-values for all score-based tests

are essentially zero. The moment-based test is slightly less conclusive in that

it fails to reject at the 1% level of significance. The higher values of the

score-based tests are consistent with the local power and Monte Carlo re-

sults because the unconditional correlation over the full sample is 0.24. The
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Figure 9: Time Varying Correlation for Hong Kong and South Korean Stock
Market Indices - 2/1/1984 to 27/11/2007.
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LMu statistic is much larger than Qu, although the latter is still very big

in absolute terms. More significant is the much larger value of the Qu(t)

statistic, which presumably stems from the fact that the estimated degrees

of freedom is 4.7.

Table 6: Tests against Changing Correlation for Hong Kong and

South Korean Stock Markets

Sample LMu Qu Qu(t) Qx N

2/1/84 - 27/11/07 341.53 285.13 552.81 6.39 34.57

(0) (0) (0) (1.21) (<0.1)

1/1/04 - 27/11/07 4.25 4.13 4.64 0.56 1.14

(3.93) (4.20) (3.12) (45.4) (< 1.0)

Note: (100×) prob.-values are in parentheses. For the N test the prob.-values

are based on a table in Nyblom (1989).

The results for the shorter sub-sample, where the unconditional corre-

lation is 0.61, show an even more striking difference between the score and

moment-based tests. Whereas the moment-based test fails to reject the null

hypothesis of constant correlation at any reasonable significance level, sug-

gesting a period of stability during 2004-2007, the score-based tests demon-

strate their higher power by rejecting at the 5% level of significance. As
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before the biggest score-based test statistic is Qu(t); the degrees of freedom

is now 5.99.

7 Conclusion

The proposed test for time-varying correlation is relatively simple. First

standardize the two series by dividing by the scale given by fitting univariate

volatility models, preferably Beta-t-EGARCH, to each series. Then construct

the scores with respect to correlation by estimating the correlation and de-

grees of freedom in a bivariate t model. The simple portmanteau statistic,

in the Ljung-Box form, is constructed with the number of lags chosen by an

information criterion.

The simulation results show that there is little to be gained by making

the correction demanded by the full LM test. Indeed, the LM test is more

oversized than the portmanteau test when the number of lags is selected

by an information criterion. The Nyblom test is a good option when the

changes in correlation are thought to be very persistent. What is very clear

from the simulations is that tests based only on cross-products of residuals

are almost always dominated by the score-based tests, with the difference
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in power increasing as the underlying correlation moves away from zero and

often being very considerable. The practical implications are reinforced by

the example, which shows that only the score-based tests are able to detect

the quite considerable movement in correlation between the Hong Kong and

South Korean stock markets in the mid-2000s.

Further development of tests developed from DCS models, for example

tests against time variation in copulas, seems to be a fruitful avenue for future

research.
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APPENDIX: Data-driven Q-test

The lag length, P, is selected by the criterion proposed by Escanciano

and Lobato (2009), namely

P = min{p : 1 ≤ p ≤ d : Lp ≥ Lh, h = 1, 2, ...d},

where

Lp = Q(p)− π(p, T, q),

Q(p) is the original test statistic, d is a fixed upper bound for the lag length,

and π(p, T, q) is a penalty term that takes the form

π(p, T, q) =


p log T if max

1≤j≤d

√
T |ρ̃j| ≤

√
q log T

2p, if max
1≤j≤d

√
T |ρ̃j| >

√
q log T

,

where ρ̃j is the j
th sample autocorrelation and q is some fixed positive num-

ber. Escanciano and Lobato (2009) suggest setting q = 2.4 which was sup-

ported by our simulations. Their simulation evidence suggests that the choice

of d is not crucial. Here we set d = 20.
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