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We use direct numerical simulation (DNS) of the Navier–Stokes equations in the low
Mach number limit to investigate the hydrodynamic instability of a lifted jet diffusion
flame. We obtain steady solutions for flames using a finite rate reaction chemistry, and
perform a linear global stability analysis around these steady flames. We calculate the
direct and adjoint global modes and use these to identify the regions of the flow that
are responsible for causing oscillations in lifted jet diffusion flames, and to identify how
passive control strategies might be used to control these oscillations. We also apply a
local stability analysis to identify the instability mechanisms that are active. We find
that two axisymmetric modes are responsible for the oscillations. The first is a high-
frequency mode with wavemaker in the jet shear layer in the premixing zone. The second
is a low-frequency mode with wavemaker in the outer part of the shear layer in the flame.
We find that both of these modes are most sensitive to feedback involving perturbations
to the density and axial momentum. Using the local stability analysis, we find that the
high-frequency mode is caused by a resonant mode in the premixing region, and that the
low-frequency mode is caused by a region of local absolute instability in the flame, not
by the interaction between resonant modes, as proposed in Nichols, Chomaz & Schmid
(2009). Our linear analysis shows that passive control of the low-frequency mode may
be feasible because regions up to three diameters away from the fuel jet are moderately
sensitive to steady control forces.

1. Introduction

Jet diffusion flames arise when a fuel is injected into an oxidiser, or vice-versa, and
ignited. Examples include flames in Bunsen burners with the air-hole closed (the yellow
flame), rich-burn gas turbine combustion chambers, and liquid rocket engines. All jet
diffusion flames are lifted to some extent, in the sense that the base of the flame sits
downstream of the injection plane. This is because the fuel and oxidizer have to mix
before they can support a flame that propagates upstream as fast as the flow moves
downstream. In H2/O2 rocket engines, the flame speed is so high that the lift-off distance
is a very small fraction of the flame diameter (Juniper & Candel 2003), typically of the
order of the injector lip thickness. In Bunsen burners, on the other hand, the yellow flame
is easily lifted by increasing the gas flowrate. The flame in a gas turbine combustion
chamber differs because the inlet flow swirls, which creates a vortex breakdown bubble
downstream of the injector in which hot gases recirculate, thereby anchoring the flame
(Candel, Durox, Schuller, Bourqouin & Moeck 2014). This flame, whether premixed,
partially-premixed, or non-premixed, is often lifted with a lift-off distance of around one
jet diameter and, in this respect, is similar to a lifted jet diffusion flame.
There have been several studies of the hydrodynamic stability of reacting flows. Most
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have examined swirling premixed or partially-premixed flames because of their relevance
to gas turbines (Terhaar, Oberleithner & Paschereit 2015; Oberleithner, Schimek &
Paschereit 2015a; Juniper 2012). These studies show that, in a non-reacting swirling
flow, the helical mode with azimuthal wavenumber m = 1 is usually absolutely unstable
and that this causes the flow to have a precessing vortex core. These studies also show
that the flame’s heat release changes the density and velocity fields, altering the hydrody-
namic stability of the flow, in many cases suppressing the m = 1 instability and hence the
precessing vortex core. This concurs with experiments and large-eddy simulations (LES)
of swirling premixed lifted flames (Roux, Lartigue, Poinsot, Meier & Berat 2005; Gi-
auque, Selle, Gicquel, Poinsot, Buechner, Kaufmann & Wrebs 2005; Boxx, Arndt, Carter
& Meier 2012).
In this study, we examine non-swirling lifted jet diffusion flames because they are

simpler than their swirling counterparts. In both swirling and non-swirling flames, the
hydrodynamic stability of the flow upstream of the flame base differs considerably from
that downstream of the flame base (Nichols, Chomaz & Schmid 2009; Oberleithner, Stohr,
Seong, Arndt & Steinberg 2015b; Manoharan, Hansford, O’Connor & Hemchandra 2015).
In non-swirling lifted diffusion flames, the upstream region is more hydrodynamically
unstable and, although short, can dominate the hydrodynamic instability of the entire
flow. This has some practical importance because axisymmetric (m = 0) hydrodynamic
instability in flames can couple with longitudinal thermo-acoustic oscillations and cause
dangerous vibrations (Schadow & Gutmark 1992; Chakravarthy, Shreenivasan, Boehm,
Dreizler & Janicka 2007). However, this result does not necessarily carry over from non-
swirling diffusion flames to swirling premixed flames. The principal questions in this study
are: (i) which part of the flow causes hydrodynamic oscillations; (ii) what mechanisms of
hydrodynamic instability are active; (iii) what control measures, active or passive, could
suppress these oscillations?
Nichols & Schmid (2008), referred to here as NS08, carried out direct numerical sim-

ulations of flames in non-buoyant low-density jets. By varying the Damköhler number,
Da, which represents the ratio of the rate of reaction to the rate of fluid convection,
flames with different lift-off heights were obtained. Flames with sufficiently large lift-off
heights were found to oscillate. For a range of Damköhler numbers, the axial location
of the flame base was monitored over time and an FFT of this time trace was used to
obtain spectra for flames with different mean lift-off heights. For the unstable flames,
NS08 observed peaks at Strouhal numbers between 0.25 < St < 0.30 and a peak be-
tween 0.0 < St < 0.05. Flames with smaller lift-off heights (higher Da) exhibited less
sharp spectral peaks than flames with larger lift-off heights (lower Da). Flames with suf-
ficiently small lift-off heights did not oscillate. NS08 performed a local stability analysis
around steady solutions for these lifted flames. They showed that the premixing region
upstream of the flame base is locally absolutely unstable and that reducing the lift-off
height shortens the region of absolute instability. Since the flame with the smallest lift-off
height was found to be stable, they concluded that the velocity and density fields induced
by the flame cannot support self-sustained oscillations and that the flame oscillations at
0.25 < St < 0.30 must be caused by the absolutely unstable premixing zone.
In a a subsequent study, referred to here as NCS09, Nichols et al. (2009) accounted for

the fact that the flame base imposes streamwise confinement on the jet in the premixing
zone. They used a local stability analysis to show that this could lead to resonant modes
with a higher growth rate than the absolute growth rate. Furthermore, they postulated
that the nonlinear interaction between two or more resonant modes could cause the
spectral peaks at 0 < St < 0.05 observed in the nonlinear simulations.
So far, all stability analyses of jet diffusion flames have been local (Lingens, Neemann,
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Meyer & Schreiber 1996), (Nichols & Schmid 2008; Oberleithner et al. 2015b; Manoharan
et al. 2015). The heat release from the flame alters the hydrodynamic stability and causes
the local stability properties to change abruptly. This violates one of the assumptions
of local stability analysis: that the flow varies smoothly in the streamwise direction. In
this study, therefore, we perform a global stability analysis of a lifted jet diffusion flame.
The global analysis does not require the flow to vary smoothly. We then interpret these
results with the aid of a local stability analysis. As in NS08 and NS09, the influence
of buoyancy is not included. We use the direct and adjoint global modes to obtain the
structural sensitivity (Giannetti & Luchini 2007) of the flow. This identifies the region
where force-momentum feedback has most influence on the growth rate and frequency
of global modes, and is often called the wavemaker region. One aim of this paper is to
discover whether or not the oscillations observed in the nonlinear simulations of NC08
are caused by linear global instability. If so, we aim to identify the regions of space
and physical mechanisms that are most influential in causing these oscillations, and
particularly whether the low frequency mode is indeed due to the interaction between
two resonant modes. Another aim is to identify how the growth rates and frequencies
of these modes may be controlled by altering the flow. For this, we use the framework
developed by Hill (1992) and Marquet et al. (2008) to determine the effect of steady
body forces on the growth rate and frequency of the global modes.
The flow is described in §2. The stability analyses and their results at Da = 500, 000

are described in §3 for the global analysis and §4 for the local analysis. The results at
different Damköhler number are presented in §5 and the sensitivity to a steady control
force in §6.

2. Flow configuration

We study the motion of an axisymmetric jet of fuel exiting into a large cylindrical
domain, of length Xmax and radius Rmax, which is filled with oxidizer. The jet of fuel
enters the domain at x = 0, and is aligned along the axis, r = 0. The fluid in the domain
has velocity u = (ux, ur), density ρ, pressure p, and temperature T . The concentration
of the fuel is described using the mixture fraction Z, which has a value of Z = 1 for pure
fuel and Z = 0 for pure oxidizer.
We follow the approach of NS08 and use the the reacting low-Mach number (LMN)

equations to describe the motion of the fluid. In nondimensional form, these equations
can be written as

∂ρ

∂t
+∇ · (ρu) = 0 (2.1a)

∂(ρu)

∂t
= −∇p+∇ · (

1

S1Re
τ − ρuu), (2.1b)

ρ(
∂Z

∂t
+ u · ∇Z) =

1

S1ReSc
∇2Z, (2.1c)

ρ(
∂T

∂t
+ u · ∇T ) =

1

S1RePr
∇2T +Daρ3ω, (2.1d)

ρ [(S1 − 1)Z + 1] [(S2 − 1)T + 1] = 1, (2.1e)

where τ =
[

∇u+ (∇u)T
]

− 2

3
(∇·u)I is the non-isotropic component of the rate-of-strain

tensor.
The flow variables have been nondimensionalized by the jet diameter at inlet, jet

axial velocity at inlet, and oxidizer density. The nondimensional temperature is defined
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as T = (T ∗ − T0)/(Tf − T0), where T
∗ (K) is the dimensional temperature, Tf is the

dimensional adiabatic flame temperature, and T0 is the dimensional ambient oxidizer
temperature. The ratio of the oxidizer density to fuel density at the inlet defines the
density ratio parameter, S1. The source term,Daρ3ω, is equivalent to the nondimensional
rate of enthalpy release per unit volume. For the rate of reaction, ω, we use a simple
Arrhenius law that is identical to the one used by NS08:

ω =

{(

Z −
T

s+ 1

)(

1− Z −
sT

s+ 1

)

− κT 2

}

exp

[

−β(1− T )

1− α(1 − T )

]

. (2.2)

The chemistry of the reaction is described by the mass stoichiometric ratio, s, the equi-
librium constant, κ, the heat release parameter, α ≡ (Tf − T0)/Tf , and the Zeldovich
number β ≡ αTa/Tf , where Ta (K) is the dimensional activation temperature of the
reaction, and Tf (K) is the dimensional adiabatic flame temperature. The ratio of the
adiabatic flame temperature to the oxidizer temperature at the inlet defines the tem-
perature ratio parameter, S2 ≡ Tf/T0. The Reynolds number, Re, is defined in terms
of the jet diameter, jet axial velocity and fuel jet density. This definition introduces a
1/S1 factor in front of the viscous terms in equations (2.1). The Prandtl number, Pr,
and Schmidt number, Sc, describe the ratio of the diffusivity of temperature and mass,
respectively to the diffusivity of momentum.
In this study, we assume that the effects of buoyancy are negligible, that the viscosity

and thermal diffusivity are uniform throughout the flow, and we set the non-dimensional
parameters in (2.1) and (2.2) to the values used by NS08: Re = 1000, S1 = 7.0, S2 =
6.0,Pr = Sc = 0.7, Da = 5 × 105, s = 2, κ = 0.01,α = 0.833 and β = 3. This
choice of parameters produces flames that are thicker than those found in nature. This is
acceptable because these flames are sufficiently thin in comparison to the wavelength of
the hydrodynamic instabilities that are being investigated. This is particularly relevant
if the wavemaker region is in the flame. In this case, it is important that the thickness of
the flame relative to the thickness of the wavemaker region is checked a posteriori, which
is done in §3.2.
Equations (2.1a)–(2.1e) can be expressed in terms of the momentum, m ≡ ρu, tem-

perature, T , and mixture fraction, Z, as

∂q

∂t
= N (q), (2.3)

where q ≡ (mx, mr, Z, T )
T

is the state vector and N (·) is a nonlinear differential op-
erator representing the action of the equations on the state vector. The density, ρ, is
not included in the state vector because it can be derived from T and Z. We use an
axisymmetric version of the DNS code developed by NS08 to solve these equations. A
fourth-order Runge-Kutta scheme is used to march the discretized equations forward in
time. The equations are discretized in space using a sixth-order compact finite difference
scheme. We use a grid with 511 × 1537 points for a domain measuring 10.0 × 15.0 jet
diameters in the radial and axial directions respectively. This domain is longer than that
used by NS08 and we find that it produces results that are sufficiently well-converged
and well-resolved (Table 1).
Along the lateral boundary, r = Rmax, we use a viscous traction free boundary condi-

tion for the momentum and set T = 0 and Z = 0. At the outlet boundary, x = Xmax,
we use a convective boundary condition for the momentum, temperature and mixture
fraction. These boundary conditions model flow into a semi-infinite domain in the down-
stream and radial directions. The pressure-projection scheme used in the code uses a
discrete cosine transform to set boundary conditions for the pressure at the inlet and
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Figure 1. (Colour online) (a) The steady but unstable solution to the LMN equations for a
lifted jet diffusion flame at Re = 1000 and Da = 500, 000. The streamlines show the axial &
radial velocity and the greyscale (colour online) shows contours of the reaction rate, log(ω̄).
The azimuthal velocity is zero. The thick black line shows the stoichiometric surface, which
corresponds to a contour of Z̄ = 0.333. (b) The absolute growth rate, ω0i, as a function of axial
position for the two modes that are absolutely unstable: mode A in the lifted region and mode
B in the flame region. (c) The absolute frequency, ω0r, of modes A and B.

outlet boundaries. For the base flow, we use a quarter-wave cosine transform, which sets
dp/dx = 0 at the inlet, and p = 0 at the outlet boundary. Along the lateral boundary,
we set p = 0. At the inlet, we impose the same velocity and mixture fraction profiles as
those used by NS08. These top-hat profiles are formed from Michalke’s profile number
two (Michalke 1984), with a shear-layer thickness parameter D/2θ0 = 12.5. This signifies
that the momentum thickness of the shear layer is 12.5 times smaller than the jet radius.
We also add a small coflow of oxidizer surrounding the jet to improve numerical stability.
The coflow velocity is 1% of the jet velocity. We set the temperature profile at the inlet
to be uniform and impose a Gaussian-shaped impulse at (x, r) = (2.0, 0.5) to ignite the
fuel-oxidizer mixture in order to obtain the base flow.

We obtain a steady axisymmetric base flow, q̄(x, r), such thatN (q̄) = 0, using selective
frequency damping (SFD) (Akervik, Brandt, Henningson, Hoepffner, Marxen & Schlatter
2006). This base flow is shown in figure 1. The lift off height, Hs, matches that of the
flame with Da = 500, 000 in table 1 of NS08.
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Xmax Rmax Sx Sr ∆t Mode A Mode B

M1 10.0 5.0 1025 511 0.0025 0.157+1.363i 0.02+0.172i
M2 15.0 5.0 1537 511 0.0025 0.157+1.365i -0.005+0.170i
M3 15.0 7.5 1537 511 0.0025 0.167+1.372i 0.004+0.165i

Table 1. Domain size ( Xmax, Rmax ), number of grid points ( Sx, Sr ), and time-step (∆t)
used in the simulations to check numerical convergence. The eigenvalues for modes A and B
are shown. The real part represents the growth rate, and the imaginary part represents the
frequency. Mesh M1 was used by NS08 and mesh M2 is used in this study.

3. Global stability

3.1. Numerical method

The evolution of small axisymmetric perturbations around this steady base flow is gov-
erned by the linearized reacting LMN equations. We decompose the axisymmetric per-
turbations into Fourier modes in time:

q′(x, r, t) = q̂(x, r)eλt + c.c, (3.1)

The eigenvalue, λ, contains the growth rate, Re(λ), and frequency, Im(λ), of the corre-
sponding two-dimensional eigenmode, q̂(x, r), that would grow or decay on top of the
steady base flow. The direct global modes are obtained by discretizing in space and
solving the matrix eigenvalue problem

λq̂ = Lq̂, (3.2)

where L is a discretized operator that describes the linearized reacting LMN equations
(given in Appendix A). We also obtain the adjoint global modes, which are solutions of

λ∗q̂+ = L+q̂+, (3.3)

where L+ is the discretized version of the continuous-adjoint reacting LMN equations
(given in Appendix A). We use the code developed by Chandler et al. (2012) to solve
these eigenvalue problems using the same discretization as that used to obtain the base
flow. The code uses matrix-free time-stepping of the linearized and adjoint reacting LMN
equations, and the implicitly restarted Arnoldi method (Lehoucq et al. 1998) to find the
most unstable global modes. For the direct global modes, we use a convective boundary
condition at the outlet boundary and set m̂x = m̂r = T̂ = Ẑ = 0 on the lateral and
inlet boundaries. For the adjoint global modes, we set m̂+

x = m̂+
r = T̂+ = Ẑ+ = 0 on all

boundaries. For the linearized perturbations, we use a half-wave cosine transform to set
the boundary conditions on the linearized pressure. This sets dp̂/dx = dp̂+/dx = 0 at
the inlet and outlet boundaries. The adjoint global modes are normalized with respect
to the corresponding direct global mode so that

〈m̂+, m̂〉+ 〈Ẑ+, Ẑ〉+ 〈T̂+, T̂ 〉 = 1. (3.4)

The notation 〈a,b〉 denotes an inner product over the computational domain volume V ,

〈a,b〉 =
1

V

∫

V

aHb dV, (3.5)

where aH denotes the Hermitian (i.e. complex conjugate transpose) of a.
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Figure 2. The least stable part of the global eigenvalue spectrum for axisymmetric perturba-
tions to the steady flow in figure 1. The greyscale indicates the relative convergence of these
eigenvalues, as measured by the log of the Ritz estimates. The more negative the value (darker),
the better the convergence.

(a) Direct global mode (b) Adjoint global mode

Figure 3. (Colour online) The real component of the direct and adjoint global modes for mode
A, which develops on the steady flow in figure 1. The eigenvalue is λ = +0.157+1.365i (frequency
1.365, growth rate 0.157, Strouhal number 0.217).

3.2. Direct and adjoint global modes

We look for the leading (least stable or most unstable) linear global modes for the flame
with Da = 500, 000, shown in figure 1.
Figure 2 shows the leading eigenvalues with positive frequencies, together with the
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(a) Direct global mode (b) Adjoint global mode

Figure 4. (Colour online) The real component of the direct and adjoint global modes for mode
B, which develops on the steady flow in figure 1. The eigenvalue is λ = −0.005+0.170i (frequency
0.170, growth rate −0.005, Strouhal number 0.0271).

Figure 5. (Colour online) Contours of the Frobenius norm of the structural sensitivity tensor,
Sij = m̂i(m̂

+

j )
∗, which is equivalent to (8.11) in Giannetti & Luchini (2007). The high amplitude

(dark) regions show the wavemaker regions of the two modes.

relative convergence of these eigenvalues. Amongst the modes that are well-converged,
we find an isolated unstable high frequency mode, and a branch of marginally stable low
frequency modes. There is a branch of stable low-frequency modes extending out from
the origin. These modes are not well-converged and correspond to free-stream vortical
modes. They arise from the continuous spectrum and are not considered in detail here.
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We consider the most unstable mode and one of the marginally stable modes in more
detail.
The first, labelled mode A, has an eigenvalue of λ = +0.157 + 1.365i (frequency 1.365,
growth rate 0.157, St = 0.217). The second, labelled mode B, has an eigenvalue of λ =
−0.005+0.170i (frequency 0.170, growth rate −0.005, St = 0.0271). The real components
of the direct and adjoint global modes are shown in figure 3 for mode A and figure 4
for mode B. The structural sensitivity, as defined by Giannetti & Luchini (2007) for the
incompressible Navier–Stokes equations in the velocity-pressure formulation, is given by
the dyadic product of the direct and adjoint global mode velocity vectors. For the LMN
formulation used in this study, the equivalent quantity is the dyadic product of the direct
and adjoint global mode momentum vectors, Sij = m̂i(m̂

+

j )
∗. The components of this

tensor represent the effect of changes in the feedback between the different components of
the perturbation momentum on the eigenvalue of the global mode. The Frobenius norms
of this tensor for modes A and B are shown in figure 5. Where this quantity has a large
magnitude, changes to the feedback mechanism that drives the instability have a large
influence on the eigenvalue. Therefore, regions of high amplitude show the wavemaker
region of the flow. The wavemaker regions are much longer than the thickness of the
flame and are located on either side of the flame. This means that they are unaffected
by the fact that the flame has been artificially thickened to aid numerical convergence,
as described in §1.
For mode A, the direct mode has highest amplitude just downstream of the flame base

and grows radially towards the axis of the jet. The adjoint mode has highest amplitude
in the premixing zone between the inlet and the flame base. The structural sensitivity,
which is maximal at (x, r) = (0.96, 0.52), shows that the wavemaker region for mode A
lies in the shear layer in the premixing region upstream of the flame base.
For mode B, the direct mode has highest amplitude further downstream than for mode

A. It lies along the outer part of the flame and grows radially away from the axis of the
jet. The adjoint mode has high amplitude in the premixing zone and just downstream
of the flame base. The structural sensitivity, which is maximal at (x, r) = (6.73, 1.13),
shows that the wavemaker region for mode B lies in the shear layer along the outer edge
of the flame.
The Strouhal number for mode A is St = 0.217, which is close to the Strouhal number

(St = 0.212) of the non-reacting jet in the nonlinear simulations of NS08 but 25%
less than the Strouhal number of the high frequency mode observed at Da = 500, 000
(St = 0.284). The discrepancy could be due to the fact that the oscillations in the
nonlinear simulations have appreciable amplitude and therefore their saturated frequency
cannot be determined accurately from a linear analysis around the steady but unstable
base flow. Nevertheless, these global stability results reinforce the conclusion of NS08
that the high frequency mode is caused by the premixing region imparting its global
instability frequency onto the flame.
The Strouhal number for mode B is St = 0.0271, which is just 8% more than that

of the low frequency mode observed in the nonlinear simulations of NS08 (St = 0.025).
Mode B is marginally stable (growth rate −0.005) and therefore acts as a lightly damped
oscillator. This lightly-damped oscillation can be observed in the transient behaviour
of the nonlinear simulations shown in figure 3 of NS08. NS08 did not perform a global
stability analysis and therefore did not find mode B. It is likely that the low frequency
oscillation that they observe in their nonlinear simulation is caused by mode B, which is
the flame region imparting its global instability frequency onto the flame. NCS09 offer
an alternative explanation: that the low frequency oscillation is caused by interaction
between two resonant modes. This is examined in §4.3.
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Figure 6. (Colour online) The components of the structural sensitivity tensor q̂(q̂+)∗ for mode
A. The shading on all the plots is equal and goes from 0 (white) to 11470 (black). Each frame
spans 0.0 < x < 2.5 on the horizontal axis and 0.0 < r < 1.0 on the vertical axis.

3.3. Components of the structural sensitivity

For variable-density and reacting flows, more information about the nature of the insta-
bility can be obtained by considering the structural sensitivity for the entire state vector
and not just the momentum vector. For the flames in this chapter, this leads to a 4× 4
tensor, which represents the change in the eigenvalue due to changes in feedback from
m′

x, m
′
r, Z

′ & T ′ into the x-momentum, r-momentum, species, and energy equations.
Comparison between sensitivities involving momentum, temperature and mixture frac-
tion are valid as long as the adjoint global mode has been normalized according to (3.4),
which is the case for the results presented here.

The sensitivity tensors for modes A and B are shown in figures 6 and 7 respectively.
For mode A, the eigenvalue is most sensitive in the premixing region, particularly to
changes in the feedback between the mixture fraction and the axial momentum equation.
For mode B, the eigenvalue is most sensitive in the flame, particularly to changes in the
feedback between the temperature and the axial momentum equation. The temperature
and mixture fraction only affect the momentum equations indirectly, through the density.
Therefore both these types of feedback mechanisms involve perturbations to the density.
In the premixing region, which is at uniform temperature, these perturbations are caused
mainly by perturbations to the mixture fraction. In the flame region, which has strong
temperature gradients, these perturbations are caused mainly by perturbations to the
temperature. This implies that the instability mechanism is the same for both modes.
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Figure 7. (Colour online) The components of the structural sensitivity tensor q̂(q̂+)∗ for mode
B. The shading on all the plots is equal and goes from 0 (white) to 41894 (black).Each frame
spans 0.0 < x < 15.0 on the horizontal axis and 0.0 < r < 5.0 on the vertical axis.

4. Local stability analysis

The global analysis in §3 reveals that there are two types of global modes, labelled A
and B, with separate wavemaker regions. Comparing with the nonlinear simulations in
NS08, mode A is reasonably close to the high frequency oscillation and mode B matches
the low frequency oscillation. NCS09 suggested that the low frequency oscillation could
be caused by interaction between resonant modes in the lift-off region. In this section,
we perform a local analysis in order to investigate this further.

4.1. Numerical method

For the local analysis (Huerre & Monkewitz 1990) we use the linearized fully-compressible
Navier–Stokes equations with the Mach number set to 0.01. The WKBJ approximation
is applied, in which the flow is considered to be locally parallel at each axial location.
Wavy perturbations of the form exp[i(kx − ωt)] are examined, in which Re(ω) is the
frequency, Im(ω) is the temporal growth rate, Re(k) is the wavenumber, and Im(k)
is the spatial growth rate. The governing equations, radial boundary conditions, and
azimuthal wavenumber form a dispersion relation that is only satisfied for certain pairs of
(k, ω). These are found numerically by discretizing the perturbations on Gauss-Lobatto-
spaced points (G–L) in the radial direction, and solving the resulting generalized matrix
eigenvalue problem. Saddle points of ω(k) are identified that satisfy (i) the dispersion
relation, (ii) dω/dk = 0 and (iii) the k+/k− pinch point criterion. These waves have zero
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group velocity with absolute frequency, ω0, and absolute wavenumber, k0. Further details
of the method applied to an incompressible flow are in Juniper et al. (2011).
For the flow in figure 1, two dominant saddle points are found. Their absolute growth

rates, ω0i, and absolute frequencies, ω0r, are shown as a function of axial location in figure
1(b,c). One saddle point exists in the premixing region and one in the flame region. We
consider these regions separately.

4.2. Premixing region

In the premixing region, the flow is absolutely unstable (ω0i > 0) between the inlet plane
and the flame base (0 < x < 1.8). This distance is only 35% of the absolute wavelength,
which varies from 4.5 to 5.3 across the absolutely unstable region, and the streamwise
boundaries to this region are abrupt. Consequently it is not accurate to estimate the
complex frequency of the linear global mode either by finding a saddle point of ω0(X) in
the complex X-plane (Huerre & Monkewitz 1990), or by taking the complex frequency of
the most upstream location of absolute instability, as one would for a non-reacting hot jet
(Monkewitz et al. 1993). Instead, we perform a resonant mode calculation, as described
by NCS09. This accounts for the abrupt boundary conditions in the streamwise direction.
We perform this calculation on the flow at X = 0.0391 because, based on the value of
k0 (1.405− 1.963i) and ω0 (1.062+ 0.2642i) of the saddle point, this is the axial position
of the results reported in NCS09. We also perform resonant mode calculations at other
values of X (not shown).
In the resonant mode calculation, k+ and k− waves are found that satisfy the resonant

condition:

exp
[

i(k+ − k−)L
]

=
1

R+R−
(4.1)

where R− and R+ are the reflection coefficients at the upstream and downstream bound-
aries. The reflection coefficients can either be set to −1 (perfect reflection) or, according
to NCS09, can be calculated with:

R+ = −

∫

φ+(r)[φ−(r)]†rdr
∫

φ+(r)[φ+(r)]†rdr
(4.2)

where † denotes the adjoint. (The formula for R− has all the + and − superscripts
changed.) This accounts for imperfect overlap between the k+ and k− waves at the
boundaries, which leads to imperfect reflection.
In our calculations, points from r = 0 to ∞ are mapped to G–L points from 0 to 1.

Figure 8 shows contours of ω(k) around the saddle point for 200 G–L points, which is
the resolution used by NCS09. As noted by NCS09 for this flow, and by Healey (2007)
and Juniper (2007) for similar flows, there are a set of poles along the ki axis, which
are caused by the cross-stream confinement. These exist even when the outer point is
mapped to infinity because the Dirichlet condition at r = ∞ is enforced by removing this
point from the calculation, meaning that the penultimate point becomes the boundary.
Three resonant lines are shown for this model. The first is for R+ = R− = −1 with 200

Gauss-Lobatto points. This is identical to that in NCS09 but has been calculated to higher
values of kr. The second is for R+ = R− = −1 with 400 Gauss-Lobatto points. These
show that 200 G–L points are sufficient for convergence. The most unstable resonant
mode has ω = 1.329 + 0.2334i, (frequency 1.329, growth rate 0.2334, St = 0.2115)
shown as a black square in figure 8. This is reasonably close to mode A from the global
analysis (frequency 1.363, growth rate 0.159, St = 0.217). However, these resonant lines
are affected by the presence of the saddle points along the ki axis, meaning that they



Self-sustained oscillations in diffusion flames: origin and control 13

are affected by the radial boundary condition however far away it is (Juniper 2007).
This dependence on the far-away radial boundary condition would be concerning but for
the fact that, as the k− branch approaches the ki axis, the corresponding eigenfunction
decays slowly in the r−direction and therefore has little overlap with that of the k+

branch, which decays quickly in the r-direction. This means that the reflection coefficient
is much less than 1 and (4.2) must be used instead. The third resonant line therefore
is for R+ and R− calculated with (4.2) with 200 Gauss-Lobatto points. Based on this
calculation, the most unstable resonant mode has ω = 1.3352 + 0.15262i (frequency
1.3352, growth rate 0.15262, St = 0.2125) This is very close to mode A from the global
analysis (frequency 1.363, growth rate 0.159, St = 0.217). In summary, mode A found
from the global analysis seems to be a resonant mode in the premixing region, as proposed
by NCS09.

4.3. Downstream of the flame base

NCS09 propose that the low-frequency oscillations (St = 0.025) observed in the non-
linear simulations in NS08 could be caused by interaction between resonant modes in
the premixing region. They illustrate this by considering a premixing region that is 7.85
jet diameters long. Because it is long, it contains several unstable resonant modes with
closely-spaced frequencies, shown in the first column of table 4.3. The difference between
the frequencies of the first two resonant modes is 0.0409 (St = 0.00651), which is around
one quarter that of the low frequency oscillation. However, if the calculation is repeated
with a premixing region that is 4.32 diameters long, shown in the second column of table
4.3, the difference between the first two resonant modes is exactly 0.1574 (St = 0.0251).

The problem with this proposed mechanism is that the actual lift-off height at Da =
500, 000 is much smaller than 4.32 jet diameters. The resonant modes calculated with
the actual lift-off height, 1.913, are shown in the third column of table 4.3. The differ-
ence between the frequencies of the first two resonant modes is 0.7433 (St = 0.1183),
which is 4.7 times greater than the low frequency oscillations observed in the nonlinear
simulations. Similar results are obtained when the resonant modes are calculated at all
other streamwise locations in the premixing region. This shows that the low-frequency
oscillations observed in the nonlinear simulations are not caused by interaction between
resonant modes.

On the other hand, the local analysis in figure 1(c) shows that, downstream of the
flame base, the flow is absolutely unstable due to the second saddle point. In this case, the
absolutely unstable region does not encounter a rapid jump in the flow in the streamwise
direction and it is appropriate to estimate the linear global mode growth rate by extending
ω0(X) into the complex X-plane and finding a saddle point. With this technique, the
local analysis predicts the linear global mode to have ωg = 0.17324+0.014277i (frequency
0.17324, growth rate 0.014277, St = 0.02757) The local analysis is known to over-estimate
the growth rate (Juniper et al. 2011), so this is sufficiently close to mode B (frequency
0.170, growth rate −0.004, St = 0.0271) to confirm that global mode B is caused by
this region of absolute instability downstream of the flame base. Both are close to the
observed frequency of St = 0.025. The local analysis therefore supports the conclusion
of the global analysis: that the low-frequency oscillations observed in the simulations of
NS08 are caused by a linear global instability originating in the outer shear layer of the
flame and not by the interaction between resonant modes.
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Nichols et al. Da = 500, 000 Da = 600, 000 Da = 700, 000
Hs 2π/0.8 = 7.85 4.32 1.913 0.865 0.557
ωR 1.0747 + 0.2674i 1.1059 + 0.2748i 1.3254 + 0.2857i 2.2485 − 0.1061i 3.2737 − 1.3021i

1.1157 + 0.2770i 1.2633 + 0.2900i 2.0687 + 0.0131i 4.4809 − 1.9880i 6.5714 − 2.4455i
1.1926 + 0.2889i 1.5386 + 0.2455i 2.9223 − 0.7569i 6.3725 − 2.4130i 9.4992 − 2.8971i

∆ωR 0.0409 0.1574 0.7433 2.2323 3.2977
(St = 0.00651) (St = 0.0251) (St = 0.1183) (St = 0.3553) (St = 0.5248)

Table 2. Flame lift off height, Hs, resonant modes, ωR, (where Re(ωR) is the frequency and
Im(ωR) is the growth rate), and the difference, ∆ωR, between the frequencies of the first and
second resonant modes expressed in radians/sec and as a Strouhal number. When Hs = 4.32,
∆ωR matches the value of the low frequency oscillations seen in NS08. However, when Hs is
set to the observed values, ∆ωR is much higher and another explanation for the low frequency
oscillations is required.

kr
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resonant line, N=400, perfect reflection boundaries

resonant line, N=200, imperfect reflection boundaries

1st resonant mode, perfect reflection boundaries

2nd resonant mode, perfect reflection boundaries
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Figure 8. Contours of ωi(k) at X = 0.039 for the Da = 500, 000 flame shown in figure 1.
Resonant lines are shown with both perfect reflection and imperfect reflection (4.2) at the
boundaries. Resonant modes are shown for a flame lift off height of Hs = 1.913, which is that
of the Da = 500, 000 flame. Comparison with figure 2 of Nichols et al. (2009) shows that the
resonant modes are further apart in the k-plane when this value value of Hs is used.
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Linear global stability analysis Nichols et al (2008)
Da Growth rate Frequency (rad) St Nonlinear St

500, 000 0.159 1.356 0.217 0.284
600, 000 −0.092 1.984 0.315 0.284
700, 000 −0.400 2.419 0.385 stable

Table 3. Comparison of growth rates and frequencies for mode A from a linear global
stability analysis with frequencies from table 1 of NS08.

Linear global stability analysis Nichols et al (2008)
Da Growth rate Frequency (rad) St Nonlinear St

500, 000 −0.004 0.170 0.027 0.025
600, 000 −0.014 0.203 0.032 0.035
700, 000 −0.017 0.229 0.036 stable

Table 4. Comparison of growth rates and frequencies for mode B from a linear global stability
analysis with the low-frequency oscillations observed in figure 3 of NS08.

5. Global modes at different Damköhler numbers

The global modes are calculated for two other values of the Damköhler number, Da =
600, 000 and Da = 700, 000. The results are summarized in tables 3 and 4 and compared
with the results of NS08. Near a supercritical Hopf bifurcation, the limit cycle amplitude
increases in proportion to the square root of the linear growth rate. The linear growth
rates for mode B decrease as Da increases. If one assumes that nonlinear saturation
mechanisms vary little with Da then this concurs with the results in figure 3 of NS08,
which show that the low-frequency spectral peak for Da = 600, 000 is smaller than the
low-frequency spectral peak for Da = 500, 000. The linear global mode frequencies for
mode B agree well with those observed in the nonlinear simulations for Da = 500, 000
and Da = 600, 000.

6. Sensitivity to a control force

Having identified the two wavemaker regions and instability mechanisms active in the
jet diffusion flame, we now consider how they could be controlled by perturbing the flow.
We consider the effect of a small control force, which we model by adding source terms
to the right-hand side of equation (2.3):

∂q

∂t
= N (q) + F. (6.1)

where F ≡ (f , 0, ψT )
T contains the source terms added to the right-hand side of the

momentum, species and energy equations respectively. The source term in the species
equation has been set to zero because this is unlikely to be a feasible method of control.
The variables f and ψT are the non-dimensional rates of addition per unit volume of
momentum, and thermal energy into the flow. In this linear stability framework, the
control force has a steady component, F̄, which acts on the base flow, q̄, and a linearized
perturbation, f ′, which acts on the linear perturbations, q′. We focus on the steady
component of the control force because its effect is two orders of magnitude greater than
the effect of the unsteady component of the control force.
The eigenvalue of the global mode, λ, is a function of the base flow fields, q̄, and these



16 U. A. Qadri, G. J. Chandler, & M. P. Juniper

Figure 9. (Colour online) The sensitivity of the marginally stable eigenvalue of mode A for the
lifted flame in figure 1 at Da = 500, 000, to steady forcing, ∇

F̄
λ. The greyscale (colour online)

shows the sensitivity of the growth rate (left), and frequency (right).

are, in turn, functions of the steady components of the forcing terms, F̄. The effect of F̄
on λ is calculated by formulating a constrained Lagrangian problem

L = λ− 〈q̄+,N (q̄) + F̄〉 − 〈q̂+, λq̂− Lq̂〉 (6.2)

and calculating ∇
F̄
λ, the functional derivative of λ with respect to (w.r.t) F̄. This is

labelled the sensitivity of the eigenvalue to steady forcing. The nonlinear and linearized
reacting LMN equations act as constraints in this problem. The Lagrange multipliers,
q̄+ and q̂+, are the adjoint base flow and adjoint global mode fields respectively.
The sensitivity to steady forcing is equal to the functional derivative of L w.r.t F̄ when

all the constraints are satisfied. To find this, we first set the functional derivatives of L
w.r.t all other variables to zero. The derivative w.r.t q̂ leads to a set of equations that
defines the eigenvalue problem for the adjoint global mode, −λ∗q̂+ + L+q̂+ = 0. The
derivative w.r.t λ leads to the normalization condition 〈m̂+, m̂〉+ 〈Ẑ+, Ẑ〉+ 〈T̂+, T̂ 〉 = 1.
The derivative w.r.t q̄ leads to a set of equations (given in Appendix A) for the adjoint
base flow fields, L̄+q̄+ = ḡ+. The derivative w.r.t F̄ then shows that the sensitivity of
the eigenvalue to steady forcing is obtained from the relevant adjoint base flow field.
Figure 9 shows the sensitivity of mode A to steady body forces and a steady heat

source. As for the low-density jet considered in Qadri (2013), the sensitivity pattern for
mode A of the lifted diffusion flame, in particlar the sensitivity to axial forcing and heat
input, roughly follows the streamline pattern in figure 1. The eigenvalue is most sensitive
to a steady axial force on the lean side of the fuel-oxidizer shear layer upstream of the
flame base. A radial force has most effect at the jet exit plane and at the flame base.
Heating the core of the fuel jet upstream of the flame base is destabilizing. This is similar
to the low-density jet. In general, the sensitive regions are concentrated around the jet
shear layer and flame base. From a practical point of view, however, it would be difficult
to apply control in these regions because the flame would tend to attach to the control
device.
For mode B, on the other hand, regions of moderate to high sensitivity extend up to

two jet diameters away from the jet axis and beyond. Passive control of this mode may,
therefore, be a feasible option. A previous study by Toong, Salant, Stopford & Anderson
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Figure 10. (Colour online) As for figure 9 but for mode B.

(1965) found that the flicker of a diffusion flame on a burning cylinder could be stabilized
by placing a non-burning control cylinder on either side of the burning cylinder. From
the top frame of figure 10, it can be deduced that the drag force from a thin control
ring has a strong effect on the eigenvalue: close to the flame it stabilizes mode B, while
further from the flame, it destabilizes mode B. The drag force from a control ring also
has an equivalently strong effect on the frequency of this mode: close to the flame, it
increases the frequency, while further from the flame, it decreases the frequency. Toong
et al. (1965) observed the frequency of oscillations to increase in their experiments.
It is worth noting that the sensitivity to steady forcing for both modes of the lifted-

flame has a very large magnitude. This high sensitivity is caused by the linearization of
the reaction rate around the base flow mixture fraction and temperature profiles. In par-
ticular, the eigenvalue is extremely sensitive to changes in the base flow mixture fraction
profile. Physically, this means that a control device affects the growth rate and frequency
of the global modes by affecting the base flow mixture fraction profile, which then affects
the reaction rate. The high sensitivity also means that even a tiny perturbation will cause
a large change in the base flow via this mechanism.

7. Conclusions

In this study, we have performed a linear global stability analysis around steady base
flows for lifted diffusion flames with finite rate chemistry. We have considered a flow
configuration that is identical to that considered by NS08. For each flame, we identify
two types of axisymmetric modes that govern the instability dynamics. We have used
their direct and adjoint global modes to identify the wavemaker responsible for each
mode and to calculate the sensitivity of the growth rate and frequency of each mode to
steady control forces. We have also applied local stability analysis in order to identify
the instability mechanisms responsible for each mode.
The first of these modes, labelled mode A, has a linear global frequency close to the

frequency of the high frequency oscillations observed in the nonlinear simulations of
NS08. The wavemaker for this mode is located in the shear-layer in the premixing zone.
The local analysis confirms the conclusions of NS08 and NCS09 that this mode is caused
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by a resonant mode in the lifted region upstream of the flame base. The components of
the structural sensitivity tensor reveal that the eigenvalue is most sensitive to feedback
of the perturbation density into the linearized axial momentum equations in the lifted
region.
The second of these modes, labelled mode B, has a linear global frequency close to the

frequency of the low-frequency oscillations observed in NS08. The wavemaker for this
mode is located in the outer part of the shear layer in the flame. The local analysis shows
that this is caused by a region of absolute instability in the flame, rather than by the
nonlinear interaction of two resonant modes in the lifted region, which was the mechanism
proposed by NCS09. The frequency that would arise from the nonlinear interaction of
two resonant modes is several times larger than the frequency observed in the nonlinear
simulations. The components of the sensitivity tensor reveal that the eigenvalue is most
sensitive to the same feedback mechanism as that of mode A, but in the shear layer in
the flame.
For mode A, the growth rate and frequency are most sensitive to steady forces applied

near the jet shear layer upstream of the flame base. This suggests that passive control of
this mode may not be feasible because the flame is likely to attach to any control devices
placed at or near the flame base. For mode B, on the other hand, regions up to two or
three diameters away from the fuel jet are moderately sensitive to steady forces. Passive
control of this mode may, therefore, be feasible. The sensitivity map shows a large region
where the drag force from a thin axisymmetric control ring can stabilize this mode of
instability. This result tallies with Toong et al. (1965).
In this fundamental study, we have performed the first adjoint global stability analysis

of a reacting flow, including the effects of finite rate chemistry. By using linear local and
global stability analyses together, we have found that oscillations in lifted jet diffusion
flames can be caused due to the interaction between different basic mechanisms of insta-
bility. The methods used here hold great promise for the use of linear stability analyses
to study and control hydrodynamic instability in reacting flows, whether lifted or not.

This work was funded by the European Research Council through project ALORS
2590620.
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Appendix A. Reacting LMN equation

A.1. Linearized LMN equations

∂ρ′

∂t
= −∇ ·m′, (A 1a)

∂m′

∂t
= −∇p′ −∇ · (ρ̄ūu′ + ρ̄u′ū+ ρ′ūū) +

1

S1Re
∇ · τ ′,

(A 1b)

ρ̄
∂Z ′

∂t
= −m′ · ∇Z̄ − ρ̄ū · ∇Z ′ +

1

S1ReSc
∇2Z ′, (A 1c)

ρ̄
∂T ′

∂t
= −m′ · ∇T̄ − ρ̄ū · ∇T ′ +

1

S1RePr
∇2T ′ +Daρ̄2ω′,

(A 1d)

ρ′

ρ̄2
= −K̄1T

′ − K̄2Z
′, (A 1e)

where τ ′ ≡
[

∇u′ + (∇u′)T
]

− 2

3
(∇ · u′)I , the linearized momentum is m′ ≡ ρ̄u′ + ρ′ū,

the linearized reaction rate is ω′ ≡ ρ̄K̄ZZ
′ + ρ̄K̄TT

′ + 3ρ′ω̄, and the additional scalar
fields used for ease of reference are

K̄1 ≡ (S2 − 1)
(

(S1 − 1)Z̄ + 1
)

, (A 2)

K̄2 ≡ (S1 − 1)
(

(S2 − 1)T̄ + 1
)

, (A 3)

K̄Z ≡

(

1− 2Z̄ −
s− 1

s+ 1
T̄

)

exp

[

−β(1− T̄ )

1− α(1− T̄ )

]

, (A 4)

K̄T ≡

{

[(

Z̄ −
T̄

s+ 1

)(

1− Z̄ −
sT̄

s+ 1

)

− κT̄ 2

]

β
(

1− α(1 − T̄ )
)2

· · ·

+2T̄

(

s

(s+ 1)2
− κ

)

−
1 + (s− 1)Z̄

s+ 1

}

exp

[

−β(1− T̄ )

1− α(1 − T̄ )

]

. (A 5)
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A.2. Adjoint reacting LMN equations

∂m̂+

i

∂xi
= 0 (A6a)

λ∗m̂+

i =
m̄j

ρ̄

(

∂m̂+

i

∂xj
+
∂m̂+

j

∂xi

)

+
1

ρ̄

∂p̂+

∂xi
+

1

S1Reρ̄

(

∂2m̂+

i

∂x2j
+

1

3

∂2m̂+

j

∂xj∂xi

)

−
T̂+

ρ̄

∂T̄

∂xi
−
Ẑ+

ρ̄

∂Z̄

∂xi
(A 6b)

λ∗Ẑ+ = m̄i

∂

∂xi

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

+
1

S1ReSc

∂2

∂x2i

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

+ Daρ̄3

(

T̂+

ρ̄
+ K̄1p̂

+

)

(

K̄Z − 3K̄2ρ̄ω̄
)

− K̄2ρ̂
+ (A 6c)

λ∗T̂+ = m̄i

∂

∂xi

(

T̂+

ρ̄
+ K̄1p̂

+

)

+
1

S1RePr

∂2

∂x2i

(

T̂+

ρ̄
+ K̄1p̂

+

)

+ Daρ̄3

(

T̂+

ρ̄
+ K̄1p̂

+

)

(

K̄T − 3K̄1ρ̄ω̄
)

− K̄1ρ̂
+ (A 6d)

ρ̂+ = −m̄im̄j

∂m̂+

i

∂xj
−

m̄i

S1Re

(

∂2m̂+

i

∂x2j
+

1

3

∂2m̂+

j

∂xj∂xi

)

(A 6e)

A.3. Sensitivity to steady forcing

The sensitivity to steady forcing is obtained from the adjoint base flow, which is defined
by the equations

∂m̄+

i

∂xi
= 0 (A 7a)

−
m̄j

ρ̄

(

∂m̄+

i

∂xj
−
∂m̄+

j

∂xi

)

−
∂p̄+

∂xi
−

1

S1Reρ̄

(

∂2m̄+

i

∂x2j
+

1

3

∂2m̄+

j

∂xj∂xi

)

+T̄+ ∂T̄

∂xi
+ Z̄+ ∂Z̄

∂xi
= f̄+

i (A 7b)

−m̄i

∂Z̄+

∂xi
−

1

S1ReSc

∂2Z̄+

∂x2i
−Daρ̄3T̄+

(

K̄Z − 3K̄2ρ̄ω̄
)

+ K̄2ρ̄ρ̄
+ = ψ̄Z (A 7c)

−m̄i

∂T̄+

∂xi
−

1

S1RePr

∂2T̄+

∂x2i
−Daρ̄3T̄+

(

K̄T − 3K̄1ρ̄ω̄
)

+ K̄1ρ̄ρ̄
+ = ψ̄T (A 7d)

m̄im̄j

ρ̄2
∂m̄+

i

∂xj
+

m̄i

S1Reρ̄2

(

∂2m̄+

i

∂x2j
+

1

3

∂2m̄+

j

∂xj∂xi

)

+
ρ̄+

ρ̄
= ¯̺+. (A 7e)
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The complex fields that constitute ḡ+ ≡ (f̄+

i , ψ̄
+

Z , ψ̄
+

T )
T and ¯̺+ represent the sensitivity

of the eigenvalue to local base flow modifications and are given by

f̄i
+
≡

(

m̂∗
j

ρ̄
−
ρ̂∗m̄j

ρ̄2

)

(

∂m̂+

i

∂xj
+
∂m̂+

j
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)

−
ρ̂∗

S1Reρ̄2

(

∂2m̂+

i

∂x2j
+

1

3

∂2m̂+
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· · · −

(

T̂+
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+

)

∂T̂ ∗

∂xi
−

(

Ẑ+

ρ̄
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+

)

∂Ẑ∗

∂xi
, (A 8a)
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∂

∂xj

(
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j
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− (S2 − 1)(S1 − 1)p̂+

(

m̄j
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−

1
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, (A 8b)
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∗ + δK̄T,δT T̂

∗
)

T̂+

−3Daρ̄3T̂+

(

(

K̄2K̄T + (S2 − 1)(S1 − 1)ω̄
)
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and

¯̺+ ≡ 2
ρ̂∗ρ̂+
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j
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∂xj

· · · +
T̂+

ρ̄2

(

m̄j

∂T̂ ∗

∂xj
+ m̂∗

j

∂T̄

∂xj

)

+
Ẑ+
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∂Ẑ∗

∂xj
+ m̂∗

j

∂Z̄

∂xj

)

· · · −
T̂+

S1RePrρ̄2
∂2T̂ ∗

∂x2j
−

Ẑ+
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(A 9)

The additional scalar fields introduced by linearizing the expressions in (A 4) and (A 5)
around Z̄ and T̄ are given by

δK̄Z,δZ ≡ −2 exp

[

−β(1− T̄ )

1− α(1 − T̄ )

]

, (A 10)
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, (A 11)

and
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+
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. (A 12)


