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Multiple markers of cortical morphology reveal evidence of
supragranular thinning in schizophrenia
K Wagstyl1, L Ronan1, KJ Whitaker1, IM Goodyer2, N Roberts3, TJ Crow4 and PC Fletcher1,5

In vivo structural neuroimaging can reliably identify changes to cortical morphology and its regional variation but cannot yet relate
these changes to specific cortical layers. We propose, however, that by synthesizing principles of cortical organization, including
relative contributions of different layers to sulcal and gyral thickness, regional patterns of variation in thickness of different layers
across the cortical sheet and profiles of layer variation across functional hierarchies, it is possible to develop indirect morphological
measures as markers of more specific cytoarchitectural changes. We developed four indirect measures sensitive to changes
specifically occurring in supragranular cortical layers, and applied these to test the hypothesis that supragranular layers are
disproportionately affected in schizophrenia. Our findings from the four different measures converge to indicate a predominance of
supragranular thinning in schizophrenia, independent of medication and illness duration. We propose that these indirect measures
offer novel ways of identifying layer-specific cortical changes, offering complementary in vivo observations to existing post-mortem
studies.
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INTRODUCTION
The cerebral cortex has a predictably varying laminar structure.1

Individual layers exhibit differing histological composition, regio-
nal distributions,2 developmental trajectories,3 physiology4 and
hypothesized functional roles.5 The question arises whether a
subtle variation in these components could contribute to the
spectrum of psychiatric syndromes including schizophrenia.6

However, direct identification of these putative lamina changes
is necessarily limited to post-mortem analysis given that structural
magnetic resonance imaging (MRI) methods currently cannot
resolve individual cortical layers in vivo.
Accumulating evidence from several approaches has indicated

that there are alterations in the supragranular layers in
schizophrenia.6 These include deficits in small interneurons,7

reduced density of calbindin cells in layer II,8 as well as changes in
neurotransmitters, receptors,9 pyramidal cell density and
morphology,10,11 and mRNA expression12 in layers II and III. In
addition, supragranular thinning has been measured in the
dorsolateral prefrontal cortex (DLPFC/BA46)13 although the extent
of these changes across the cortex has not been established.
Although there is some heterogeneity reported in the neuro-
pathology of schizophrenia,14 supragranular layer changes appear
to be a consistent finding and are not caused by prolonged
exposure to antipsychotic medication15 or alcohol abuse.16 In vivo
studies of cortical structure in schizophrenia have identified
regional changes in cortical thickness17 and surface area,18 but
limits to MRI resolution mean that direct markers of supragranular
cortical change are not currently available.
We attempted to address this problem indirectly by capitalizing

on principles of structural brain organization that potentially
differentiate between alterations in the infragranular (V and VI)

and supragranular (I–III) layers of the cortex in vivo. Specifically, we
identified four measures that are relatively specific to supragra-
nular change and used these measures to evaluate a previously
acquired data set19 from people with schizophrenia, in order to
determine whether measurable neuroanatomical changes favored
the prediction that cortical pathology in schizophrenia is pre-
dominant in supragranular layers. The four measures are
explained below.
First, the thicknesses of supra- and infragranular layers are

consistently different between the crowns of gyri (where
infragranular layers are thicker) and the depths of sulci (where
supragranular layers are thicker) (Figure 1).2,20–22 This is a product
of deformation of the cortex under folding, such that layers that
are on the outside of a fold (lower layers in sulci and upper layers
in gyri) are stretched and thinner, whereas layers on the inside of
folds are compressed and thicker.20 For example, in the prefrontal
cortex, the supragranular layers make up 70% of the thickness of a
sulcal fundus but only 49% of the adjacent gyral crown.2 Thus,
despite sulci being generally thinner than gyri,2,23 supragranular
layers have an increased relative and absolute thickness in sulci. It
follows from these clear folding-related differences in sulci and
gyri that supragranular thinning will affect sulci disproportio-
nately. This was the first hypothesis tested here. Specifically, if
neuropathology in schizophrenia results in a disproportionate
reduction in supragranular layer thickness, we would expect to
measure disproportionate thinning of sulci, particularly in regions
where these layers are more prominent. This is a general principle
that may be applied to the whole brain or to individual lobes and
brain regions.
Second, turning to small-scale (but quantifiable) measures of

cortical morphometry in the form of intrinsic curvature,24 we
predict that these will also vary with supragranular layer
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changes.19 Specifically, changes observed superficially (on the pial
surface) could feasibly be related to thinning of superficial layers,
whereas those observed on the white matter surface could more
feasibly be related to thinning in deeper layers. Moreover, in line
with the reasoning outlined above, we expect these changes to be
more prominent in sulci than gyri.
Third, it is known that cytoarchitecture is not uniform across the

healthy human cortex1—and that layer thicknesses exhibit
significant and consistent variability.2,25 One clear variation in
regional patterns of supragranular thickness can be seen across
DLPFC/BA46 (where it tends to be thicker) and the anterior
cingulate/BA24 cortex (where it is particularly thin). We therefore
hypothesized that supragranular thickness alterations in patholo-
gical cases may be more prominent in DLPFC, where these layers
are thicker, than in anterior cingulate cortex, for example, where
these layers are thinner. An extension of this hypothesis is that the
pattern of sulcal-specific thinning should follow supragranular
layer thicknesses in healthy individuals.2

Finally, as well as gyral–sulcal differences, gradients of
supragranular (I–III/IV) layer thickness exist within sensory
hierarchies. In particular, sensory hierarchies have a gradient of
absolute cortical thickness, with thinner primary sensory regions
and progressively thicker higher cortical regions.26 Supragranular
layers are the origin of feedforward connections, communicating
incoming sensory information. They are relatively thicker in these
lower sensory regions.2,25 By contrast infragranular, feedback
layers (V and VI) are more prominent in higher sensory and frontal
cortical areas. Therefore, a loss of supragranular thickness should
result in a relatively steeper gradient of cortical thickness across
the structural hierarchy of sensory systems (that is, preferential
reduction of cortical thickness in lower sensory regions).
In summary, we aimed to capitalize on basic biological

observations of the natural variation in supragranular thickness
in order to relate alterations in magnetic resonance-based
measurements of cortical thickness and curvature to underlying
supragranular changes. In order to demonstrate the applicability
of these measures, we applied them in a schizophrenia case–
control cohort.
Our main objective was therefore to quantify supragranular-

specific differences in cortical structure measured on structural T1-
weighted MRI scans of patients with schizophrenia. We predicted
that the cortex in schizophrenia would not only be thinner in line
with previous magnetic resonance-based and neuropathological
studies, but that disproportionate changes to the upper cortical
layers would, on the basis of the above principles, cause thinning
to be disproportionate in sulci (which have a greater supragra-
nular thickness) and lead to abnormal curvature of the pial, but
not the white matter surfaces, particularly in sulci. In addition, the
principles lead us to hypothesize that disproportionate sulcal
thinning would be greater in regions with thicker supragranular
layers such as BA46 but not in anterior cingulate cortex. Finally, we
predicted that the gradient of thickness in the visual hierarchy
would be steeper in patients with schizophrenia. These four
measures taken together may be adopted as macroscale
surrogate markers of changes not accessible with current MRI
measures.

MATERIALS AND METHODS
Forty-six patients (36 males; 33.2 ± 9 years) were recruited by collaborating
psychiatrists from Oxfordshire and Berkshire Mental Healthcare Trusts, and
with the guidance of the Oxford and Berkshire Psychiatric Research Ethics
Committees, UK. Diagnosis was confirmed using the Structural Clinical
Interview for DSM-IV Disorders.27 Forty-four controls (32 males) were also
recruited (30.4 ± 8 years). There were no statistically significant differences
in age or sex (P40.05) between patients and controls. Full Scale
Intelligence Quotient (FSIQ) was available for 32 controls (122.4 ± 15.3)
and 28 patients (101.8 ± 20.4), and was significantly reduced in the patient
group (B=− 20.7, t=− 4.46, Po0.0001). Medication and dose were

available for 31 patients from which were derived chlorpromazine
equivalent doses (417.5 ± 296.7mg daily); duration of illness was calculated
for 32 patients (121.3 ± 87.6 months). Positive and Negative Syndrome
Scale (PANSS) was available for 30 patients (93.77 ± 20.3).
Structural MRI data were acquired using a 1.5-T Sonata MRI system

(Siemens Medical Systems, Erlangen, Germany) with a standard quadrature
head coil and maximum 40 mT m− 1 gradient capability at the Oxford
Centre for Clinical Magnetic Resonance Research. Whole-brain T1-weighted
images were acquired with a FLASH sequence using the following
parameters: coronal orientation; image matrix = 256× 256, with 1 × 1 mm2

in-plane resolution; 208 slices of slice thickness 1 mm; echo time (TE)
= 5.6 ms; repetition time (TR) = 12 ms; and flip angle α= 19°.

Cortical reconstruction and analysis
Cortical reconstructions were generated using the software FreeSurfer 5.2
(freely available from http://surfer.nmr.mgh.harvard.edu/).23,28,29 In brief,
raw image data voxels were sub-sampled to voxels of side 1 mm3. The data
were then normalized for intensity, radio-frequency-bias field inhomo-
geneities were modeled and removed, followed by skull-stripping. The
cerebral white matter was subsequently identified after which the
hemispheres were separated, tessellated and deformed to produce an
accurate and smooth representation of the gray–white interface. These
surface reconstruction processes were conducted in native space. To
correct for minor inaccuracies, the reconstructions were manually edited.
Eight scans (three patients and five controls) were omitted from further
analyses due to large errors or artefacts. Mean curvature was measured to
divide the cortex into gyri and sulci. Gyri have a negative mean curvature;
sulci have a positive mean curvature.

Morphometric measurements of supragranular layer thickness
changes
Four distinct morphometric markers of supragranular thickness changes
were developed, which are explained below.

Whole-brain gyral–sulcal thickness differences. Cortical thickness was
measured as the shortest distance between each vertex on the white
matter surface and the pial surface.23 Mean gyral and sulcal thicknesses
were calculated for each individual, as was the difference between these
two measures. The ratio between total gyral and sulcal surface area was
also calculated to test for systematic changes in cortical surface
classification.

Whole-brain gyral–sulcal intrinsic curvature differences. Intrinsic or Gaus-
sian curvature was calculated for each vertex on the cortex on the white
matter and pial surface reconstructions as the product of the principal
curvatures.19,24 Mean modulus of intrinsic curvature was calculated for
gyral and sulcal cortex at the white matter and pial surfaces, along with the
difference between gyral and sulcal measurements.

Regional specific pattern. A local measure of gyral–sulcal thickness
differences (GSDs) was created as a normalized difference between mean
gyral and sulcal cortical thickness within a 25-mm radius of each vertex i
on an inflated cortical surface.

GSDi ¼ Gm - Sm
Gm þ Sm

ð1Þ

The value of this measure increases when GSDs increase. Thus, an increase
in GSD is taken as a measure of the extent to which thinning is sulcal-
specific. A unit of 25 mm was chosen as the disk radius to balance local
specificity and capturing sufficient gyral and sulcal cortex, independent of
central vertex location.30 Supplementary Figure 1 shows the effect of
varying disk radius on the relative areas of gyral and sulcal cortex captured
by the disk.
Per-vertex GSD was registered from individuals to an average surface,

and comparison was carried out between patients and controls, controlling
for differences in white matter total surface area. Total brain surface area is
related to other morphometric measures such as cortical thickness and
therefore was taken into account in the regression model.31

Furthermore, in order to assess the specificity of our gyral–sulcal-derived
markers of supragranular thinning, we compared our regional measure of
sulcal-specific thinning with previously reported post-mortem findings.
Thickness measurements for cortical regions were taken from von
Economo.2 Where explicit measurement for a layer was omitted,

Morphological markers of supragranular thinning
K Wagstyl et al

2

Translational Psychiatry (2016), 1 – 7



approximate layer thicknesses were inferred based on textual description,
annotated figures and comparison with measurements from the remaining
five layers. These values were compared with regional measures of sulcal-
specific thinning in schizophrenia using the population-average, landmark-
and surface-based (PALS) atlases of Brodmann areas.32,33 Von Economo
regions were identified based on the Brodmann atlas and reference
tables.34

Cortical thickness gradient in visual hierarchy. Cortical thickness gradients
across the visual hierarchy were calculated for all subjects.26 Briefly, visual
regions were parcellated on individual subjects according to the PALS
visuotopic atlas.32,33 These regions were given estimates of hierarchical
level derived from functional studies.35 The gradient of regional cortical
thickness against visual hierarchical position was calculated using a linear
model. Gradients were then compared between patients and controls,
accounting for hemispheric differences.

Statistical analyses
Statistical analyses of the data were carried out using MATLAB36 and R.37

Patient–control differences were calculated for each of these measures
using a linear mixed effects model, controlling for hemispheric differences,
total surface area, age, sex and the random effect of individual. The effect
of FSIQ on measures 1, 2 and 4 was calculated on the 60 individuals for
whom the measure was available, accounting for hemispheric differences,
total surface area, sex and the random effect of individual. The effect of
PANSS, medication and illness duration on measures 1, 2 and 4 were
calculated within the patient group with a linear mixed effects model
accounting for hemispheric differences, total surface area, sex and the
random effect of individual.

RESULTS
Whole-brain GSDs
In line with neuropathology and previous neuroimaging studies,
cortical thickness was significantly decreased in patients with
schizophrenia in both gyri (B=− 0.21, t=− 6.20, Po0.0001) and
sulci (B=− 0.29, t=− 7.12, Po0.0001; Figures 1 and 2a(i); see

Supplementary Figure 2 for vertex-wise cortical thickness differ-
ences). The difference between mean gyral and sulcal thickness
was greater in patients with schizophrenia than in controls
(B= 0.08, t= 4.60, Po0.0001; Figure 2a(ii)). This is in line with the
hypothesis that supragranular pathology would be differentially
expressed in sulci, owing to the relatively increased supragranular
thickness in these regions. There were no significant differences in
the ratio of gyral/sulcal cortical surface area (P= 0.39), thus
increased GSD was not caused by systematic misclassification of
the cortical surface. There was a small effect of FSIQ on GSD
(B= 0.0012, t= 2.06, Po0.05), but no effect of sex or age. There
was no significant effect of PANSS (P= 0.12), medication (P= 0.12)
or illness duration (P= 0.14) on GSDs within the patient group.

Intrinsic curvature
Consistent with upper cortical layer changes driven by supra-
granular pathology, there was a significant reduction in pial
surface intrinsic curvature of both gyri (B=− 0.017, t=− 5.59,
Po0.0001) and sulci (B=− 0.040, t=− 6.97, Po0.0001; Figure 2b
(ii)), but no change in curvature of the white matter surface
intrinsic curvature of gyri (B= 0.001, t= 0.29, P= 0.77) or sulci
(B= 0.001, t= 0.44, P= 0.66).
Moreover, given the increased prominence of upper cortical

layers in sulci, the sulcal curvature was disproportionately
decreased, relative to gyral curvature in subjects with schizo-
phrenia (B= 0.023, t= 7.21, Po0.0001; Figure 2b(ii)). There was no
effect of sex, age or FSIQ on gyral–sulcal pial curvature difference.
There was also no effect of PANSS (P= 0.89), medication (P= 0.92)
or illness duration (P= 0.22) on gyral–sulcal curvature differences
within the patient group.

Regional specific pattern
In line with our hypotheses GSDs were nonuniformly increased in
schizophrenia. Areas of the DLPFC/BA46, temporal and parietal
cortex exhibit significantly increased, gyral–sulcal differences
(Figure 3a). The anterior cingulate cortex showed decreased GSD
in line with the neuropathological studies finding no measurable
supragranular change.38 These findings in the DLPFC and anterior
cingulate cortex are consistent with previously published neuro-
pathology studies measuring layer thicknesses in schizophrenia
(Figure 3b).
The pattern of changes in gyral–sulcal differences in schizo-

phrenia was related to neuropathological layer II thickness
measurements taken from healthy individuals (B=− 4.17, t=
− 2.11, Po0.05). This was not true of other cortical layers
(Figure 4), suggesting that GSD was uniquely sensitive to layer II
changes. This finding was not corrected for multiple comparisons.
Nevertheless, the pattern of changes in schizophrenia provided
further support that sulcal-specific thinning was more significant
in regions with a normally thicker layer II.

Cortical thickness gradient in visual hierarchy
Cortical thickness was strongly correlated with regional estimates
of hierarchical level in both patients and controls (Figure 5a).
However, the hierarchy-thickness gradient was significantly
steeper in patients with schizophrenia than in healthy controls
(B= 0.0095, t= 8.33, Po0.0001; Figure 5b). This is consistent with
disproportionate supragranular thinning, as these layers are more
prominent lower in a sensory hierarchy. There was also a
significant hemisphere (B= 0.023, t= 27.6, Po0.0001) and hemi-
sphere by diagnosis interaction (B=− 0.006, t=− 5.19, Po0.0001).
There are interhemispheric asymmetries in the visual parcellation
scheme used, which give rise to an apparent steepening of
thickness gradient.26 There was no effect of sex, age or FSIQ. There
was no significant effect of PANSS (P= 0.94), medication (P= 0.86)

Figure 1. Morphological effect of disproportionate supragranular
thinning (I–III, green/blue; infragranular, V and VI, light gray).
Decreased dendrites and synapses in schizophrenia can result in
thinner supragranular layers, which may in turn be reflected in
changes to large-scale cortical morphology. In particular, supragra-
nular layers are thicker in sulci than in gyri, thus pruning will lead to
disproportionately reduced cortical thickness in sulci compared with
gyri. Similarly, pruning of the supragranular layers will affect the
curvature of the pial surface more than the curvature of the
boundary between gray and white matters, again disproportio-
nately more in sulci than gyri.
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or illness duration (P= 0.91) on gradients of cortical thickness
within the patient group.

DISCUSSION
In vivo structural MRI measures cannot currently resolve cortical
layers and therefore our ability to interpret morphological

changes in terms of underlying pathological processes affecting
different cortical layers is limited. In this paper we sought to
develop surrogate markers of cortical structure that are sensitive
to supragranular layer-specific changes. These markers are based
on predictable patterns of cytoarchitecture elucidated by post-
mortem studies, which have indicated that laminar thicknesses
have a close relationship with macroscale structure.2,20 We were

Figure 2. (a) (i) Cortical thickness is decreased in both gyri and sulci in schizophrenia (Po0.0001). (ii) Supragranular layers are thicker in sulci
so that supragranular pathology in schizophrenia leads to a disproportionate decrease in the thickness of the cortex in sulci compared with
gyri (Po0.0001). (b) (i) Intrinsic curvature at the pial surface is decreased in both gyri and sulci in schizophrenia (Po0.0001). Consistent with a
predominantly upper cortical layer change, there was no difference in intrinsic curvature at the white matter surface. (ii) For the same reason
as in a (ii) above, sulcal intrinsic curvature is disproportionately decreased relative to gyral curvature in schizophrenia (Po0.0001).

Figure 3. Per-vertex comparison of gyral–sulcal thickness differences (GSDs). (a) Local GSDs are regionally increased particularly in dorsolateral
prefrontal cortex (DLPFC/BA46), superior temporal gyrus, inferior temporal gyrus and inferior parietal gyrus. (b) The regional pattern of sulcal-
specific thinning is consistent with neuropathology studies of schizophrenia, which have identified layer II thinning in BA46,13 but not BA9,
BA44 (ref. 39) or anterior cingulate cortex.38
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therefore able to identify four morphological changes consistent
with supragranular thinning, namely (i) disproportionate gyral–
sulcal thinning, (ii) disproportionate alterations in gyral–sulcal pial
surface intrinsic curvature, (iii) a region-specific pattern of sulcal
thinning and (iv) a steeper gradient of thickness across the visual
hierarchy. We tested these interlinked markers on existing data
from people with schizophrenia and matched controls, accounting
for the effects of medication, illness duration and severity, as well
as age, sex and FSIQ. Taken together, our markers indicated that
supragranular changes are present in vivo in patients with
schizophrenia and support the evidence from functional and
histological modalities that some of the deficits associated with
schizophrenia may have their origin in upper cortical layer
pathology.6,9,40 Moreover these measures can be applied more
generally as in vivo structural markers of layer-specific change.
In this experiment, we adopted schizophrenia as a proof-of-

concept case predicated on evidence from a wide range of
neuropathology studies that identify changes to the supragranular
cortical layers in the disease. In each case, our methods were in
agreement with pathological evidence. For example, markers for
supragranular thinning were found in the DLPFC (BA46)13 but not
in the anterior cingulate cortex (BA24)38 in line with our findings of
regional variation of sulcal-specific thinning.
As a marker of supragranular cortical pathology in schizo-

phrenia, sulcal-specific thinning has further implications for
understanding the development of schizophrenia. Schizophrenia
commonly manifests during adolescence and is thought to relate
to structural changes over this period.41 In particular, cortical
thinning, which is nonuniform in healthy neurodevelopment,
demonstrates increased thinning in sulci compared with gyri.42

Histologically, much of layer II merges with layer III of the cortex
between late childhood and adulthood.1 If healthy adolescent
development involves thinning and pruning of dendrites in layers
II and III,43 for which sulcal thinning is a marker, then excessive
sulcal thinning in schizophrenia44 might be a result of dysregula-
tion of this normal developmental process in adolescents. Indeed,
sulcal thinning in certain cortical regions has been shown to be a
vulnerability indicator in schizophrenia.45

The fact that our observations suggest widespread supragra-
nular changes is in keeping with the prevailing view that the
range of functional changes in schizophrenia is diffuse in origin.
Our fourth observation—of a steeper thickness gradient in the
visual hierarchy in schizophrenia—may be interpreted in func-
tional terms, notably with respect to the balance between top-
down and bottom-up processing, which is a key part of the
predictive coding model of schizophrenia.46 This model hypothe-
sizes a widespread disruption, whereby the comparison between
feedback predictions and feedforward sensory input to create a
prediction error is perturbed. Across the cortex this comparison is
made in the supragranular layers II/III (ref. 5), and multiple lines of
evidence suggest that this supragranular function is disrupted in
schizophrenia. Prediction errors are communicated at gamma-
range oscillations,47–49 which are widely disrupted in schizo-
phrenia.50 Moreover patients fail to modulate their response from
unpredictable to predictable stimuli,51–53 suggesting differing
feedback signals are failing to modulate prediction error signaling.
Our final result demonstrates that the normal progressively
changing structure of the cortex within a sensory hierarchy is
disrupted in schizophrenia. Cortical hierarchies show progressive
changes in cytoarchitecture and thickness, reflecting a shifting
balance between feedforward and feedback connectivity.26 A
steepening visual hierarchy suggests a shift toward stronger
feedback connectivity—such a shift has also been demonstrated
using functional MRI.40 Our results therefore offer an important
link between the observation of post-mortem supragranular layer
pathology and widespread functional deficits in prediction error
coding in schizophrenia.

Figure 4. (a) Regional gyral–sulcal cortical thickness difference (GSD)
compared with histological measurements of thickness for each
cortical layer and their combined total cortical thickness, taken from
von Economo.2 (b) Only layer II thickness is significantly correlated
(Po0.05) with the regional measure of sulcal-specific thinning in
schizophrenia. This did not survive correction for multiple
comparisons.

Figure 5. (a) Cortical thickness increases with visual hierarchical level
in both controls and patients with schizophrenia (Po0.0001). Visual
regions are listed below their assigned hierarchical level. (b) The
gradient of thickness against hierarchical level is steeper in patients
with schizophrenia for both left and right hemispheres (Po0.0001).
This is consistent with supragranular thinning and has implications
for the balance of feedforward/feedback connectivity in sensory
regions.
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In vivo imaging cannot yet resolve these laminar cortical
changes directly, but here we have demonstrated that certain
markers of such changes can be quantified at the relatively low
resolution accessible to 1.5 T or 3 T MRI. Indeed, as these are four
complementary and cytoarchitecturally derived markers of cortical
surface morphology, they are readily quantifiable at lower field
strengths and are more robust to problems with false positives
that beset vertex- or voxel-wise analyses. Although we have
demonstrated their applicability in schizophrenia, the methods
developed here to detect laminar cortical changes may be applied
generally. For example, cortical layers follow different develop-
mental trajectories3 that may produce differential development of
both cortical regions54 and of gyri and sulci.42 As such, the
methods presented here may be adopted as useful markers of
cortical development. Similarly, many other neuropsychiatric
cortical pathologies exhibit a degree of laminar specificity,
including Alzheimer’s disease55 and autism.56 The power to
identify subtle case–control differences in these diseases may
potentially be increased by adopting surrogate markers of laminar
specific changes.
Morphological measures in structural MRI are necessarily limited

by scale. However, by using fundamental knowledge of cortical
organization, we developed a series of surrogate markers of
supragranular layer changes. Although the value of the methods
developed here has been demonstrated in schizophrenia, they are
as generally applicable as other, more conventional approaches to
studying cortical morphology. Our in vivo structural results are
consistent with neuropathological, developmental and functional
evidence that schizophrenia is characterized by widespread
abnormalities in the supragranular cortical layers.
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