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Ribbons are long narrow strips possessing three distinct material length scales (thickness, width, and length)
which allow them to produce unique shapes unobtainable by wires or filaments. For example when a ribbon
has half a twist and is bent into a circle it produces a Möbius strip. Significant effort has gone into determining
the structural shapes of ribbons but less is know about their behavior in viscous fluids. In this paper we
determine, asymptotically, the leading-order hydrodynamic behavior of a slender ribbon in Stokes flows. The
derivation, reminiscent of slender-body theory for filaments, assumes that the length of the ribbon is much
larger than its width, which itself is much larger than its thickness. The final result is an integral equation
for the force density on a mathematical ruled surface, termed the ribbon plane, located inside the ribbon. A
numerical implementation of our derivation shows good agreement with the known hydrodynamics of long
flat ellipsoids, and successfully captures the swimming behavior of artificial microscopic swimmers recently
explored experimentally. We also study the asymptotic behavior of a ribbon bent into a helix, that of a twisted
ellipsoid, and we investigate how accurately the hydrodynamics of a ribbon can be effectively captured by
that of a slender filament. Our asymptotic results provide the fundamental framework necessary to predict
the behavior of slender ribbons at low Reynolds numbers in a variety of biological and engineering problems.
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I. INTRODUCTION

Ribbons are everywhere. Some plants create rigid ribbon-like seed pods to encourage seed dispersal by the wind1

while many marine animals swim by sending waves down ribbon-like appendages2,3. The three dimensional folding
structure of proteins can be simplified and understood well using ribbons4 while the super-coiling behavior of DNA
has been related to a linking number of ribbons5. For years machines have used closed ribbons as drive belts, in
order to transfer the power from a motor to other turning objects. Recently, ribbons have also been used to create
magnetically-driven artificial swimmers at the micron scale6–8.

The ability for a ribbon to take so many configurations comes form the fact that it is characterized by three material
length scales: the centerline length, 2`, the plane width, 2b, and the thickness, 2a. These three length scales make the
behavior of a ribbon fully three dimensional and allows for the creation of different shapes with complex topology.
For example a Möbius strip9, a looped ribbon with a half twist in it, is very different from a ribbon bent into a loop
without any twisting. The ability to make such configurations explains why ribbons are relevant to so many fields of
research1–8,10,11.

Extensive past work has gone into determining theoretically the equilibrium structures of ribbons as solid mechanical
objects9,12, experiments have looked into how ribbons curl13, theory has addressed how ribbons let animals swim2,3

and flags flap10. However, very little theoretical investigation has gone into the general hydrodynamics of ribbons,
particularly at low Reynolds number14–16. The existing computational framework can tackle ribbons with a width
on the same order as its thickness15,16, which are thus too thick to represent the ribbons seen naturally or used in
micro-swimming experiments6,7.

In this paper we derive the asymptotic framework necessary to quantify the hydrodynamics of a thin slender ribbon
at low Reynolds number. The slenderness of the ribbon is assumed to be characterized by the asymptotic limit
`� b� a. An expansion similar to the slender-body theory (SBT) expansion for Stokes flow17 is performed. Using
only force singularities (stokeslets), we are able to fully determine the hydrodynamics of the ribbon at leading order
in b/`. This expansion assumes that the curvature of the ribbon and the rate at which the ribbon twists is less than
`/b, similar to the curvature restriction in SBT, and that the ribbon is a ruled surface. The resulting formulation is
tested against known solutions and experimental results, and we obtain excellent agreement. We also investigate the
behavior of a slender ribbon twisted around its central axis and that of a slender ribbon with a helical centerline. The
behavior seen is finally compared with the results predicted by SBT for filaments in order to illustrate the differences
in the dynamics of wires and ribbons17. While the paper focuses solely on rigid-body motion, the slender-ribbon
equations can also be applied to deforming ribbons.

The paper is organized as follows. In Sec. II we discuss the low-Reynolds number hydrodynamic framework for this
study, and give a quick overview of the history and derivation of SBT. Section III is the main technical part of the
paper which presents the derivation of the slender-ribbon theory (SRT) equations. This section starts by describing
the mathematical structure of the ribbons considered (Sec. III A) and then gives an outline to the expansion process
(Sec. III B). We then consider in detail how the system should be expanded (Sec. III C), before performing the
various expansions (Sec. III D) and determining the final set of equations (Sec. III E). We conclude this section by
comparing the resulting equations to the ones obtained for slender filaments (Sec. III F). In Sec. IV we then describe
the numerical procedure used to solve the integral equations arising in the SRT formulation. The working code is
then tested against the known analytical formulae for a long-flat ellipsoid (Sec. V) before comparing the behavior
of an asymptotically thin ribbon with a helical centerline to the thicker ribbons recently explored numerically15,16

(Sec. VI). With the same parametrization, we use the SRT results to address the swimming dynamics of so-called
artificial bacterial flagella recently proposed and tested experimentally on microscopic scales (Sec. VII). We then
address how different the results for slender ribbons are from slender bodies, showing in particular that no slender
body can effectively capture the hydrodynamics of a helical slender ribbon (Sec. VIII). Finally the hydrodynamics of
twisted ribbons with straight centerlines is explored in Sec. IX.

II. STOKES FLOW AND SLENDER-BODY THEORY

This paper intends to determine the hydrodynamic forces on slender ribbons at low Reynolds numbers, with an eye
on application to microscopic and biological bodies. In this case the fluid is accurately described by the incompressible
Stokes equations

∇p = µ∇2u, (1)

∇ · u = 0, (2)

where µ is the dynamic viscosity of the fluid, p is the pressure and u is the velocity field. These equations are linear
and independent of time. Therefore, the net hydrodynamic force and torque on a submerged rigid body is linearly
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related to the linear and angular velocity of the body by

F̃ = −RF̃ŨŨ, (3)

where F̃ is a six-component vector containing all components of the hydrodynamic forces and torques on the body
and Ũ is a six-component vector containing the instantaneous linear and angular velocities of the body. In Eq. (3),
RF̃Ũ is the 6× 6 resistance matrix which is proportional to the viscosity and only depends on the size and shape of
the body.

Computing the resistance matrix is in general not an easy task for an arbitrarily-shaped body and is typically
obtained numerically through the use of flow singularities, starting with the Green’s function for Stokes equation’s.
The flow for this Green’s function is given by

8πµUs(R; f) =
I + R̂R̂

|R|
· f , (4)

where R is the vector from the singularity to the desired point of flow, R̂ is the unit vector in the direction of R,
and I is the identity tensor. This fundamental singularity is called the stokeslet and represents the flow created by
a point force in the fluid of strength f . Other singularity solutions to the Stokes equation can be obtained by taking
derivatives of the stokeslet. For example a potential ‘source dipole’ of strength gSD is defined as −1/2 the Lapacian
of the stokeslet and has the form18

8πµUsd(R;gSD) = −I− 3R̂R̂

|R|3
· gSD. (5)

These singularities can be used to determine the hydrodynamics of any body moving in a Stokes fluid in two ways.
In the first method, the Green’s function nature of the stokeslet can be used to turn the Stokes equations into integral
equations over the surface of the body. This is the boundary integral method19. The second method consists of
placing stokeslet singularities, and its derivatives, within the body and the use of the boundary conditions on the
surface of the body to determine their strengths18. This method arises from the linearity of the Stokes equations20

and is sometimes called the representation by fundamental singularities. For example the Stokes flow around a rigid
sphere of radius a and velocity U is described by a stokeslet and source dipole of strengths 6πµaU and −πa3U , located
at the centre of the sphere20,21.

The distribution of singularities in second method is only known exactly for some simple shapes18 and so for most
calculations the dynamics of a body are typically found using boundary integrals. The boundary integral method
is very powerful but for some shapes, such as those characterized by a large range of length scales, the surface
discretization can be difficult, requiring a fine mesh of the surface and potentially creating long computation times.
For long thin bodies with a circular cross section an approximation is typically used, based on the representation by
fundamental singularities, called slender-body theory.

Slender-body theory (SBT) aims to capture the hydrodynamics of a long thin body by placing stokeslets and
source dipoles along its centerline. These singularities are then expanded in two domains: an outer region where the
centerline length dominates, and the body has effectively zero thickness, and an inner region where the thickness of
the body dominates. The two domains are then matched asymptotically to determine the flow at the surface of the
body assuming that the velocity at the surface of the body moves rigidly with the centerline. The relative strengths
of the source dipoles are then found by ensuring that at each cross section there is no velocity variation across the
surface.

There have been a few different formulations of SBT17,21–23. Early work used the flow past an infinite cylinder as
the inner region and matched the results to a line of stokeslets in the outer region22,23. These formulations were only
applicable far from the ends of the long thin body and produced a series in powers of 1/ log(ε), where ε is the body
thickness divided by the centerline length (i.e. the inverse of its aspect ratio). Shortly thereafter, Lighhill proposed
a derivation which was accurate to order ε1/221,24. This was a vast improvement on the earlier methods but still did
not account for the ends of the body. Eventually, Johnson derived a version of SBT that took into account the ends
of the body17. He further showed that the force distribution obtained in his equations was accurate to order ε2 log ε,
which was achieved by placing higher-order singularities along the centerline and matching the boundary conditions
to higher order. These additional singularities added no additional force to the system thus leaving the leading-order
force distribution unchanged.

The SBT equations derived by Johnson for a slender filament of length 2` gives the velocity U(s) at a specific arc
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length s along the filament (−` ≤ s ≤ `) as an integral

8πµU(s) =

∫ `

−`

[
I + R̂0R̂0

|R0|
· f(s′)− I + t̂t̂

|s′ − s|
· f(s)

]
ds′

+ log

(
`2(1− s2)

r2bρ(s)2e

)(
I + t̂t̂

)
· f(s) + 2

(
I− t̂t̂

)
· f(s), (6)

where e is the exponential, 2rb is the thickness of the body, ρ(s) is the dimensionless radial surface distribution (so
that the surface of the body is located at r = rbρ(s)), R0 = r(s) − r(s′) is the vector between s and s′ on the
centerline, t̂ is the tangent to the centreline at s, and f the unknown force density along the centerline of the body.
This framework has been very successful in addressing many aspects of micro-scale fluid mechanics, in particular for
the flow of fibers and self-propelled swimmers25–31.

In the current paper, we perform an expansion similar to that of Johnson’s SBT but for ribbons characterized by
three length scales such that `� b� a. In order to do so, we place a plane of singularities within the ribbon, expand
the system into the relevant regions, and asymptotically match them. As we demonstrate, the force distribution can
be approximated with errors at most of order b/` without the need for any other singularity than the stokeslet.

III. SLENDER-RIBBON THEORY

A. The slender ribbon geometry

The ribbon structures considered in this paper have a centerline length of 2`, a long edge (plane width) of length 2b
and a short edge (thickness) of length 2a (see illustration in Fig. 1, top). The position of the centerline is given by the
vector r(s1), where s1 is the arclength along the centerline. At a given value of s1, the long edge of the ribbon points

in the direction T̂(s1) and has an edge-to-edge width of 2bρ1(s1). Here T̂(s1) is a unit vector and ρ1(s1) contains
the information of how the width varies along the ribbon length. In our calculation, we assume that ρ1(s1) behaves

like an ellipsoid near the ends of the ribbon and that T̂(s1) remains everywhere perpendicular to the tangent of the
centerline, t̂(s1). Both are also assumed to change smoothly with s1. The displacement from the centerline along

the direction T̂(s1) is measured by a second arc length denoted s2 (−bρ1(s1) ≤ s2 ≤ bρ1(s1) ). Since T̂(s1) does not

depend on s2 the long edge sits in a plane defined by T̂(s1) and t̂(s1). Physically this assumption means that the
body is suitably rigid to prevent the bending along s2.

The shape defined by the centerline and the vector T̂ is called the ribbon plane. Any point on this plane is thus
located at position X(s1, s2) given by

X(s1, s2) = r(s1) + s2T̂(s1), (7)

as is illustrated in Fig. 1 (bottom). The definition of this ribbon plane is consistent with the typical mathematical
definition of a strip or ribbon5. Finally the surface of the physical ribbon itself is located a distance ±aρ2(s1, s2)
normal to the ribbon plane at s1, s2. Again ρ2(s1, s2) is assumed to be roughly ellipsoidal towards the edges but also
must be greater than 0 away from the edges. The surface of the ribbon is then described by material points S(s1, s2)
given by

S(s1, s2) = r(s1) + s2T̂(s1)± aρ2(s1, s2)n̂, (8)

where n̂ is the normal to the ribbon plane (see notation in Fig. 1). Though this mathematical description can be
used to describe ribbons with arbitrary thickness, the framework derived below for SRT only characterizes the fluid
dynamic forces when the length is much larger than the width, which itself is much larger than the thickness, i.e. the
limit `� b� a. In this regime, surfaces can accurately be described by a ruled surface, as above.

B. An outline of the expansion

In this section we derive the leading order flow for bodies with slender-ribbon shapes. Like the expansion for SBT
the total flow will be represented by a series of fundamental singularities and then expanded in the small parameters.
Unlike SBT, singularities will here be placed within the ribbon plane, not just along the its centerline.

For slender-ribbon theory the singularities are placed in the ribbon plane for two reasons: the similarity between the
cross-section of the ribbon and a prolate ellipsoids, and the requirement that the singularities used in a representation
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Figure 1. Schematic representation of the full ribbon surface (top) and the equivalent ribbon plane (bottom). The black line
in both figures depicts the centerline, described by points located at r(s1). The centerline length is 2`, the maximum length
along the long edge (width) is 2b, and the maximum length along the short edge (thickness) is 2a. The functions ρ1 and ρ2
characterize how the long and short edge lengths vary across the ribbon, respectively. The vector t̂(s1) is the tangent vector to

the centerline and T̂(s1) is the direction of the long edge sits in. The ribbon shape is parametrized using s1, which describes

the arclength along the centerline, and s2, which gives the displacement in the direction T̂(s1) from the centerline.

by fundamental singularities method must lie inside the body of the ribbon. Locally the ribbon is roughly cylindrical
with a elliptical cross-section. This cross-section is similar to a central cross section of a prolate ellipsoid which has a
flow given by a line of singularities placed between the two foci of the ellipsoid18. Therefore it is reasonable to assume
that, that at least locally, the singularity distribution should be distributed over the ribbon plane. The requirement
that the singularities must lie inside the body of the ribbon20 also supports this. As slender-ribbon theory expands
the dynamics of the ribbon in the limit ` � b � a, the zeroth order shape of the ribbon is the ribbon plane itself.
Therefore, at zeroth order, the singularities can only be placed in the ribbon plane.

Using the above justifications, the total fluid velocity at location (s1, s2) on the surface of the ribbon arising from
the hydrodynamic singularities in the plane is given by

8πµU(s1, s2) = 8πµ

∫ `

−`
dt1

∫ bρ1(t1)

−bρ1(t1)
dt2
{
Us(R; f(t1, t2)) + Usd(R;gSD(t1, t2))

}
, (9)

where R = X(s1, s2) − X(t1, t2) ± aρ2(s1, s2)n̂(s1, s2), and the integral is naturally broken into two parts: the
component due to the stokeslets, Us, and the one due to the source dipoles, USD. The above equation truncates the
sum of singularities to stokeslets and source dipoles as this is all that is required for the leading order flow. At higher
order it is likely that other singularities will be needed.

In order for the small parameters to be apparent in the formulation, we proceed to scale the integrals. The velocity
is taken to scale as a typical velocity U , the parameter s2 as bρ1, and all other lengths as `. The total force on the
ribbon will then scale as µ`U and the area of the sheet like `b, therefore the force per unit area, f , should scale as
µU/b.

The scaling of the source dipoles, gSD, in Johnson’s (and Lighthill’s) SBT derivation is proportional to the thickness
of the body squared times the force per unit length. Therefore it is reasonable to assume that the gSD scaling would
be a function of b and a with units length squared. With this consideration, we then scale gSD by µUbρ21. The scaled
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Figure 2. A diagram depicting the scales of the different expansion regions measured about the ribbon center. Most of the
length is occupied by the outer or O(1), O(1) region in blue, dealing with interactions on that scale. The red box depicts the
middle O(1), O(b`) region, which deals with variation on the scale of the square. Finally the small yellow box represents the
inner O(b`), O(a`) region.

stokeslet and source dipole integrals are then given by

8πUs(s1, s2) =

∫ 1

−1
dt1ρ1(t1)

∫ 1

−1
dt2

(
f(t1, t2)

|R|
+

RR · f(t1, t2)

|R|3

)
, (10)

8πUSD(s1, s2) = −b2`
∫ 1

−1
dt1ρ1(t1)3

∫ 1

−1
dt2

(
gSD(t1, t2)

|R|3
− 3RR · gSD(t1, t2)

|R|5

)
, (11)

where

R(s1, s2) = R0 + b`ρ1(s1)s2T̂(s1)− b`ρ1(t1)t2T̂(t1)± a`ρ2(s1, s2)n̂(s1, s2), (12)

and where we have denoted b` ≡ b/`, a` ≡ a/` and R0 ≡ r(s1)− r(t1). The total force and torque are thus given by

F =

∫ 1

−1
dt1

∫ 1

−1
dt2ρ1(t1)f(t1, t2), (13)

L =

∫ 1

−1
dt1

∫ 1

−1
dt2ρ1(t1) [X(t1, t2)× f(t1, t2)] , (14)

where the force F has been scaled by µ`U and the torque L by µ`2U .
A slender-body-like expansion requires the singularity integrals to be expanded in the relevant small parameters

and then asymptotically-matched. In the case of a ribbon, two small parameters are present, namely b/` = b` and
a/` = a`. The behavior of the hydrodynamic kernels in s1 and s2 should therefore each be expanded in three possible
regions: t− s = O(1), t− s = O(b`), and t− s = O(a`). The expansion procedure is outlined in Sec. III C, in which
we show that only a subset of all expansions are actually required.

After the solution has been expanded and asymptotically matched (done in Sec. III D) the appropriate boundary
conditions must be applied. For a slender ribbon, we assume that material points on the surface immediately below
and above a point in the ribbon plane (in the n̂ direction) move with the same velocity as that point. Physically this
states that the ribbon surface does not expand, contract or shear. Mathematically this is equivalent to ensuring that
the final equations have no ± signs. The no-slip boundary condition for the fluid is applied and thus the velocity
components of the material points on the surface are equal the velocity in the fluid there.

C. Relevant expansion points

In Johnson’s SBT the singularity kernels are integrated over one dimension, namely the arclength s1. Depending on
how s1 scales, the behavior of the singularity kernels are distinct. Specifically, when s1 scales with the total arclength
along the slender body, the influence of singularities far from the point of interest contribute; in contrast, if s1 scales
with the body thickness, then the local contribution from the singularities are important. By combing these two
regions and removing any common behavior found in the overlap region (the common part), the full integrand can
be evaluated asymptotically.
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R t2 − s2 = a`χ2,a` t2 − s2 = b`χ2,b` t2 − s2 = O(1)
t1 − s1 = O(1) R0 R0 R0

t1 − s1 = b`χ1,b` −b`χ1,b` t̂ −b`χ1,b` t̂ b`
(
−χ1,b` t̂ + ρ1(s1)T̂(s1)(s2 − t2)

)
t1 − s1 = a`χ1,a` −a`χ1,a` t̂± a`ρ2n̂

−a`χ1,a` t̂± a`ρ2n̂ b`ρ1(s1)T̂(s1)(s2 − t2)
+b2`ρ1(s1)χ2,b`T̂(s1)

Table I. The expansion of R in the nine different asymptotic regions. When the t−s values are of order b` or a` the expressions
are obtained by Taylor series expansions of the relevant terms. Each colored block represents a region in which the kernel must
be expanded. Blue represents the t2− s2 = O(1), t1− s1 = O(1) (outer) region, red represents the O(1), O(b`) (middle) region,
and yellow represents the O(b`) O(a`) (inner) region.

These two different regions reflect the two length scales inherent to the slender body formulation. In the slender-
ribbon formulation the kernels are integrated over two dimensions, s1 and s2, and have three (dimensionless) length
scales, 1, b` and a`. Therefore there are nine possible forms the kernel can take. However, many of these nine kernels
are simply a limiting case of another one of the nine. In that case, the common asymptotic behavior of these limit
regions will be identical to their behavior outside the overlap region. Therefore these kernels are redundant and will
be removed by the subtraction of their common parts. Performing the calculation on each region and then relying on
the removal of the redundant parts by matching is very mathematically intensive. If the regions relevant to the final
solution can be determined beforehand, such a long derivation is not needed.

The scaled stokeslet and source dipole kernels only depend on the value of R, f and gSD. A Taylor series expansion
of f and gSD give their respective forms in each of the nine regions, so their variation occurs in a very obvious
manner. The leading-order behavior of R can change significantly between the different regions and therefore is a
good indicator of when the behavior of the kernels change. In Table I we show the leading-order form of R in the
different limits.

The top row of Table I shows that in all these regions R takes the same form at leading order. Only one of these
three regions is needed as the common behavior between them would remove the redundant parts. The top row right
column (namely the t2−s2 = O(1), t1−s1 = O(1) region) is the completely unexpanded region, and so f and gSD take
their most general form there. Hence the top row, left and center columns have behavior which is already contained
within the O(1), O(1) region. These redundant regions obviously would not add anything new to the expansion.
Therefore, only the O(1), O(1) region needs to be included from the top-row. This is the region highlighted in blue
in the table.

A similar procedure is needed for the remaining six regions, however the common behavior there is not as obvious.
For example the form of R in the right column of the center row (namely the O(1), O(b`) region) limits to the form in
the left and center columns. Therefore, though the form is not exactly the same, this row can be correctly represented
by the O(1), O(b`) region. This is the region highlighted in red in the table.

Finally in the bottom row, the R of the center column (namely the O(b`), O(a`) region) is seen to correctly limit
to the other regions in this row. However in this region f and gSD are expanded with respect to s2 in factors of b`.
This expansion prevents the center column kernel representing the far right column. Conveniently, the R of the right
column of the bottom row is a limit of the O(1), O(b`) region. Therefore the right column of the bottom row does
not need to be accounted for, as it already is accounted for in the O(1), O(b`) region. Ignoring the bottom row right
column term, the O(b`) O(a`) region term correctly captures the remaining behavior of the other terms in this row
(yellow).

The above analysis suggests that there are three distinct asymptotic regions for t2 − s2 and t1 − s1 to expand the
kernels in: the O(1), O(1) region, the O(1), O(b`) region, and the O(b`), O(a`) region. For simplicity these regions
will be called the outer, middle and inner regions respectively, and they are illustrated schematically in Fig. 2. The
stokeslet kernel will now be expanded in these three regions and the common parts subtracted, followed by the final
integration. Inspecting the final result we will see that the source dipole distribution will in fact not be needed for
the leading-order flow.

D. The leading-order expansion

The leading-order hydrodynamic behavior of a slender ribbon can be found by expanding the stokeslet kernel in
the outer, middle and inner regions, and removing the common behavior found in the overlap regions. This is then
followed by the integration of the asymptotic kernels and the use of the boundary conditions to obtain the final
asymptotic approximation.
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From Eq. (10) the stokeslet kernel has the form

KS = ρ1(t1)

(
f(t1, t2)

|R|
+

RR · f(t1, t2)

|R|3

)
, (15)

where R is defined by Eq. (12). We proceed to expand this term in the three regions and remove the overlap.

1. Outer region

In the outer, O(1), O(1) region, t1 − s1 = O(1) and t2 − s2 = O(1). In this region R is approximately given by

R(o) = R0 + b`(s2ρ1(s1)T̂(s1)− t2ρ1(t1)T̂(t1)) +O(b2`) +O(a`), (16)

where the superscript (o) indicates an expansion in terms of the outer region. We thus have

|R|2 = |R0|2 + 2b`R0 · (s2ρ1(s1)T̂(s1)− t2ρ1(t1)T̂(t1)) +O(b2`) +O(a`), (17)

|R|−1 =
1

|R0|
− b`R0 · (s2ρ1(s1)T̂(s1)− t2ρ1(t1)T̂(t1))

|R0|3
+O(b2`) +O(a`), (18)

|R|−3 =
1

|R0|3
− 3

b`R0 · (s2ρ1(s1)T̂(s1)− t2ρ1(t1)T̂(t1))

|R0|5
+O(b2`) +O(a`), (19)

RR = R0R0 + b`

[
R0(s2ρ1(s1)T̂(s1)− t2ρ1(t1)T̂(t1)) + (s2ρ1(s1)T̂(s1)− t2ρ1(t1)T̂(t1))R0

]
+O(b2`) +O(a`), (20)

and the leading-order outer-region stokeslet kernel is given by

K
(o)
S = ρ1(t1)

(
f(t1, t2)

|R0|
+

R0R0 · f(t1, t2)

|R0|3

)
+O(b`) +O(a`). (21)

2. Middle region

In the middle, O(1), O(b`) region, t1− s1 = O(b`). In this region, any dependence on t1 should be written in terms
of the behavior at s1. This is done by using a Taylor series expansion around s1, for all the terms which depend on
t1. We define the new scaled variable

χ1,b` =
t1 − s1
b`

· (22)

The terms in the stokeslet kernel which depend on t1 are r(t1), ρ1(t1), T̂(t1), and f(t1, t2). Their Taylor series
expansions are given by

r(t1) = r(s1) + (t1 − s1)̂t +
(t1 − s1)2κ

2
n̂s1 + ..., (23)

= r(s1) + b`χ1,b` t̂ + b2`χ
2
1,b`

κ

2
n̂s1 +O(b3`), (24)

R0 = −b`χ1,b` t̂− b2`χ2
1,b`

κ

2
n̂s1 +O(b3`), (25)

ρ1(t1) = ρ1(s1) + b`χ1,b`∂s1ρ1(s1) +O(b2`), (26)

T̂(t1) = T̂(s1) + b`χ1,b`σN̂ +O(b2`), (27)

f(t1, t2) = f(s1, t2) + b`χ1,b`∂s1f(s1, t2) +O(b2`), (28)

where n̂s1 is the normal vector to the centerline, κ is the curvature of the centerline, N̂ is the direction of twisting of

the ribbon plane and σN̂ = ∂s1T̂. From the above series, R is

R(m)

b`
= −χ1,b` t̂ + ρ1(s1)T̂(s1)(s2 − t2)

+ b`

(
−χ2

1,b`

κ

2
n̂s1 − σρ1(s1)t2χ1,b`N̂− t2χ1,b`(∂s1ρ1(s1))T̂(s1)± a`

b2`
ρ2n̂

)
+O(b2`) +O(a`), (29)

8



while the leading-order kernel is given by

b`K
(m)
S = ρ1(s1)

(
I

|R(m)
1 |

+
R

(m)
1 R

(m)
1

|R(m)
1 |3

)
· f(s1, t2) +O(b`) +O(a`), (30)

with

R
(m)
1 = −χ1,b` t̂ + ρ1(s1)T̂(s1)(s2 − t2), (31)

and with the superscript (m) to indicate the middle expansion.
Importantly, in this middle expansion, terms proportional to the curvature and rate of twisting terms have been

discarded. These terms scale like b`κ and b`σ, respectively. Therefore slender-ribbon theory assumes that the cur-
vature, κ, and rate of twisting, σ, are less than O(b−1` ). If κ or σ do become large the error associated with these
terms could also become large. The condition on σ is not hard to satisfy, as ribbon with b` = 10−2 would require
around 30 twists to have a mean σ of O(b−1` ). However, like in SBT, it is easier to think of configurations where κ
becomes large. The centerline bending condition here is identical to that required in the framework of SBT. We note
that SBT has been used very successfully in applications where this curvature condition has been broken25. Therefore
slender-ribbon theory could also work when κ or σ are large but the results should be viewed with caution as they
are formally outside the expected domain of validity.

3. Inner region

The last region to expand is the inner or O(b`), O(a`) region. In this region, terms with t1 or t2 must be represented
by series. Unlike the middle region t1 is expanded in powers of a` while t2 is expanded in powers of b`. Similarly to
the middle region, two new variables are defined,

χ1,a` =
t1 − s1
a`

, (32)

χ2,b` =
t2 − s2
b`

· (33)

Using these variables and recognizing that the expanded terms in the middle region have a similar form in the inner
part, R can be shown to be given by

R(i)

a`
= −χ1,a` t̂± ρ2n̂−

b2`
a`
χ2,b`ρ1T̂− b`s2χ1,a`

(
T̂∂s1ρ1 + ρ1σN̂

)
+O(b2`) +O(a`). (34)

Hence the stokeslet kernel in the inner region is given by

a`K
(i)
S = ρ1(s1)

(
I

|R(i)
1 |

+
R

(i)
1 R

(i)
1

|R(i)
1 |3

)
· f(s1, s2) +O(b`) +O(a`), (35)

where

R
(i)
1 = −χ1,a` t̂± ρ2n̂−

b2`
a`
χ2,b`ρ1T̂, (36)

and again we used the the superscript (i) to indicate part of the inner expansion.

4. Overlap regions

The common behavior between the above kernels needs to be subtracted to get the complete asymptotic solution
for the stokeslets. This is done, classically, by expanding one kernel in terms of another region’s variables and vice
versa (done to check consistency). The overlap region that is most similar to that of SBT is the overlap between
the outer (Sec. III D 1) and middle regions (Sec. III D 2). The outer kernel expanded in terms of the middle variables
looks like

K
(o)∈(m)
S =

I + t̂t̂

b`|χ1,b` |
· ρ1(s1)f(s1, t2) +O(1) +O(a`b

−1
` ), (37)
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where we used the symbol “(o) ∈ (m)” to indicate that it is the outer kernel expanded in terms of the middle variables
(with a labelling convention similar in other cases). The middle kernel expanded in terms of the outer variables looks
like

K
(m)∈(o)
S = ρ1(s1)

I + t̂t̂

|t1 − s1|
· f(s1, t2) +O(b`) +O(a`). (38)

As expected, these two terms are identical. Furthermore, we note that Eq. (38) is almost identical to the expression
for the overlap region in SBT17, showing expected similarities in the derivations.

In contrast, the common behavior between the middle and inner region has no equivalent in SBT since the inner
region reflects the third length scale of the problem (ribbon thickness). Using the expressions in Sec. III D 3, we obtain
the leading-order R behavior when expanding the middle kernel in terms of the inner variables as

b`R
(m)∈(i)
1 = a`(−χ1,a` t̂−

b2`
a`
χ2,b`ρ1T̂),

= a`Ra, (39)

which gives a common kernel of

K
(m)∈(i)
S =

ρ1
a`

(
I

|Ra|
+

RaRa

|Ra|3

)
· f(s1, s2) +O(b`a

−1
` ) +O(a0`). (40)

Similarly, when expanding the inner kernel in terms of the middle variables we obtain

a`R
(i)
1 = b`(−χ1,b` t̂− (t2 − s2)ρ1T̂)± a`ρ2n̂,

= b`R
(m)
a ± a`ρ2n̂, (41)

which gives a common kernel of

K
(i)∈(m)
S = ρ1

(
I

b`|R(m)
a |

+
R

(m)
a R

(m)
a

b`|R(m)
a |3

)
· f(s1, s2) +O(1) +O(a`b

−1
` ). (42)

The two kernels are not as manifestly identical as in the outer and middle case, but by expanding them explicitly it
is easily shown that they are.

Note finally that the overlap of the outer and inner regions does not need to be considered since the behavior
common to outer and inner regions is included within the overlap of the middle and the inner regions.

5. Complete stokeslet kernel

From the above expansions, the complete stokeslet kernel is then asymptotically approximated by

KS ≈ K
(o)
S + K

(m)
S + K

(i)
S −K

(m)∈(o)
S −K

(m)∈(i)
S , (43)

which when expanded gives

KS ≈
I + R̂0R̂0

|R0|
· ρ1(t1)f(t1, t2)−

(
I + t̂t̂

)
|t1 − s1|

· ρ1(s1)f(s1, t2)

+
I + R̂

(m)
1 R̂

(m)
1

b`|R(m)
1 |

· ρ1(s1)f(s1, t2) +
I + R̂

(i)
1 R̂

(i)
1

a`|R(i)
1 |

· ρ1(s1)f(s1, s2)

−

{
I + R̂aR̂a

a`|Ra|
· ρ1(s1)f(s1, s2)

}
. (44)
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E. The slender-ribbon equations

By integrating Eq. (44) over both t1 and t2 the asymptotic behavior of a sheet of stokeslets can then be obtained.
The leading-order solution is thus given by the surface integral

8πUs(s1, s2) =

∫ 1

−1
dt1

∫ 1

−1
dt2

[
I + R̂0R̂0

|R0|
· ρ1(t1)f(t1, t2)−

(
I + t̂t̂

)
|t1 − s1|

· ρ1(s1)f(s1, t2)

+
I + R̂

(m)
1 R̂

(m)
1

b`|R(m)
1 |

· ρ1(s1)f(s1, t2)

+
I + R̂

(i)
1 R̂

(i)
1

a`|R(i)
1 |

· ρ1(s1)f(s1, s2)

−I + R̂aR̂a

a`|Ra|
· ρ1(s1)f(s1, s2)

]
. (45)

Wherever possible, we wish to evaluate the above integrals explicitly. However, this cannot be done for two of the
terms. Specifically, the first right-hand side term on the first line involves f(t1, t2), and cannot be integrated over t1
while second line involves f(s1, t2) and therefore cannot be integrated over t2. As a side remark, we note that each
right-hand side term on the first line is individually singular but when combined together the singularity disappears,
a feature also appearing in SBT.

The remaining integrals, which can be evaluated, typically take the form∫ 1

−1
dt1

χi√
χ2 + θ2

j
, (46)

where, i and j are positive integers, εχ = t1 − s1, θ is an arbitrary real function that does not depend on t1, and ε is
a small parameter. The asymptotic forms of these integrals have been evaluated previously by Gotz32 and are listed
in appendix A. After all possible integrations are performed, the final integral formulation for slender-ribbon theory
is given by

8πU(s1, s2) =

∫ 1

−1
dt1

[
I + R̂0R̂0

|R0|
· ρ1(t1) 〈f〉 (t1)−

(
I + t̂t̂

)
|t1 − s1|

· ρ1(s1) 〈f〉 (s1)

]

+

∫ 1

−1
dt2 log

(
4(1− s21)

b2`ρ
2
1(s2 − t2)2

)(
I + t̂t̂

)
· ρ1(s1)f(s1, t2)

+2
(
T̂T̂− t̂t̂

)
· ρ1(s1) 〈f〉 (s1), (47)

where we have used the notation 〈f〉 (t1) ≡
∫ 1

−1 dt2f(t1, t2). This is the main result of our paper. Errors between this
asymptotic result and the exact solution are at most of order b`.

We note that in the final equation there is no ± signs and thus each point of the surface moves rigidly with a
corresponding point on the ribbon plane. As this was the boundary condition we wished to enforce, no further
singularities (source-dipoles) are needed in order to satisfy the boundary conditions. This is consistent with known
results for the motion of rigid prolate spheroids in the small-thickness limit18.

F. Slender-ribbon versus slender body

There are many similarities between our slender-ribbon equations (Eq. 47) and Johnson’s slender-body equations
(Eq. 6). The left-hand sides of both equations have the exact same form and the integral over the centerline, s1, is
very similar. In fact, the integral over the centerline would be identical if Johnson’s force distribution was replaced by
ρ1(t1) 〈f〉 (t1). Physically this means that in the far-field, the ribbon behaves like a slender body with a force density,
for each s1, equal to the total force across s2.

The logarithmic term in SRT is also very similar to the logarithmic term in SBT. Both these terms have the same
tensorial behavior and contain a logarithm which depends on the aspect ratio and on how the surface of the body varies
along its length. However, unlike Johnson’s SBT, the logarithm in the slender-ribbon equations has a dependence on
the ribbon width, s2. It also multiplies the force distribution and is integrated over.
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Finally, the remaining (non-integral) term in the SRT equations bears some resemblance to the remaining terms

in Johnson’s SBT. However instead of the tensor T̂T̂, Johnson’s result has the identity tensor, I. In SBT, this local
term modifies the logarithmic behaviour to further separate the drag for motion perpendicular and parallel to the
centerline. The same reasoning is at play here, however instead of just two directions (normal and tangential), three

distinct directions must be considered. The T̂T̂ term therefore exists to ensure that the drag from motion in the
normal n̂ direction is larger than that in the T̂ direction, while the t̂t̂ term provides a similar correction to the drag
in t̂ to what it did in the SBT case.

IV. A NUMERICAL IMPLEMENTATION OF SLENDER-RIBBON THEORY

Our final integral formulation, Eq. (47), allows for investigations of the dynamics of slender ribbons at low Reynolds
number. If the force distribution is known along the ribbon plane, it is very easy to calculate the resultant motion by
integration. However, in most cases of practical interest, the problem requires an inversion: it is the motion which is
known and the force distribution f needs to be computed by inverting the integrals. This is typically done numerically.

Different computational methods may be used for the inversion, and here we employ a Galerkin method33. The
force distribution is expanded in terms of an infinite set of orthogonal functions. The orthogonality of these functions
is then used to reduce the integral equation into an infinite set of linear equations. Truncating and solving the
remaining equations gives an approximation to the force distribution. The Galerkin method allows to employ similar
simplifications to those used in SBT32.

The first integral in Eq. (47) must be divided into two parts to implement these simplifications: one integral which
has known eigenfunctions (Legendre polynomials) and the remaining behavior. With this in mind, we rewrite the
integral result as

8πU(s1, s2) =

∫ 1

−1
dt1

[
(I + R̂0R̂0)

|R0|
− (I + t̂t̂)

|t1 − s1|

]
· ρ1(t1) 〈f〉 (t1)

+(I + t̂t̂) ·
∫ 1

−1
dt1

[
ρ1(t1) 〈f〉 (t1)− ρ1(s1) 〈f〉 (s1)

|t1 − s1|

]
+ρ1(s1)

[
LSRT (I + t̂t̂)− 2t̂t̂ + 2T̂T̂

]
· 〈f〉 (s1)

+ρ1(I + t̂t̂) ·
∫ 1

−1
dt2 log

(
1

|t2 − s2|2

)
f(s1, t2), (48)

where LSRT = log
[
4(1−s21)
b2`ρ

2
1

]
. The second integral in Eq. (48) has eigenfunctions of Legendre polynomials, i.e.∫ 1

−1
dt1

[
Pn(t1)− Pn(s1)

|t1 − s1|

]
= −LnPn(s1), (49)

where Pn(s1) is the Legendre polynomial of order n, L0 = 0 and Ln =
∑n
i=1 1/i for n > 032. This suggests that

ρ1 〈f〉 should be expanded as a series of Legendre polynomials. We define g(s1, s2) = ρ1(s1)f(s1, s2) to absorb the
ρ1 dependence into f . Similarly to the choice in s1, the orthogonal functions for the s2 expansion should be chosen
to simplify the integrals. Here again Legendre polynomials are chosen. The Legendre polynomials in s2 simplify the
calculation of 〈f〉, the rigid body motions, the total force and the total torque on the body. We thus write g(s1, s2)
as an infinite sum of Legendre polynomial in s1 and s2 as

g(s1, s2) =

∞∑
i=0

∞∑
j=0

gi,jPi(s1)Pj(s2),

= (P0(s1) P1(s1) P2(s1) · · · ) ·


g0,0 g0,1 g0,2 · · ·
g1,0 g1,1 g1,2 · · ·
g2,0 g2,1 g2,2 · · ·

...
...

...
. . .

 ·

P0(s2)
P1(s2)
P2(s2)

...

 ,

= S1
T (s1) ·G · S2(s2), (50)

where the gi,j are constant three component vectors, the Latin indices (i, j) represent the Legendre polynomial order
in (s1,s2) respectively, G is a matrix of the gi,j , S1 is a column vector of the s1 orthogonal functions and S2 is a
column vector of the s2 orthogonal functions.
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Since Legendre polynomials satisfy the orthogonality condition∫ 1

−1
dt1Pn(t1)Pm(t1) =

2

2n+ 1
δn,m, (51)

it is straightforward to show that

ρ(s1) 〈fν〉 =

∫ 1

−1
Pj(s2) ds2Gν;j,kPk(s1) = 2δj,0Gν;j,kPk(s1), (52)

where the Greek indices, ν, corresponds to one of the Cartesian components, and repeated indices are summed over.
The slender-ribbon equation can then be rewritten as

8πUη(s1, s2) = 2δj,0Gν;j,k

∫ 1

−1
dt1

[
(δη,ν + R̂0;ηR̂0;ν)

|R0|
− (δη,ν + t̂η t̂ν)

|t1 − s1|

]
Pk(t1)

+2(δη,ν + t̂η t̂ν)δj,0Gν;j,k

∫ 1

−1
dt1

[
Pk(t1)− Pk(s1)

|t1 − s1|

]
+(δη,ν + t̂η t̂ν)Gν;j,kPk(s1)

∫ 1

−1
dt2 log

(
1

|t2 − s2|2

)
Pj(t2)

+2
[
LSRT (δη,ν + t̂η t̂ν)− 2t̂η t̂ν + 2T̂ηT̂ν

]
δj,0Gν;j,kPk(s1). (53)

Multiplying the above equation by Pm(s1) and Pn(s2) and integrating over all of s1 and s2 the equation reduces to

8πξη;n,m = Gν;j,k
[
4δj,0δn,0

(
βaη,ν;k,m + βbη,ν;k,m + βdη,ν;k,m

)
+ βcη,ν;k,mΥn,j

]
, (54)

where

ξη;n,m =

∫ 1

−1
ds1

∫ 1

−1
ds2Pm(s1)Pn(s2)Uη(s1, s2), (55)

βaη,ν;k,m =

∫ 1

−1
ds1Pm(s1)

∫ 1

−1
dt1

(
(δη,ν + R̂0;ηR̂0;ν)

|R0|
− (δη,ν + t̂η t̂ν)

|t1 − s1|

)
Pk(t1), (56)

βbη,ν;k,m =

∫ 1

−1
ds1(δη,ν + t̂η t̂ν)Pm(s1)

∫ 1

−1
dt1

Pk(t1)− Pk(s1)

|t1 − s1|
,

= −Lkβcη,ν;k,m, (57)

βcη,ν;k,m =

∫ 1

−1
ds1Pm(s1)(δη,ν + t̂η t̂ν)Pk(s1), (58)

βdη,ν;k,m =

∫ 1

−1
ds1Pm(s1)

(
LSRT (δη,ν + t̂η t̂ν)− 2t̂η t̂ν + 2T̂ηT̂ν

)
Pk(s1), (59)

Υn,j =

∫ 1

−1
ds2Pn(s2)

∫ 1

−1
dt2 log

(
1

|t2 − s2|2

)
Pj(t2). (60)

The integrals listed above involve known functions and therefore are easily computed using MATLAB34. Care must be
taken with βaη,ν;k,m and Υn,j as the individual terms in the integrand blow up at t = s, though the full integrals are non-
singular. MATLAB handles this using quadrature methods, and so approximates the integral without experiencing
sampling issues. Interestingly the Υn,j is the only integral relating to s2 and it has no explicit dependence on the
shape of the ribbon. It is therefore possible to evaluate Υn,j once and use it for many different shape configurations.

For the ξη;n,m integral, further simplifications are possible in the case of rigid-body motions. In that situation, the
body translates at constant velocity, u, and rotates with constant angular velocity, ω. Since the equations are linear,
translation and rotation can be treated separately and combined at the end. Separating ξl;n,m into rigid translation,
ξuη;n,m, and rigid rotation, ξωη;n,m, the integral becomes

ξuη;n,m =

∫ 1

−1
ds1

∫ 1

−1
ds2Pm(s1)Pn(s2)uη, (61)

ξωη;n,m =

∫ 1

−1
ds1

∫ 1

−1
ds2εηνυPm(s1)Pn(s2)Xν(s1, s2)ωυ, (62)
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where εηνυ is the levi-civita symbol and Xν(s1, s2) is the νth component of the ribbon plane position vector. Using
Eq. (7) and evaluating these integrals as far as possible, they become

ξuη;n,m = 4δm,0δn,0uη, (63)

ξωη;n,m = εηνυωυ

[
2δn,0

∫ 1

−1
ds1Pm(s1)rν(s1) +

2

3
b`δn,1

∫ 1

−1
ds1Pm(s1)ρ1(s1)T̂ν(s1)

]
. (64)

This significantly simplifies the integrals which need to be computed to obtain ξ. Similarly, the total force and torque
can be simplified to

F = 4g0,0, (65)

L =
∑
i,j

∫ 1

−1
dt1

∫ 1

−1
dt2

(
r(t1) + b`t2ρ1(t1)T̂(t1)

)
× gi,jPi(t1)Pj(t2),

=
∑
i

(
2

∫ 1

−1
dt1Pi(t1)r(t1)× gi,0 +

2

3
b`

∫ 1

−1
dt1Pi(t1)ρ1(t1)T̂(t1)× gi,1

)
. (66)

The Galerkin system, Eq. (54), leads to an infinite set of linear equations. For numerical work these equations
need to be truncated. The number of orthogonal functions kept in s1 and s2 will be denoted N1 and N2, respectively.
The g coefficients can then be solved for by representing the tensors in Eq. (54) by vectors and matrices and using
standard matrix inversion. To do this the vector structure is divided into two levels: outer and inner. The full vector
is divided into N2 outer levels, and each outer level is further divided into N1 inner levels. These levels are formatted
such that the ith inner level in the jth outer level contains gi,j . Therefore subsequent inner levels, in a certain outer
level, represent the different Legendre polynomials in s1 (changing i), while the subsequent outer levels represent
the different Legendre polynomials in s2 (changing j). These vectors are of length 3N1N2. Thus the corresponding
matrices are of size 9N2

1N
2
2 . This can be very large, however the terms needed to construct these matrices are defined

by the integrals above and so can be evaluated separately and stored in small matrices rather than one large matrix.

V. VALIDATION OF SLENDER-RIBBON THEORY: PLATE ELLIPSOIDS

The simplest structure with known mobility coefficients which can be modeled using SRT is a thin flat ellipsoid
(plate ellipsoid). The resistance matrix for an arbitrary ellipsoid is known exactly35,36 and when said ellipsoid is
sufficiently flat and long, it approaches the slender-ribbon limit. We use these exacts results to validate our SRT
approach.

The force F applied by an arbitrary ellipsoid, with semi-axes lengths {k, m, n}, on the fluid when translating at
speed U in the k direction is given by

F

πµU
=

16

φ+ ζkk2
, (67)

while the torque applied on a fluid due to rotation with rate Ω around the k direction is

L

πµΩ
=

16

3

m2 + n2

m2ζm + n2ζn
, (68)

where we have

φ =

∫ ∞
0

dx
1√

(k2 + x)(m2 + x)(n2 + x)
, (69)

ζk =

∫ ∞
0

dx
1

(k2 + x)
√

(k2 + x)(m2 + x)(n2 + x)
, (70)

ζm =

∫ ∞
0

dx
1

(m2 + x)
√

(k2 + x)(m2 + x)(n2 + x)
, (71)

ζn =

∫ ∞
0

dx
1

(n2 + x)
√

(k2 + x)(m2 + x)(n2 + x)
· (72)

These integrals can be easily evaluated using MATLAB.
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Figure 3. Rigid-body motion of a plate ellipsoid: ratio between the net force or torque computed using SRT and the exact
solution. The figures shows contour levels of the ratios for different values of b` and a`/b` in six distinct cases: (a) ratio for the
force in the a direction from translation in the same direction; (b) ratio for the torque in the a direction from rotation in the
same direction; (c) ratio for the force in the b direction from translation in the same direction; (d) ratio for the torque in the b
direction from rotation in the same direction; (e) ratio for the force in the ` direction from translation in the same direction;
(f) ratio for the torque in the ` direction from rotation in the same direction. The SRT computations were carried out using
N1 = 15 and N2 = 15.
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Figure 4. A sample of the helical ribbon-like structures explored computationally in Ref.16. The parameter γ measures the
relative angle between the ribbon plane and the central axis of the helix. These helices have a cross sectional aspect ratio of 4.

The parametrisation of a flat ellipsoidal ribbon has a straight centerline, r(s1) = s1x̂, a constant plane vector,

T̂ = ŷ, and ρ1 =
√

1− s21. The ribbon plane obtained from this parametrisation is shown below in Fig. 9a. For the
plate ellipsoid many of the integrals simplify analytically and only the Υn,j and ξl;n,m integrals need to be computed
numerically. Two parameters may be varied to compare SRT to the exact solution: b` and a`/b`.

We plot in Fig. 3 iso-contours for the ratio between the hydrodynamic resistances obtained using SRT to the exact
resistances of a plate ellipsoid, for both translation and rotation in all three directions. The figure shows that SRT
converges to within 1% of the exact solution rapidly as both b` and a`/b` decrease. Recall that the asymptotic limit
in which SRT is expected to be valid is b` � 1 and a`/b` � 1. We note that the value of b` tends to have a larger
affect on the accuracy than that of a`/b`. The convergence rate differs for the different force and torque components
but all have converged to within 1% error by b` = a`/b` = 10−2. The plots also reveal that the torque terms converge
without the need for rotlet singularities (which would be needed, for example, for the rotation of a spherical body).
In the ribbon case, the rotation of a sheet of stokeslets can thus adequately capture the leading-order torque.

VI. COMPARISON WITH COMPUTATIONS FOR RIBBON HELICES

The dynamics of thick ribbons twisted into helices has been explored numerically previously using a boundary
integral method15,16. These ribbons were unfortunately not slender, and the thinnest ribbon studied had b` = 1/25
and a`/b` = 1/4. From Sec. V and Fig. 3, we see that the error in the resistance coefficients obtained using SRT for
a plate ellipsoid with the same dimensions is up to 10%, and thus we should expect results with errors of a similar
order of magnitude when comparing SRT with the work in Refs.15,16.

In Fig. 4 we show a sample of the shapes explored in Ref.16. The parametrisation used in that paper was

rh(s1) = {βh cos(ks1), βh sin(ks1), αhs1} , (73)

T̂h(s1) = cos(γ)b̂h − sin(γ)n̂h, (74)

where rh(s1) is the centerline, βh is the helix radius, k is the wavenumber, αh is the cosine of the helix angle, γ is

the angle between the central axis and the ribbon plane (illustrated in Fig. 4), and n̂h and b̂h are the normal and
bi-normal vectors to the helix centerline. This helix parametrisation relates αh, βh and k, through α2

h + β2
hk

2 = 1,
and the length measured along the helix axis is related to the centerline length by 2Laxis = 2αh`. In the work from
Ref.16, ρ1 was taken to be

√
1− s21 and the cross-sectional shape was an ellipse with T̂h pointing to the major axis.

The simulations in Ref.16 considered ribbons with cross-sectional aspect ratios of 1, 2 and 4 while keeping the cross
sectional area constant. The computational results showed that the ribbon propelling the quickest for a set external
torque (velocity per unit torque) is similar to an Archimedean screw (γ = π/2, Fig. 4c) while the slowest is the
structure shown in Fig. 4a (γ = 0).

We compare the computational results of Ref.16 with aspect ratio 4 with those of SRT. The parametrisation above
is used with k = 4π, b` = 1/25 and αh = 0.5, 0.75 and 0.9. A net torque, L, is applied along the axis of the helix and
we compute the resulting translational velocity, U . The comparison is shown in Fig. 5 with SRT results in solid lines
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Figure 5. Scaled force-free velocity per unit torque for a ribbon helix with different values of γ. The SRT results are displayed
in sold lines while the numerical results of Ref.16 are shown in dashed line. The SRT numerics are done with N1 = 35 and
N2 = 15.

while the computational results from Ref.16 are plotted in dashed lines. Qualitatively, the results display the same
dependence on γ. When γ = π/2 the velocity per unit torque is at a maximum while when γ = 0 it is at a minimum.
Quantitatively, SRT overestimates the results near γ = π/2 and underestimates them near γ = 0. The increase in
propulsion at γ = π/2 is likely to be due to the body being thinner in the SRT framework, and thus experiencing less
drag. The cause of the decrease at γ = 0 is unknown but is consistent with the behaviour of γ = 0 found in Ref.16 as
the aspect ratio increased.

VII. COMPARISON WITH EXPERIMENTS FOR RIBBON MICROSWIMMERS

Slender ribbons have been used to devise micron-scale artificial swimmers termed artificial bacterial flagella6,7 .
These swimmers consist of a magnetic head and a thin ribbon tail twisted into a helical shape similarly to what would
be formed by a straight ribbon twisted around a pencil (Fig. 6). These microswimmers are then rotated through the
use of an external rotating magnetic field, which leads to forward propulsion. The ribbons used in these studies were
typically tens of µm long, a few µm wide, and tens of nm thick, leading to b` = O(0.1) and a`/b` = O(0.01), an
appropriate dimensionless limit to address using slender-ribbon theory. This application is done with some caution
as Fig. 6 suggests that the radius curvature of the ribbon may be of a similar order to b`.

Specifically, the swimmers in Ref.6 were made with a ribbon with dimensions 2b = 1.8 µm and 2a = 42 nm together
with a square magnetic head with dimensions of 4.5 µm×4.5 µm ×200 nm. At the time of the experiment the swimmer
has 4.5 wavelengths along its body and a length relative to the helix axis of Laxis = 38 µm. Before twisting, the
ribbon was 49.7 µm long, and the swimmer had a helix diameter of 2.8 µm immediately after fabrication. However,
these helical dimensions are inconsistent with each other, which is likely to be due to the swimmers slowly changing
dimensions for a few weeks after fabrication (Zhang & Nelson, private communication and Ref.37). Therefore, the
helix diameter and centerline length at the time of the experiment are not exactly known. To address this issue, we
run two different simulations, one where the centerline length is taken to be 2` = 49.7 µm, and one where the helix
diameter is taken to be 2βh = 2.8 µm. We expect the true dimensions to be somewhere in between these two values.

The head and the twisted ribbon are treated separately in our model of the microswimmer, with no hydrodynamic
interactions. The resistance coefficients of the full swimmer is then the sum of resistance coefficients on the head and
the ribbon. This leaves the coupling coefficient as that of the helical ribbon while changing the other coefficients. The
head is modeled as an oblate spheroid aligned such that the shortest direction is perpendicular to the helix axis of
the body. The resistance coefficients on this spheroid can then be calculated using Eqs. (67) and (68). Assuming a
dynamic viscosity of water of 10−3 Pa.s, the drag from translation on the head is found to be 2.49 × 10−8 N.s.m−1

and the torque from rotation is 1.22× 10−19 N.s.m. The ribbon is assumed to have the form given by Eqs. (73) and
(74), where γ has been set to 0. This description is then used to compute the resistance coefficients for helices with
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Figure 6. A scanning electron microscope micrograph of an artificial bacterial flagellum with a diameter of 2.8 µm6. Adapted
from L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil, H. Zhang, C. Bergeles, and B. J. Nelson, “Characterizing
the swimming properties of artifcial bacterial agella.,” Nano Lett., 9, 3663 (2009), Copyright 2009 American Chemical Society.

4.5 waves along their length, and an axial length of 2Laxis = 38 µm. As mentioned above, two separate cases are
considered: one where 2` = 49.7 µm and one where 2βh = 2.8 µm.

In Fig. 7 we show the parametrization of the ribbon plane used in the case 2` = 49.7 µm. In Ref.6, the coefficients
of the resistance matrix for such a helical swimmer were characterized experimentally, with values listed in the first
column of Table II while the results for both cases 2βh = 2.8 µm and 2` = 49.7 µm are shown in the second and
third column, respectively. In this table, A denotes the hydrodynamic resistance coefficient relating the drag force
experienced parallel to the helical axis from translation in the same direction, which is therefore composed of the
drag on the helix and the drag on the head; B is the hydrodynamic force experienced parallel to the helix axis from
rotation around the helix axis; finally C is the hydrodynamic torque experienced around the helical axis from rotation
around said axis of both the head and the helix. We also give the value of the ratio B/A, which is important in the
context of the locomotion. Indeed, since the swimmer must be force free, the translational velocity per unit angular
velocity is given by the negative of the coupling divided by the translational drag (−B/A), the values of which are
displayed on the last row of Table II.

Inspecting the results in Table II, we see that both cases give results close to the experimental measurements of
Ref.6. The geometry with 2βh = 2.8 µm gives results closer to the experiments for force due to translation (A)

Figure 7. Shape of the ribbon used to model the artificial micron-scale swimmer from Ref.6. In this case 2βh has been taken
to be 2.8 µm. All lengths are scaled by the half centerline length `.
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Experiments6 SRT (2βh = 2.8 µm) SRT (2` = 49.7 µm) Ref.15’s model
A (10−7 N.s.m−1) 1.5 1.04 0.973 0.937
B (10−14 N.s) -1.6 -1.32 -0.997 -1.63
C (10−19 N.m.s) 2.3 6.81 4.94 10.1
B/A (10−7 m) -1.07 -1.27 -1.02 -1.74

Table II. Hydrodynamic resistance coefficients for ribbon microswimmer. Left: Experimental measurements6; Middle-Left:
SRT results assuming 2βh = 2.8 µm; Middle-Right: SRT results with 2` = 49.7 µm; Right: the model swimmer results from
Ref.15. See text for the definitions of the resistance coefficients A, B and C. The SRT computations are done with N1 = 35
and N2 = 15.

and due to rotation (B) while the ratio B/A and the torque resistance to rotation (C) is best approximated by the
geometry with 2` = 49.7 µm. Therefore slender-ribbon theory, despite the fact that it is only valid asymptotically in
the mathematically-slender limit, can be used as an accurate predictive tool to design microscopic swimmers similar
to those from Refs.6,7.

Table II shows that the drag force, A, and the coupling force from rotation, B, of the model swimmer are smaller
than the experimental values. This is likely due to the ellipsoidal cross section used to model the ribbon and head
and the asymptotic treatment of the ribbon. The ribbon and head of the swimmer in Ref.6 are more square and have
finite thickness (Fig. 6). Therefore they will have larger values of A and B.

Furthermore, for both geometrical models, the torque from rotation around the helix axis, C, is larger than that
measured in Ref.6. This increase probably arises from the chose parametrization for the ribbon. As can be seen in
Fig. 7, the edges of the ribbon curve slightly. This curving is due to the twisting of the helix centerline. As the
centerline curves around, the lines along s2 fall such that when cut down the helix axis (not down T̂) the cross section
appears curved. We anticipate that this curving of the edges only significantly changes the value of C. Indeed, as
the slender-ribbon equations assume that the system consists of locally flat segments, this curving has essentially no
influence on the value of A. Similarly because B quantifies the torque induced by a translation, it follows roughly
a linear surface dependence thereby giving B a linear dependence on s2. The integration of s2 over even bounds
therefore removes any affect of said curving in B. In contrast, the torque from rotation, C, has quadratic dependence
on the surface, and integration of an even function over even bounds does not cancel out. Hence this curving could
significantly increase the value of C. Unfortunately because the current form of SRT requires T̂ · t̂ = 0 for all s1,
a parametrisation where the curving does not occur is not possible. But with a different mathematical approach to
slender ribbons, this could perhaps be tackled.

Previously these artificial bacterial flagella have been modelled using a boundary integral formulation15, with results
given in the fourth column of table II. This model included interactions between the head and the tail and set αh = 0.7.
However, like the boundary integral work in Ref.16, b`/a` = 4 and there was only four waves along the body centerline
(including the head). Though the results of Sec. VI show strong dependence on the configuration and b`/a`, Ref.15’s
model closely replicated the coupling coefficent for the swimmer, B. This value is much closer than either SRT model.
However the SRT models have closer values for the linear drag, A, the torque from rotation, C, and the velocity per
unit angular velocity −B/A.

VIII. COMPARISON WITH SLENDER BODY THEORY

There are, of course, many shapes and configurations that slender-ribbon theory can model which cannot be tackled
using slender-body theory. For example, SBT cannot replicate the behavior of a plate ellipsoid (Sec. V) or the behavior
created by a twisted ribbon (Sec. IX). However, for example for ribbons with a helical centerline, one may ask how
accurately the system could be represented by a slender body with the same centerline but a different effective
thickness? Or how does the swimming speed of a slender body compare to that of a slender ribbon?

In this section we use a numerical implementation of SBT25 to compare ribbons twisted into helices to slender bodies
with the same centerline. The comparison focuses on two features: (1) for what effective filament radius does SBT best
replicates the resistance coefficients, A, B, and C, of the slender ribbon?; (2) how does the velocity per unit rotation
and the velocity per unit torque of a ribbon compare with slender bodies of different radii? We take the slender body
that best replicates each individual coefficient as the body which minimizes the relative difference squared between
SRT and SBT results, defined as (1 − αSBT /αSRT )2 for any computed quantity of interest α. Similarly the one the
best replicates the total (the “All” test) and both A and B (the “A & B” test) is the filament radius that minimizes
the sum of the relative difference squared. For the velocity per unit rotation, or per unit torque, the difference between
the velocities from SRT and SBT is used, and a negative value indicates faster propulsion for a slender body than a
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Coefficients
Microswimming SRT simulations of SRT simulations for
experiments6,7 experiments6,7 twisted ribbon

All 8.80 ×10−4 0.0192 0.0284
A & B 0.0418 0.0395 0.0241
A 0.0800 0.0147 0.0262
B 0.0389 (4.37×10−4) 0.0411 (4.23×10−4) 0.0126
C 4.80 ×10−4 0.0190 0.0287

Table III. Radii of a slender body (normalized by half its centerline length) which best replicates the slender-ribbon coefficients
with a helical centerline for three cases: the microswimming experiments6,7, the SRT simulations for the same experiments,
and the SRT simulations of a twisted ribbon with αh = 0.75, γ = π/2. The resistance coefficients considered are: A, drag
along the helix axis from translation along the same direction; B, torque around the helix axis from translation along the helix
axis; C, torque around the helix axis from rotation around the helix axis. The “All” case considers the configuration which
minimizes the sum relative difference squared for the three terms while “A & B” minimizes the sum of the relative difference
squared for both A and B. When there is more than one radii which replicates a given coefficient the largest is listed followed
by the others in brackets. Note that the centerline and ribbon width are different between the experimental models and the
αh = 0.75 case.

slender ribbon.
We carry out these comparisons for the experimental and simulated results of the microscopic swimmer discussed in

Sec. VII6 and for our simulations of helical ribbons with αh = 0.75 and γ = π/2 discussed in Sec. VI. The experimental
configuration was assumed to have a centreline length of 49.7 µm. Furthermore since the experimental results includes
the head, the drag and torque of the equivalent oblate spheroid is removed from the resistance coefficients.

In Table III we list the values of the best (as defined above) radii for the slender-ribbon shapes while Fig. 8 shows
the relative difference squared, the difference in the velocity per unit rotation, and the difference in the velocity per
unit torque. The radii of the slender bodies are always scaled by half the centerline length. Sharp peaks in Fig. 8a and
b correspond to points where the match between the slender body and slender ribbon is exact. The minima for the
“All” and the “A & B” cases are not sharply peaked, indicating that one slender body cannot exactly match the full
dynamics of the ribbon. In the “All” test, the average percentage error for each coefficient at the best slender body
radius is 20%, 7.9% and 4%, for the swimming experiments of Refs.6,7, the corresponding SRT results, and the SRT
simulations of the twist ribbons with αh = 0.75, γ = π/2. Hence the slender-ribbon behavior is only poorly replicated
by a single slender body. Interestingly, the coupling coefficient, B, has no peak when γ = π/2, indicating that the
coupling for the Archimedean screw cannot be replicated by a slender body with the same centerline. In Figs. 8c
and d we measure the difference between the velocity per unit rotation, U/ω, and the velocity per unit torque, U/L,
respectively. For the velocity per unit rotation there is a sharp decrease and then an approach to an asymptote as the
body gets logarithmically thinner. In contrast, for the velocity per unit torque, the difference decreases linearly as
the body gets logarithmically thinner. For the twisted ribbon with γ = π/2, the difference in U/ω is never negative
showing that, at a given angular velocity, no slender body can propel faster than a slender ribbon with an identical
centerline.

IX. HYDRODYNAMICS OF A THIN TWISTED PLATE ELLIPSOID

The slender-ribbon formulation allows us to investigate how twisting a ribbon changes its hydrodynamics. The
behavior of a twisted plate ellipsoid, with aspect ratio b` = 0.01, is considered here in order to investigate this effect.
The parameterization for such a body is given by

r(s1) = s1x̂, (75)

T̂ = cos(Qπs1)ŷ + sin(Qπs1)ẑ, (76)

where Q determines the number of twists over the length of the body and x̂, ŷ and ẑ are orthogonal unit vectors.
The ribbon planes for some of these shapes are illustrated in Fig. 9.

We use SRT to compute the resistance matrix for such shapes. In Fig. 10 we display the values of the matrix
coefficients for the twisted ellipsoids as a function of the number of twists, Q. The calculations were carried out in
the center of resistance frame where the coupling matrices are symmetric. This frame is convenient as each of the
sub-matrices, the force from translation, the force from rotation, and the torque from rotation, have only three terms.
Also, wherever appropriate, the resistance coefficients for a prolate ellipsoid with aspect ratio 1/b` (dashed) and 2/b`
(dotted) are plotted in Fig. 10.
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Figure 8. Comparisons between a slender ribbon and a slender body with the same helical centerline as a function of the radius
of the slender body scaled by half the centerline length. Results are shown for the microswimming experiments6,7 (dashed),
the SRT results of the same experiments (solid), and the SRT results for a twisted ribbon with α = 0.75 and γ = π/2 (dotted).
The plotted results are (a): the sum of the relative difference squared for all coefficients A, B and C (blue) and A & B (green)
with inset depicting the best radii in the microswimmer cases; (b): the relative difference squared for A, B and C individually;
(c): the difference between the velocity per unit rotation; (d): the difference between the velocity per unit torque. Numerical
results obtained with N1 = 35 and N2 = 15.

We first observe that the components of the resistance matrix relating to force or torque parallel to the centerline
remain constant as the number of twists increases while the other components display decaying oscillations. At
leading order, the parallel force and torque are thus that of a plate ellipsoid and interactions between the twists are
a higher-order effect.

The non-parallel terms are then seen to oscillate. This oscillating behavior can be attributed to which direction,
ŷ or ẑ, contains most of the ribbon plane. When more of the plane sits in ŷ the resistance to motion in ŷ is less
than it is in ẑ. At each Q ≈ 0.5 interval equal amounts of the plane is in ŷ and ẑ and so there is no difference in
the drag between these two dimensions. Further twisting again puts one direction ahead and so creates the observed
oscillations. Note that the oscillations do not have an exact Q = 0.5 periodicity because of the ellipsoidal cross section
of the ribbon. The reduction in the oscillation amplitude is due the relative proportion of the helix plane producing
the relative drag. Only the ‘extra ribbon’ beyond half integer multiples contribute to the amplitude of the oscillation.
As more twists occur over the length of the ribbon, less of the total length of the ribbon is occupied by this ‘extra
ribbon’. Therefore less of the ribbon is contributing to the difference in the resistances.

Eventually after enough twists one may suspect that the ribbon would begin to behave hydrodynamically like a
prolate ellipsoid. The decreasing oscillations supports this idea. Naively, one may expect that the limiting ellipsoid
would have an aspect ratio of b−1` . However Fig. 10 shows that the resistance of the twisted ellipsoid is closer to a

prolate spheroid with aspect ratios 2b−1` (dotted) than one of aspect ratio b−1` (dashed). This factor of two could be

considered as an average of the dimensions of the ribbon along T̂ and t̂ × T̂. It is possible that non-asymptotically
thin ribbons would approach a prolate ellipsoid with aspect ratio b−1` with a sufficient number of twists, however such
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Figure 9. Images of the ribbon plane for the twisted ellipsoidal swimmer with different number of twists, Q: (a) Q = 0; (b)
Q = 0.5; (c) Q = 1; (d) Q = 2. The different color shading corresponds to different heights in along the z direction.

behavior is of higher order in the asymptotic expansion.

Importantly, Fig. 10 shows that the hydrodynamic coefficient relating the force parallel to the tangent vector from
rotation around the tangent vector is zero at leading order for all values of Q. This result appears counter-intuitive
as the edges of the twisted ribbon trace out helices. Since the surface width of the sheet is of order b`, and the rate of
twisting along the length is assumed to be much less than b−1` in the asymptotic expansion considered in this paper,
the contribution to the flow by these helix edges is of order b` or smaller. Typically the absence of this coefficient
would not be an issue as the coupling created by any bending of the centerline would be an order of magnitude larger
that that created by the twisting (see for example the twisted ribbon helix addressed above). However, if the rate

of twisting, σ = |∂sT̂(s)|, reaches order b−1` (Q ≈ 30), the force parallel to the tangent from rotations around the
tangent vector would become significant. In said cases higher order terms in the SRT expansion would be needed.

We finally note that past work considered similar twisted ribbons to investigate the diffusion of chiral objects in
a shear flow14. The hydrodynamics of these shapes was tackled numerically using a boundary integral formulation
and, though were asymptotically thin (b � a), they typically were very twisted, σ = O(b−1` ), or very wide ` ∼ b.
Although their ribbons lie outside the asymptotic domain of slender-ribbon theory, the behavior reported agrees
with the results described above14. The only resistance coefficients discussed in Ref.14 were the average rotational
resistance perpendicular to the centerline tangent and the force from rotation parallel to the tangent. It was seen
computationally that the average rotational resistance was close to that of a rod and had little dependence on the
number of twists. Our results in Fig. 10c show that the resistance perpendicular to the centerline (ŷ and ẑ) oscillate
around the behavior of a rod and are out of phase with each other. The average of the two resistances is therefore
close to a rod and does not change with the number of twists, similarly to the results of Ref.14. Further, the value of
the force from rotation parallel to the centerline was shown in Ref.14 to go to 0 when the ribbons were straight or very
very twisted. The authors commented in this work that “The effect of the twist is generally weak in the principal part
of the mobility tensor”. This result supports our results that such dynamics is a higher order effect in the expansion
of SRT.
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Figure 10. Axial resistance coefficients of a twisted ellipsoid (computed in the center of mobility frame) as the number of twist,
Q, increases: (a) Force from translation; (b) Force from angular rotation; (c) Torque form angular rotation. Solid lines are the
SRT results while the dashed and dotted lines are the resistance coefficients for a prolate ellipsoid with aspect ratio b−1

` and
2b−1
` respectively. Numerical results for SRT were obtained using N1 = 20 and N2 = 35.

X. CONCLUSION AND OUTLOOK

In this paper we have introduced “slender-ribbon theory” and computed asymptotically the leading-order hydro-
dynamics of a slender ribbon at low Reynolds number. The ribbon is represented by a plane of stokeslet singularities
placed strictly inside the ribbon’s body. The resulting kernel is asymptotically expanded in terms of two dimensionless
groups: the ratio width over length, b` = b/`, and the ratio thickness over length, a` = a/`. This expansion assumed
that the curvature and the rate of twisting in the ribbon are less than b−1` . The resulting equations have many
similarities to the equations of slender-body theory17 and are seen to accurately determine all resistance coefficients
of a long flat ellipsoid. Unlike slender-body theory, no additional singularities beyond the stokeslet are required at
leading order.

Slender-ribbon theory was then used to characterize the behavior of different setups. First we investigated the
dynamics of ribbons whose centerline are bent into a helix. The qualitative trends seen for thicker ribbons remained
true in the asymptotically-thin limit. We then investigated the swimming hydrodynamics of an artificial microswimmer
recently proposed experimentally, which exploits the rotation of a helical ribbon to create propulsion. We obtained
good quantitative agreement between measurements and theoretical prediction of our asymptotic theory. Comparing
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slender ribbons to slender filaments it was found that no equivalent slender body can accurately replicate the dynamics
of a helical slender ribbon. Finally an investigation into the dynamics of thin twisted ellipsoids showed that, as the
number of twists increased, the hydrodynamics limited towards that of an equivalent ellipsoid with a counter-intuitive
aspect ratio of 2b−1` . In that case, some of the resistance coefficients were seen to oscillate with an increase in twist,
which was rationalized.

The asymptotic results derived in this paper could be used in a number of other, more complex, situations. The
dynamics of twisted planes opens up the possibility of exploring the hydrodynamics of topologically odd objects.
Similarly, as slender-ribbon theory only requires the surface to move rigidly with a corresponding point on the ribbon
plane, the theory can handle non-rigid body motions, like waving, flapping and twisting. In all these cases, the fluid
flow around the body can also be computed, similarly to what is done in SBT27,31. This is achieved by plugging the
computed force distribution into

8πu(x) =

∫ 1

−1
dt1ρ1(t1)

∫ 1

−1
dt2

[
f(t1, t2)

|R′|
+

R′R′ · f(t1, t2)

|R′|3

]
, (77)

where u is the velocity of the fluid at x and R′ is a vector from a point on the ribbon plane to x, i.e. R′ = x−X(t1, t2).
Slender-ribbon theory could be further extended to include extensions similar to the ones developed for slender

bodies. This includes the interactions between multiple bodies26,27, the role of nearby surfaces38, and the dynamics
of elastic shapes29–31. Furthermore, the practicality of slender-ribbon theory could be increased by extending the
domain of validity of its derivation. For example, extending the force density in the ribbon plane to higher order
would allow to capture the resistance coefficient linking the force along the centerline tangent arising from rotation
around the tangent. Another useful extension would be removing the mathematical assumption that T̂ · t̂ = 0 or
allowing the ribbon to be a non-developable surface. This would allow for the parametrization to become similar to
the ones used in solid mechanics12, setting the stage for the elasto-hydrodynamics of ribbons.
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Appendix A: Asymptotic Integrals

As discussed in Sec. III E, many of the integrals inside the stokeslet kernel take the form∫ 1

−1
dt

χi√
χ2 + θ2

j
, (A1)

where εχ = t− s, θ is an arbitrary real function that does not depend on t and ε is a small parameter. These integrals
have been evaluated previously by Gotz32 and Table IV list all the relevant integrals of this form. In addition the
following identities are also needed∫ 1

−1
dt2 log

(
1

b2`χ
2
2,b`

)
= 2(2− (1− s2) log(1− s2)− (1 + s2) log(1 + s2)), (A2)

and∫ 1

−1
dt2 log

 1

b2`χ
2
2,b`

+
a2`ρ

2
2

b2`ρ
2
1

 = 2(2− (1− s2) log(1− s2)− (1 + s2) log(1 + s2)) + 2π
a`ρ2
b`ρ1

+O(a`) +O(b2`). (A3)
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