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Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes “sur-
prise.” Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error
when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified
the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of
healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex,
superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We
examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of fronto-
temporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First,
an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are
functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding
hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the
evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying
the brain’s response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of
higher cognitive functions and their disorders.
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Introduction
Brain function can be conceived as a hierarchy of generative models
that optimizes predictions of sensory inputs and prediction errors
(Friston and Kiebel, 2009). Under this generalized prediction hy-
pothesis, top-down predictions are compared with bottom-up sen-
sory inputs and return prediction errors when unexpected stimuli
occur (Rao and Ballard, 1999; Kiebel et al., 2008; Friston, 2009;
Chennu et al., 2013; Lieder et al., 2013b). Prediction errors underlie
the event-related potential (ERP) response to sensory stimuli that

violate learned regularities, such as the mismatch negativity (MMN)
in oddball tasks (Näätänen et al., 1993; Garrido et al., 2009a; Kimura
et al., 2011) and rule sequences (Bekinschtein et al., 2009; Wacongne
et al., 2011; El Karoui et al., 2014).

Evidence for hierarchical prediction in human frontotempo-
ral cortex comes from functional brain imaging. Deviant audi-
tory stimuli evoke neural responses in bilateral auditory cortex,
superior temporal gyri, and prefrontal cortex (Giard et al., 1990;
Doeller et al., 2003; Molholm et al., 2005; Rinne et al., 2005;
Cheng et al., 2013; Chennu et al., 2013) from which Garrido et al.
(2008) found clear evidence for a frontotemporal hierarchy of
prediction and prediction error message passing. The core fea-
tures of this model have been replicated (Garrido et al., 2007a,b,
2009b; Dietz et al., 2014) and studied in the context of coma (Boly
et al., 2011), drug treatment (Schmidt et al., 2013), and aging
(Cooray et al., 2014; Moran et al., 2014). However, previous ap-
proaches lacked a mechanism to explain neural responses to ab-
sent stimuli or subtler differences in their temporal structure.
Temporal regularities over multiple events are associated with high-
order representations of environment and action in the prefrontal
cortex (Zhang and Rowe, 2015), whereas frontostriatal interactions
have been associated with learning and prediction of temporal reg-
ularities (Grahn and Rowe, 2013). We therefore proposed that inter-
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nally generated inputs to prefrontal cortex are a feature of the
generative models for MMN tasks with temporal regularities.

Previous imaging studies of human predictive coding in the
context of MMN tasks have focused on a narrow set of deviant
stimuli dimensions. However, Näätänen et al. (2004) and Hughes
and Rowe (2013) observed differences in MMN amplitudes in
EEG sensors and MEG dipoles for tones that deviated by fre-
quency, intensity, location, duration, or silent gap (Näätänen et
al., 2004). The latter two deviants differed significantly from the
others in their distinct temporal structure. Thus, a hierarchical
model should encompass multiple stimulus characteristics.

We therefore explored whether different violations of sensory
regularities are associated with different interactions in a fronto-
temporal hierarchy. We also tested the hypothesis that there are
internally generated temporal predictions, revealed in response
to deviations of temporal structure. We used a Bayesian approach
to compare alternate hierarchical neural networks for auditory
predictive coding with multiple deviant types. We identified the
optimal connectivity pattern from a set of 21 generative network
models, including a subset of models with top-down expectations
that influence the prefrontal cortex to implement high-level pre-
dictions of events.

Materials and Methods
Participants. Eleven healthy adults participated in the study (seven males;
mean age, 26 years, range, 18 –37 years). Normal binaural hearing was
confirmed immediately before the main experiment, and stimuli were
presented at 60 dB above hearing threshold. Participants gave informed
written consent, and the study was approved by the local research ethics
committee.

Auditory paradigm. The “Optimum-1” multi-MMN paradigm of
Näätänen et al. (2004) was used to investigate MMN responses to multi-
ple deviant types (Fig. 1). This is a time-efficient variant of the classic
oddball task, alternating standard tones with one of several different
deviant tones, evoking equivalent MMN amplitude responses to each
type of deviant equivalent to a classic task with low-frequency oddball
events (Näätänen et al., 2004). Standard tones (75 ms in duration, with 7
ms ramp up and ramp down) contained three sinusoidal partials of 500,
100, and 1500 Hz. These alternated with deviant tones that differed in
one of five dimensions: shortened duration (25 ms), frequency (550,
1100, and 1650 Hz or 450, 900, and 1350 Hz), intensity (�6 dB), location
of sound source (right or left instead of binaural), or the presence of a
silent gap of the middle 25 ms.

Tones were presented every 500 ms using E-Prime software (Psychol-
ogy Software Tools) via plastic tubes and earpieces. Deviant tones were
presented in a pseudo-random order such that a deviant type never ap-
peared twice in a row and each deviant type would appear at least once in
a sequence of 10 tones. A total of 900 standard and 900 deviant tones were
played in three blocks of 5 min. Fifteen standard tones were played at the
beginning of each block.

MEG data acquisition and processing. Data were collected with a 306-
channel Vectorview system in a magnetically shielded room (Elekta Neu-
romag), including a magnetometer and two orthogonal planar
gradiometers at each of the 102 positions. Paired EOG electrodes re-
corded vertical and horizontal eye movements, and five head-position
indicator coils monitored head position. The three-dimensional loca-
tions of the coils and three anatomical fiducials (nasion and left and right
preauricular points) were recorded using a 3D digitizer (Fastrak; Pol-
hemus). Movement compensation and downsampling from 1 kHz to 250
Hz was completed using Maxfilter software (Elekta Neuromag). The
remaining preprocessing steps were completed using SPM8 software

(Wellcome Trust Centre for Neuroimaging, University College London).
This included high-pass filtering at 1 Hz and low-pass filtering at 40 Hz
using Butterworth filters in forward and reverse directions and epoching
�100 to 400 ms around each tone onset with baseline correction of the
�100 to 0 ms period. Automatic artifact rejection used thresholding of
EOG electrodes at 200 �V. Trials were averaged using robust averaging
(Wager et al., 2005), followed by an additional low-pass filter at 40 Hz to
remove high-frequency noise that can be introduced by robust averaging.

Source space analysis. Source reconstruction of the ERPs to standard
and deviant tones was completed for the gradiometer data using SPM8.
The forward model (leadfield) was estimated from a single shell template
cortical mesh of each participant’s anatomical T1-weighted MR image
(3D MPRAGE sequence; TR, 2250 ms; TE, 2.99 ms; flip angle, 9°; field of
view, 240 � 256 � 160; 1 mm slice thickness; collected on a 3T Siemens
Tim Trio scanner), coregistered by digitized fiducial markers and �60
scalp points. Source waveforms of standard and deviant tones were ex-
tracted for each participant by applying the inverted leadfield matrix to
estimate the six equivalent current dipoles (ECDs) of the anatomically
defined sources of the MMN. The six sources approximated previously
published work with the auditory oddball task (Garrido et al., 2009b;
Moran et al., 2014; see Fig. 3): bilateral primary auditory cortex (A1; MNI
coordinates: [�42, �22, 7], [46, �14, 8]), superior temporal gyri (STG;
[�61, �32, 8], [59, �25, 8]), and inferior frontal gyri (IFG; [�46, 20,
8]). Source locations were fixed, allowing orientation of the dipoles
to vary.

Group differences between standard and deviant waveform mean am-
plitudes were assessed over the characteristic MMN time window of
100 –200 ms using paired t tests ( p � 0.05) at each MMN source location.
The false discovery rate (FDR) was used to correct for multiple compar-
isons. We also present the effect size, r. To support our hypothesis that
different deviant tones are associated with different networks in the fron-
totemporal hierarchy, we tested the differences between individual devi-
ants: here we used source reconstruction for each deviant MMN
waveform (the difference between standard tone and each deviant tone).
We then used a repeated-measures ANOVA with two factors, deviant
type (duration, frequency, gap, intensity, and location) and source loca-
tion (bilateral A1, STG, and IFG). This used the peak amplitudes and
latencies of the MMN waveforms. Mauchly’s test was used to indicate
which statistics required correction using Greenhouse–Geisser estimates
caused by sphericity assumption violations. Finally, each deviant mean
MMN amplitude was tested for significance at the six locations using
a one-sample t test to be sure significant differences found in the
ANOVA were not attributable to a lack of a MMN response in some
deviant types ( p � 0.05 threshold for significance, FDR correction for
multiple comparisons).

Network analysis. We used dynamic causal modeling (DCM) of the
effective connectivity between the six specified sources. The models in-
cluded standard and deviant tones, together with their modulation by
deviance, and are not restricted to modeling the mismatch response.
Sources of standard and individual deviant tones were reconstructed
separately using the forward modeling described above and inverted us-
ing the SPM8 DCM10 standard algorithm with default settings.

With biophysically constrained neural mass models, DCM makes in-
ferences about the mechanisms behind observed ERPs, the coupling be-
tween ECD sources, and how experimental stimuli changes this coupling
(David et al., 2006; Kiebel et al., 2006, 2009). Twenty-one generative
models (Fig. 2) were used to model alternative hypotheses of the mech-
anism underlying the MMN, based on the anatomically motivated net-
works (Giard et al., 1990; Rinne et al., 2000; Optiz et al., 2002; Doeller et
al., 2003; Molholm et al., 2005, Garrido et al., 2008). These described the
effective connectivity between temporal and frontal sources for the time
window of 0 –250 ms from the onset of each stimulus, encompassing the
MMN interval. All connections between MMN sources were bidirec-
tional and modulated after Garrido et al. (2007b). DCM is agnostic as to
the direct or indirect route of connections via monosynaptic or polysyn-
aptic pathways.

The first six models were a conceptual replication of Garrido et al.
(2008). They begin with driving inputs into bilateral primary auditory
cortex, with or without intrinsic connections within these sources (mod-

S   D2 S   D1 S   D4 S   D3 S   D5 S   D4 S   D1 S   D5 S …

Figure 1. MMN Optimum-1 paradigm (Näätänen et al., 2004). Standard tones (S) alternate
with different deviant tones (D#).
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els 1 and 2), followed by the presence of bidirectional connections to
bilateral STG (models 3 and 4) and bidirectional connections to right IFG
(models 5 and 6). These models have been examined using oddball and
roving MMN paradigms (Garrido et al., 2008, 2009b). Model 6 had the
highest model evidence using Bayesian model selection (BMS; Penny et
al., 2004).

We began by examining these six models to test whether the
Optimum-1 MMN paradigm replicates this result for all deviant types
together and separately. Then our model space was extended to include
further cortical areas, inputs, and connections as follows.

First, we added bidirectional connections between left STG and left
IFG and bilateral connections to both IFGs (Garrido et al., 2009b) to
create models 7 and 8, respectively. These models were motivated from
the debate in the literature to determine whether the left IFG is a source of
the MMN (Giard et al., 1990; Alho et al., 1994; Rinne et al., 2000, 2005;
Jemel et al., 2002; Opitz et al., 2002; Cheng et al., 2013).

Second, bidirectional modulated lateral connections were added be-
tween STG sources and IFG sources (models 9 –13). Lateral connections
are used in several DCM studies (Boly et al., 2011; Schmidt et al., 2013;
Cooray et al., 2014), although only Boly et al. (2011) performed compar-
isons between models with and without these connections, finding that
models with lateral connections had the greatest evidence in healthy
adults.

Finally, we added event expectation driving inputs into the IFG
sources (models 14 –21), motivated by our hypothesis that with regular
stimuli, there will be internally generated expectations of when a stimu-
lus would occur (without specifying its properties).

Bayesian model selection. BMS was used to compare the generative
models (Penny et al., 2004) and discover which best explains the neural
responses. BMS compares the free-energy estimate ( F) of the bound on
the log of model evidence of each model, lnp(y�m) (the probability of the
data y given each model m). This measure of model evidence adjusts
model fit for model complexity to reduce overfitting (Kiebel et al., 2009;
Stephan et al., 2010). In the main analysis, we used a fixed-effects (FFX)
approach, assuming our population of healthy participants use the same
network architecture but have connection strength variation (Stephan et
al., 2010; Dietz et al., 2014). In addition, we repeated the model and

family analyses using a random-effects (RFX) approach to consider pos-
sible bias on FFX results attributable to participant outliers.

The model with the highest model evidence is often referred to as the
“winning” model. A difference in model evidence between the winning
and “second place” models (�F ) of three units or more is comparable
with a Bayes factor of 20, and by convention, this is regarded as strong
evidence for one model over another (Kass and Raftery, 1995; Stephan et
al., 2010). We also calculated the posterior probability of each model to
demonstrate the probability of that model given the neural responses
within the current model space. BMS was first used to compare model
evidence for the first six models to replicate the model of Garrido et al.
(2007a). Then we used BMS for the complete model space.

Finally, we performed a post hoc comparison of model families to
assess the significance of connections required by individual deviant
types by removing uncertainty about other model structural aspects
(Penny et al., 2010). Specifically looking at lateral connections and
prefrontal expectancy inputs, we split the model space into five families: (1)
the original models of Garrido et al. (2007a; G; models 1–5); (2) models
without lateral connections or prefrontal expectancy inputs (lp; models
6–8); (3) models with lateral connections (Lp; models 9–13); (4) models
with prefrontal expectancy inputs (lP; models 14–16); and (5) models with
both lateral connections and prefrontal expectancy inputs (LP; models 17–
21). DCM and BMS were completed using SPM8.

Results
MMN source waveforms
The source waveforms were reconstructed (Fig. 3) using ECDs
for each of the six MMN source locations to be used in the fol-
lowing DCM analysis. From these, the mean waveform ampli-
tudes were calculated over the MMN characteristic time window
of 100 –200 ms for standard and all deviant tones and were com-
pared using paired sample t tests. Each source location had a
significant difference between standard and deviant tones (right
A1: t � 6.28, p � 0.0001; left A1: t � 4.11, p � 0.0021; right STG:
t � 4.54, p � 0.0011; left STG: t � 2.58, p � 0.0274; right IFG: t �
7.75, p � 0.0001; left IFG: t � 4.22, p � 0.0018) and remained
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Figure 2. The 21 DCM models used to compare frontotemporal networks associated with predictive coding. The first six models replicate the model space of Garrido et al. (2008). Models 7 and
8 add left IFG nodes, models 9 –13 add lateral connections, and models 14 –21 add expectation driving inputs for event onsets onto the IFG.
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significant after FDR correction for multiple
comparisons. All comparisons achieved r �
0.5 indicative of large effect sizes.

Individual deviant tone MMN wave-
forms are shown in Figure 4. Differences
in MMN peak amplitudes and latencies
were assessed using separate repeated-
measure ANOVAs with two factors, ECD
locations and deviant type. The main ef-
fects of deviant type and ECD location vi-
olated the sphericity assumption for peak
amplitudes [� 2(9) � 19.48 and � 2(14) �
57.85, respectively] as well as the main ef-
fect of location for peak latency [� 2(9) �
19.48]. Thus the degrees of freedom were
corrected by the Greenhouse–Geisser
method. For peak amplitudes, there was a
significant main effect of ECD location
(F(1.85,18.5) � 9.84, p � 0.001) and of de-
viant type (F(2.05,20.5) � 7.79, p � 0.003).
For peak latency, there was a significant
main effect of deviant type (F(4,40) � 6.16,
p � 0.001), but not of ECD location. For
both peak amplitudes and peak latencies,
there was not a significant interaction be-
tween ECD location and deviant type
(p � 0.05). To test whether these effects
may be attributable to a lack of a MMN
response, the mean MMN amplitude of
each deviant type at each location was
tested for significance using a one-sample
t test. Using FDR correction for multiple
comparisons, we found all mean MMN
amplitudes to be significant (p � 0.05).

Hierarchical network models
We initially compared the first six models
in Figure 2, which conceptually replicate
the models used by Garrido et al. (2008)
using Bayesian model selection with a FFX
approach. Figure 5A shows very strong ev-
idence in favor of model 6 (the winning
model) with the highest relative log-evidence (F). �F indicates
the difference between the winning and second place model evi-
dence. All deviant dimensions achieve �F � 3, which is equiva-
lent to a Bayes factor of 	20 and represents strong evidence in
favor of the winning model. The posterior probability for model
6 exceeds 0.99 for each deviant type, demonstrating the high
probability of this model given the evidence, within the current
model space. Repeating the analysis with a RFX approach to ac-
count for possible individual participant bias also reveals model 6
to be the winning model (with the highest model exceedance
probability, P) for each deviant type: duration, p � 0.92; gap, p �
0.98; frequency, p � 0.84; intensity, p � 0.92; location, p � 0.61;
all deviants together, p � 0.96. Model 6 has bidirectional connec-
tions between bilateral A1 and STG and between right STG and
right IFG plus intrinsic connections in bilateral A1 as shown in
Figure 5B. The winning model 6 for all deviants is equivalent to
the winning model of Garrido et al. (2008), though that study
used a roving MMN paradigm with frequency deviants only.

Using BMS with a FFX approach, Figure 6 shows the relative
log-evidence (F) and posterior probabilities for the full model
space (Fig. 2, models 1–21) along with the winning models for

each of the separate deviant types. For each deviant type, the
winning model included all the features from model 6 plus bidi-
rectional connections between bilateral STG and/or IFG sources.
For duration and gap deviant tones, the models with the highest
log-evidence included expectation inputs into IFG sources and
bidirectional lateral connections between IFG sources. The gap
deviant also included lateral connections between STG sources
(model 21) whereas duration did not (model 20). The model with
the highest log-evidence for the frequency deviant included lat-
eral connections between IFG sources (model 12), and both the
intensity and location deviants’ winning models included lateral
connections between STG sources (model 11). All winning mod-
els exceeded a posterior probability 0.99. The differences (�F)
between the winning and second place models are shown in Fig-
ure 7 below each winning model diagram. This analysis was re-
peated with a RFX approach, which showed agreement over
winning models for frequency, intensity, and location deviants.
For the gap deviant, there was equipoise between model 21 (FFX
winning model) and model 20. The winning model for the dura-
tion deviant changed to model 16, which had the same architec-
ture as the FFX winning model 20, but without interhemispheric
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connections. Across FFX and RFX findings, only deviants with
temporal structure changes required prefrontal inputs, and all
deviants required bilateral prefrontal sources.

Finally, we used post hoc family-level inference to assess the
importance of lateral connections and prefrontal expectancy in-
puts for the individual deviants. The FFX results in Figure 7 show
that deviants that violate temporal tone structure (duration and
gap) require prefrontal expectancy inputs (model family LP),
whereas the remaining deviant types do not (model family Lp).
For all deviant dimensions, the winning model families include
lateral connections. The analysis was repeated with a RFX ap-
proach for verification that FFX results were not biased by outli-
ers. Figure 7B shows that frequency, intensity, location, and gap
deviants have matched winning models across approaches. For
the duration deviant, there is equipoise between two models (lP

and LP), one the same as the FFX result
and the other a nested model within it that
lacks an interhemispheric connection. For
both models, there is still inclusion of pre-
frontal expectancy inputs. Thus, there is
general agreement between FFX and RFX
approaches.

Discussion
This study provides evidence for hierar-
chical frontotemporal networks support-
ing the prediction of sensory information
and responses to violations of these pre-
dictions. There was evidence for the fol-
lowing key features in the most likely
network: (1) reciprocal feedforward and
feedback connections between auditory
cortex and STG, connections between
STG and IFG bilaterally, and interhemi-
spheric interactions; and (2) internally
generated expectations as driving inputs
to prefrontal cortex at the uppermost level
of the model’s hierarchy present for tem-
poral structure violations.

Whereas previous studies have focused
on single dimensions of deviance, we
identified differences in the hierarchical
frontotemporal networks underlying the
response to multiple types of deviants. For
all deviants, we replicate previous results
from a classic oddball (Garrido et al.,
2009b) and a roving (Garrido et al., 2008)
paradigm in the context of an equivalent
model space (Fig. 5). The results accord
with the predictive coding hypothesis in
which feedback predictions and feedfor-
ward prediction errors pertain to each
layer of the hierarchy (Friston and Kiebel,
2009; Carlin et al., 2011). Extending the
model space enabled us to test additional
hypotheses of the frontotemporal interac-
tions related to sensory prediction and
mismatch error signaling. We found that
winning models for frequency, intensity,
and location differed subtly from each
other in terms of the lateral connections
between IFG and/or STG sources but were
within a family of structurally similar
models. Together, these data suggest gen-

eralized features in the hierarchical networks for the response to
multiple types of sensory deviation.

Some previous studies modeled unilateral prefrontal cortical
sources (Garrido et al., 2008; Boly et al., 2011; Schmidt et al.,
2013), and others used bilateral sources (Hughes et al., 2013). We
formally compared unilateral versus bilateral models and found
very strong evidence in favor of bilateral frontal cortical sources,
consistent with the bilateral evoked responses (Fig. 6). Moreover,
we found evidence for top-down predictions in explaining the
data for stimuli that differed in their duration of temporal profile.
We term these high-order inputs temporal expectancy predic-
tions. An important corollary of this prefrontal expectancy input
is that it enables the network to predict auditory and STG activity
even when a stimulus is omitted altogether, as in some forms of
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the MMN task (Raij et al., 1997; Hughes et al., 2001; Wacongne et
al., 2011).

The prefrontal temporal expectancy input was important for
explaining the response to duration and gap deviants, which,
unlike the other deviants, are defined by a violation in the tem-
poral structure of stimuli. Analogous temporal expectancy has
been observed for beat prediction (Zanto et al., 2006; Pecenka
and Keller, 2011; Teki et al., 2011a; Fujioka et al., 2012). Teki et al.
(2011b) suggesting that a striato–thalamo– cortical circuit, in-
cluding putamen and prefrontal areas, is involved in relative
beat-based timing. Grahn and Rowe (2009, 2013) also found pu-
tamenal involvement in the prediction tones in a regular beat
pattern, interacting with frontal cortex. Connectivity between the
striatum and IFG would be well suited to afferent expectancy
projects, and such connections are supported by autoradio-
graphic tracer studies in rhesus monkeys (Yeterian and Pandya,
1991) and diffusion-weighted MR imaging in humans (Croxson
et al., 2005), from putamen and caudate (Lehéricy et al., 2004;
Novak et al., 2015). Furthermore, Postuma and Dagher (2006)
identified functional connectivity between IFG, caudate, and ros-
tral putamen.

Additionally, local context-dependent circuits have been pro-
posed, integrated with a core timing circuit (Merchant et al.,
2013). These have been observed in human visual, auditory, and
parietal areas (Leon and Shadlen, 2003; van Wassenhove and
Nagarajan, 2007; Bueti et al., 2008) and in in vitro recordings
(Johnson et al., 2010), suggesting time-dependent cellular prop-
erties can allow local circuits to encode specific stimulus timing

(Karmarkar and Buonomano, 2007). In contrast, the core timing
circuit is observed across multiple stimulus modalities (Mer-
chant et al., 2008), in the basal ganglia (Meck et al., 2008) and
prefrontal cortex (Coull et al., 2011), which may have a monitor-
ing role over stimulus durations (Rao et al., 2001) and extended
sequences with regularities (Zhang and Rowe, 2015). Thus, our
expectancies for temporal deviants may originate from prefrontal
cortex itself or inputs from the striatum.

Although duration and gap deviants were distinct from other
deviant types in the likely network model, there were important
similarities between all deviants (Fig. 6), including the presence
of bilateral prefrontal sources and interhemispheric connections.
MMN responses to multiple deviant dimensions have been ob-
served in EEG (Giard et al., 1995; Jemel et al., 2002; Näätänen et
al., 2004; Petermann et al., 2009; Fisher et al., 2011; Chennu et al.,
2013) and MEG (Hughes and Rowe, 2013). Both amplitude and
latency differences were observed in auditory cortex. Several
mechanisms have been proposed to explain these MMN effects.
Under the adaptation and change detection hypotheses, MMNs
are produced when deviant tones elicit activity from nonsup-
pressed neurons (May and Tiitinen, 2010) or differ from a mem-
ory trace of standard tones (Schröger and Winkler, 1995),
respectively. Both imply different generator locations dependent
on deviant dimension. Under the model adjustment hypothesis,
MMN reflects the updating of a model of standard tones (Win-
kler, 2007). In contrast, the predictive coding hypothesis pro-
poses that the MMN reflects prediction errors. In a direct
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comparison, predictive coding is more likely than the “phenom-
enological” hypotheses (Garrido et al., 2008; Lieder et al., 2013a).

The frontotemporal network underlying the detection of un-
expected sensory events provides a robust framework to study the
impact of disease. The auditory MMN paradigm is advantageous
in part because it does not require attention or behavioral re-
sponses (for review, see Näätänen et al., 2012). For example,
Hughes and Rowe (2013) showed reduced �-band frontotempo-
ral coherence in behavioral-variant frontotemporal dementia
(bvFTD). Although coherence is not directional (Fries, 2005;
Bastos et al., 2012), it has been suggested that � coherence reflects
feedback predictions, which in the case of Hughes and Rowe
(2013) would likely be from frontal to temporal cortex. In the
light of the current findings, we speculate that frontal cortical
degeneration in bvFTD could alternatively impair the impact of
prefrontal temporal expectancies.

Other disorders have also been investigated. Schizophrenia
reduces duration–MMN amplitudes (Michie et al., 2000) in pro-
portion to symptoms (Kärgel et al., 2014). In dyslexia, Kujala et
al. (2006) observed reduced frequency deviant amplitudes, which
correlated with reading skill (Baldeweg et al., 1999). Additionally,
Morlet and Fischer (2014) and Daltrozzo et al. (2007) confirmed
that duration deviants are robust for predicting coma outcome.
These studies suggest that using the MMN for clinical research
could benefit from tailoring deviant types to disorders to achieve
maximal decoding ability.

Furthermore, using the MMN to study the neural responses to
unexpected events is not limited to simple sensory tasks but also
applies to the neurocognitive basis of higher cognitive functions
(Clark, 2013). The use of a hierarchy of generative models to
predict the sensorium is suggested to be the common framework
behind learning (Friston and Stephan, 2007; Fletcher and Frith,
2009; Moran et al., 2013, 2014), recognition (Egner et al., 2010;
Muckli, 2010), attention (Clark, 2013), and motor control (Fris-
ton et al., 2011). Here we show that even for a simple passive task
with small differences in auditory stimuli, the hierarchical gener-
ative model is flexible to predict specific deviations. This supports
the notion that the brain optimizes connectivity to better predict
its environment in both low-level perception and higher cogni-
tive functions (Moran et al., 2014).

There are limitations to this study. Our winning models are
selected from a defined model space based on our hypothesis and
prior literature, but it could be argued that other networks might
be better still. However, DCM is a hypothesis testing framework,
rather than an exploratory model-search technique [see Friston
et al. (2013) in response to Lohmann et al. (2012)]. This is not
because it is computationally intensive but because there is a
greater risk of overfitting with large model sets (Friston et al.,
2013). Thus, we kept to the recommendation to choose necessary
and sufficient model space with which to test hypotheses. Second,
we used the same prior source locations for each MMN source
regardless of the deviant type examined. Molholm et al. (2005)
suggested modest location differences between frequency and de-
viant types within the auditory and prefrontal cortices, using
fMRI. However MEG is tolerant of minor (millimeter) deviations
of the site of sources, in part because of its inherently lower spatial
resolution. More important is the orientation of the dipole,
which remained free (Garrido et al., 2007a). Third, one could
potentially model the source of temporal expectancies acting on
the prefrontal cortex. We did not do so, in part because striatal
sources are not well observed in MEG and because potential pre-
frontal sources could not be specified a priori. We speculate that
the temporal expectancy inputs act as a “pacemaker” prediction

of temporal regularities in stimulus trains. But additional studies
would be needed to test the hypothesis that expectancy inputs are
important for the response to deviations from temporal iso-
chrony. This could be undertaken using deviations from iso-
chrony and omission instead of the qualitative differences in
regular stimuli that we used.

In conclusion, the auditory multi-mismatch task reveals the
presence of hierarchical frontotemporal networks for the predic-
tion of sensory events and response to sensory deviants. We show
the flexibility of this generative model hierarchy to predict mul-
tiple variations in auditory dimensions, including the temporal
structure of stimuli. Furthermore, we provide new evidence for
internally generated temporal expectations that influence pre-
frontal cortex. The role of these higher-level expectations may be
particularly relevant in hierarchical networks that support higher
cognitive functions and their disorders.
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Näätänen R (1995) Separate representation of stimulus frequency, in-
tensity, and duration in auditory sensory memory: an event-related po-
tential and dipole-model analysis. J Cogn Neurosci 7:133–143. CrossRef
Medline

Grahn JA, Rowe JB (2009) Feeling the beat: premotor and striatal interac-
tions in musicians and nonmusicians during beat perception. J Neurosci
29:7540 –7548. CrossRef Medline

Grahn JA, Rowe JB (2013) Finding and feeling the musical beat: striatal
dissociations between detection and prediction of regularity. Cereb Cor-
tex 23:913–921. CrossRef Medline

Hughes HC, Darcey TM, Barkan HI, Williamson PD, Roberts DW, Aslin CH
(2001) Responses of human auditory association cortex to the omission
of an expected acoustic event. Neuroimage 13:1073–1089. CrossRef
Medline

Hughes LE, Rowe JB (2013) The impact of neurodegeneration on network
connectivity: a study of change detection in frontotemporal dementia.
J Cogn Neurosci 25:802– 813. CrossRef Medline

Hughes LE, Ghosh BC, Rowe JB (2013) Reorganisation of brain networks in
frontotemporal dementia and progressive supranuclear palsy. Neuroim-
age 2:459 – 468. CrossRef Medline

Jemel B, Achenbach C, Müller BW, Röpcke B, Oades RD (2002) Mismatch
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Näätänen R, Paavilainen P, Tiitinen H, Jiang D, Alho K (1993) Attention
and mismatch negativity. Psychophysiology 30:436 – 450. CrossRef
Medline
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