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Abstract  
The rapid capacity decay of lithium-sulphur batteries has been a significant obstacle for practical 15 

application, which is generally considered to arise from dissolution of lithium polysulphide in the 

electrolyte and diffusion away from the cathode. As the lithium content in the polysuphide inceases with 

further discharge, capacity decay occurs also from the passivating effects by the formation of insoluble 

sulphides, further amplified by volume increase. More recently, weakening of sulphur adhesion to carbon 

with progress in discharge is also an important factor in the sulphur cathode degradation. In order to 20 

overcome capacity decay caused by all the above mechanisms, we have prepared a composite cathode 

made of sulphur and high density carbon nanotube (HD-CNT) forest scaffold that is able to interfacially 

adsorb and volumetrically confine the polysulphide species and accommodate the expansion of sulphur 

discharge products effectively. This cathode demonstrates very high electrochemical stability and high 

discharge capacity up to 200 full discharge/charge cycles even with the use of the basic organic ether 25 

electrolyte where polysulphide shows high solubility, thus providing evidence for confinement and 

interfacial contact. Retention and surface adsorption favoured by minimising the wall-to-wall distance 

between the aligned CNTs arising from a decrease in the reaction energy of the adsorption. 

Computational simulation of the interface between polysulphide species and carbon nanotube surface 

provides first-principles confirmation of improved binding between C and S in the polysulphides as wall-30 

to-wall distance is decreased. The HD-CNT scaffold is self-binding and highly-conducting thus the 

conventional additives of binder and carbon black are also fully eliminated. A high discharge capacity of 

812 mAh g-1 of sulphur (corresponding to 503 mAh g-1 of the whole cathode material mass) is stably 

retained after 200 cycles at 400 mA g-1
 with a small average capacity decay of only 0.054% per cycle on 

average These encouraging results provide novel approaches to designing and fabricating long cycle life 35 

cathode in a lithium sulphur battery. 
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1 Introduction 

 Lithium-sulphur batteries, which use sulphur (S) as cathode 

and lithium as anode, have attracted considerable attention 

because of their high theoretical capacity of 1675 mAh g-1 of 

elemental sulphur and high nominal theoretical energy density of 50 

2500 Wh kg-1.[1-5] Sulphur is readily available particularly as a 

by-product of oil and natural gas desulfurization and poses less 

environmental risk than heavy metal based Co, Mn compounds or 

the phosphates that are presently used in Li-ion batteries. 

Therefore, sulphur is considered to be a very promising future 55 

cathode material for high energy-density rechargeable batteries. 

Despite its promising attributes, the Li-S battery is still plagued 

by various problems, and a rapid capacity fading with cycling is 

the key issue hindering its widespread practical utilization. 

Capacity degradation is ascribed to a combination of factors. The 60 

lithium polysulphides as they form during discharge can readily 

dissolve and diffuse in the electrolyte away from the cathode 

redox sites. [6] The lithium polysulphides are intermediate 

products of the electrochemical reduction of sulphur in the 

organic electrolyte. They can dissolve and diffuse from the 65 

cathode to the metallic lithium anode (and also in the reverse 
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direction) causing parasitic reactions, which result in lithium 

anode corrosion, loss of active sulphur and low columbic 

efficiency. As reduction progresses, the lithium polysulphides 

will finally result in the precipitation of insulating Li2S and other 

insoluble compounds on the cathode surface, which inhibit 5 

transport of the lithium ions and reduce the battery capacity 

especially with cycling. The solid sulphides occupy 80 % more 

volume than sulphur and thus enhance the passivating effect.7 

Any unutilized sulphur can also have passivating effect due to its 

insulating property. 10 

 To address these issues, some forms of carbon are usually 

added to the cathode due to their high conductivity, low weight 

and ready availability in porous structure.[7-12] But the capacity 

fading is still observed in the basic sulphur/carbon composite 

systems. Poor interfacial contact degradation due to the LixS 15 

detachment from the carbon surface during the discharge process 

has been shown recently to be an important issue.[13] Zheng et al 

[13] recently proved that despite tendency towards volume 

expansion, weakening of C-S bonding with increasing lithium in 

the polysuphides can result in shrinking away of S from the C 20 

surface. Thus the interfacial contact between the lithium 

polysulphides and carbon, crucial for sustaining the redox 

reaction is degraded, inevitably leading to the formation of 

aggregated insoluble sulphides. Zheng et al [13] added PVP to 

electrolyte and used ex-situ TEM to show evidence for improving 25 

the C-S bonding. 

 Most approaches reported in the literature have tended to 

consider additives that can further limit the solubility and 

diffusivity of polysulphides in the electrolyte. Just as the above-

mentioned work by Zheng et al [13], who have aimed to avoid 30 

loss of binding between C and the S products in the electrolyte. 

Oxides sulphide captures, such as mesoporous silica[14], 

metal−organic framework (MOF)[10, 15] and  titania[16], have 

been introduced to improve the performance of the sulphur 

cathode. Several groups also demonstrate that the modification of 35 

sulphur electrode by polar polymer additives is consistently 

shown to improve the cycling performance.[7, 13, 17] In further 

improve the cycle stability, several precise structural innovations 

have been proposed, including the use of core–shell morphology, 

[18, 19] the graphite/lithium metal as a hybrid anode[20] and the 40 

introduction of an ion selective membrane[21]. Furthermore, the 

new electrolyte system based on an organic ether, such as 

dioxolane (DOL) and 1,2-dimethoxyethane (DME), as a solvent 

is developed because the carbonate solvents typically used in a 

lithium-ion battery are usually not suitable for Li-S batteries.[22] 45 

The rapid capacity fading arises from the dissolution of lithium 

polysulphides (Li2Sn, n=3-8) into the organic ether electrolyte 

during the discharge-charge process. Finally, the large volume 

expansion due to the difference in density between sulphur and 

the solid lithium sulphide products coupled with the polysulphide 50 

dissolution will further accelerate the capacity fading during 

cycling. Therefore, LiNO3 additive has been introduced to 

stabilize the Li-metal surface. Meanwhile, the eletrolyte with high 

Li salt concentrations has been used to reduce the dissolution of 

polysulphide by the common ion effect.[23-25] However, the 55 

additives will decrease the overall capacity of the battery and 

introduce additional costs. In this paper, we have focused on a 

solution that can improve the interfacial binding between C and 

the the Li polysufides through morphological control alone 

without any additives. In order to prove the concept we have 60 

intentionally used an electrolyte in which the polysuphides are 

very soluble.  

 Recently, carbon nanotube (CNT) has been combined with 

sulphur to form a cathode for lithium-sulphur battery, thus 

utilizing CNT’s excellent electrical, thermal, and mechanical 65 

properties.[26-32] To further constrain the dissolution and the 

diffusion of polysulphides during the redox reaction, three-

dimensional (3-D) CNT networks were trialled, based upon 

vertical aligned carbon nanotube/sulphur composites[29, 30] and 

hierarchical architecture S/MWCNTs nano/micro-spheres[28]. 70 

These 3-D CNT networks provide a new cathode architecture 

design in the development of  lithium-sulphur batteries.  

  In this work,  we find that good cycling stability can be 

achieved in organic ether electrolyte by effective material 

structure design rather than incorporating further additives in the 75 

carbon/sulphur cathode or the electrolyte. Herein, we show how 

to make and control a sulphur/CNT array (S/CNT array) 

composite cathode within a stable and resilient CNT network 

formation, so that the resulting Li-S battery can achieve an 

electrochemical stability of up to 200 cycles with high discharge 80 

capacity retention. Good electrochemical performance could be 

attributed to the presence of an array of high-density CNT 

scaffolds with orderly structure that can adsorb the polysulphides 

and accommodate the volume expansion of sulphur within the 

basic organic ether eletrolyte. To further understand how the 85 

battery performance is influenced by the carbon structure, we 

carried out first-principles calculations, which shows that a small 

wall-to-wall distance is favorable for achieving large negative 

reaction energy of the adsorption. Both the experimental results 

and the computer simulation provide cross-confirmation for the 90 

hypothesis that a well-designed high density nanotube forest is 

favorable for achieving stronger polysulphide adsorption and 

ultimately the cycle stability is improved. While successfully 

addressing the capacity decay problem, additional capacity is 

available from this novel cathode structure, from the ability to 95 

eliminate additional components such as conducting additives 

(e.g. carbon black) and binders (e.g. polytetrafluoroethene: PTFE) 

from the cathode system. 

 

2 Material and methods 100 

2.1 Cathode Preparation 

A copper foil (50 µm thick, Advent Research Materials Ltd) was 

used as the substrate for CNT growth. It was cleaned by washing 

with acetone, IPA and de-ionized water. This was followed by 

coating the Cu surface with a 10 nm Al layer and a 1.3 nm Fe 105 

layer by sputtering. The coated foil was then loaded into a 

chemical vapor deposition system as a substrate for CNT growth 

[33-38]. The sample was heated up to the CVD temperature in 3 

minutes under 500 sccm H2 flow at a pressure of 15 mbar. CNTs 

were grown at 700 oC with a H2/C2H2 gas mixture by adding 110 

acetylene to the flowing hydrogen gas (500 sccm total gas flow, 

2-10% C2H2). The pressure during the CVD was varied between 

1-15 mbar.  

 Elemental sulphur powder and as-prepared CNT forests were 



 
dried at 80 °C under vacuum before use. Then, 0.1 g sulphur was 

dissolved completely in 30 mL toluene (Sigma-Aldrich, 99.8 %, 

anhydrous) solution. The sulphur/CNT cathode was prepared by 

infiltration of sulphur from the solution into the CNT arrays. 

More specifically, a sulphur solution was dropped onto the CNT 5 

arrays and then dried after 5 minutes. This was repeated several 

times until the desired amount of sulphur was infiltrated. The 

loading density of sulfur was approximately 2.0 mg/cm2 in HD-

CNT sample.The amount of sulphur in the cathode was measured 

as the change of sample mass after the S infiltration, and it was 10 

controlled by the concentration of sulphur solution and by the 

number of times that the infiltration process was repeated.  

 In this work, SEM was used to analyze the surface 

morphologies of the carbon materials before and after sulphur 

loading. Two different SEM instruments (JEOL 5800 and FEG 15 

6400) were used for scanning the samples. Energy dispersive X-

ray spectroscopy (EDS) was carried out using a JEOL 5800 LV 

scanning electron microscope (SEM) with an energy dispersive 

X-ray spectroscopy (EDS) detector. Transmission electron 

microscope (TEM) (FEI Tecnai F20-G2 FEGTEM) was used for 20 

high resolution CNT characterizations. Raman data were obtained 

on a Dilor XY-800 spectrometer, using a 514 nm wavelength 

from an argon-ion laser. 

 

2.2 Li-S battery assembly and electrochemical measurements 25 

A Li-S battery was assembled in a glove box filled with pure 

argon. The same lithium metal foil (99.99%, Sigma-Aldrich) was 

used as the anode and also as the reference electrode. The 

separator between the electrodes was a commercial microporous 

polypropylene product (Celgard 2400). A copper foil was used as 30 

the anode current collector and the Cu foil that supported the 

CNT growth was used as the cathode current collector. The 

electrolyte in this study was based on 1 M LiN(CF3SO2)2 

(99.95%, trace metals basis, Sigma-Aldrich) dissolved in a 

mixture of dioxolane (DOL) (99.8%, Sigma-Aldrich) and 1,2-35 

dimethoxyethane (DME) (99.5, Sigma-Aldrich) in a volume ratio 

of 1:1. The galvanostatic charge/discharge tests were performed 

at a specific current of 400 mA g-1 of S to evaluate the 

electrochemical capacity and cycle life of the electrodes at room 

temperature using a LAND-CT2001A instrument (Wuhan, 40 

China). The cut-off potentials for charge and discharge were set 

at 3.0 and 1.0 V vs Li+/Li, respectively. 

 

3 Theory/Calculation 

3.1 Computational simulation of the sulphur adsorption. 45 

The generalized gradient approximation (GGA) with the Perdew–

Burke–Ernzerhof (PBE) functional[39] was employed to describe 

the exchange and correlation effects. The DFT + D method 

within the TS scheme[40] was used in all the calculations to 

consider the van der Waals forces. Vanderbilt ultrasoft 50 

pseudopotential, plane wave basis set with 330 eV cutoff energy, 

and Monkhorst-Pack k point meshes as dense as 0.025 Å-1 in each 

orthogonal direction were used. The convergence tolerance of 

energy of 10−5 eV was taken, and the maximal allowed force and 

displacement were 0.05 eV Å−1 and 0.002 Å, respectively. A 55 

small nanotube (6, 6) was used due to limited computational 

resources. 

4 Results and discussion 

The CNTs synthesized in this work are typically ~100-250 µm in 

length and vertically aligned (Fig. s1a). Both the individual CNTs 60 

and the empty space between them can be clearly seen in Fig. 1a 

and s1b. The CNTs typically have 2-5 walls (the number of 

carbon shells of a CNT) with closed end at the tip [35, 41]  and 

with an average diameter of ~7 nm (Fig. s1 c, e and f). The 

Raman spectrum of CNT in Fig. s1d shows a G/D peak ratio of 65 

1.5, which demonstrates the good crystalline quality of the 

tubes.[42] We note that the CNTs provide a good electronic 

conduction path and also can facilitate ion transport within the 

electrolyte, and the empty space between the tubes can 

accommodate the sulphur infiltrated into the CNT forest. 70 

 

 
Fig.1 Schematic and the corresponding SEM images of carbon nanotubes. 

(a) as-grown forest, (b) after infiltration by ethanol. (c) after sulphur 
infiltration. 75 



 

  

 
Fig.2 SEM images of CNT forest after S infiltration. (a) and (b) low density 
(LD) CNT, with 59 wt% sulphur. (c) and (d) median density (MD) CNT, with 
63 wt% sulphur. (e) and (f) high density (HD) CNT, with 62 wt% sulphur. (b) 
Its inset show the relatively large amount of S crystals exposed on the 5 

substrate surface. (d) shows that there is a much smaller amount of S 
exposed and most S crystals are now covered by the close-packed CNT 
network. (f) shows that no S crystals are observed and nearly all S 
content is now locked into the close-packed CNTs. 

 The schematics of the sulphur infiltration are shown in Fig. 1. 10 

Fig. 1 (a) shows the structure of vertical aligned CNT forest that 

was used for infiltrating the elemental sulphur. By comparing the 

CNTs after ethanol (Fig. 1b)[33, 34] and sulphur [30] (Fig. 1c) 

infiltration, it is very clear that the CNT bundles with S 

infiltration are larger in diameter and appear to be packed more 15 

closely. The difference is caused by a homogenous coating of 

sulphur on the CNT sidewalls, as shown in Fig. 1c. The sulphur 

content is expected to be locked in the space between the tubes 

and this will physically prevent or limit the runoff of sulphur and 

polysulphides during the charge-discharge of the battery.  20 

 The sulphur infiltration process is greatly affected by the 

CNT forest density. Here, we define the CNT density as the 

percentage of area covered by the close-packed CNTs after the 

sulphur infiltration[34, 43-45]. This liquid-induced compaction 

method enables a simple way to directly compare the CNT 25 

densities. After liquid sulphur is dropped, the CNT forest forms 

locally compacted regions by drying in air, which is caused by 

strong capillary forces during evaporation and strong vander 

waals interactions between condensed nanotubes. A larger 

coverage by the close-packed CNTs means a higher areal density 30 

of the as-grown tubes on the substrate. Fig. s2 shows the SEM 

images of the top of a CNT forest before and after sulphur 

infiltration. The compacted area (red colour) is divided by the 

whole image area, yielding the fraction of compacted CNTs 

(filling factor), showing in Fig s2b. 35 

      We have selected CNT forests of three different densities to 

investigate how the Li-S battery performance is affected by the 

CNT density. Fig. 2 shows the SEM images of the CNTs after S 

infiltration. The tube density in Fig 2a, c, e is 3%, 11% and 18% 

respectively, and they are referred to as low density (LD), 40 

medium density (MD) and high density (HD) CNTs hereafter. 

These three CNT-S structures all have very similar S content of 

about 59-63 wt%. However, for LD-CNTs, it is very clear that 

there are many S crystals exposed on the sample surface (Fig. 2a 

and 2b). This is because that the close-packed CNT forest cannot 45 

accommodate most of the S content, and the S crystals are 

precipitated on the thin CNT layer which covers the substrate 

(Fig. 2b inset). For the MD-CNTs (Fig. 2c and 2d), a significantly 

larger percentage of the substrate area is covered by the close-

packed CNTs, and the CNTs can accommodate most of S content 50 

or at least partially cover the S crystals precipitated on the 

substrate surface (Fig. 2d and inset). In the case of HD-CNTs, in 

Fig. 2(e, f), no S crystals are observed under similar 

magnifications. This is attributed to the efficient soaking of the S-

containing solution by the CNT forest and the subsequently 55 

uniform locking of the S into the close-packed CNT forest.  

 Elemental mapping was used to evaluate the uniformity of the 

carbon and sulphur distribution in the HD-CNT-S composite. Fig. 

3 (b, c) shows the S-rich regions overlapping with the C-rich 

regions. This confirms that S is uniformly distributed between the 60 

neighboring CNTs (Fig. 2f). In the regions that have less 

coverage by the CNTs, the sulphur loading becomes less and this 

region overlaps with the Cu-rich regions which represent the 

metal substrate (Fig. 3d). We also note that the amount of S 

incorporated into the CNTs can be controlled by the S 65 

concentration in the solution or number of the drops dipped on 

the CNTs. In terms of MD-CNT-S and LD-CNT-S composites, 

an inhomogeneous sulphur distribution could be observed 

obviously from EDS mapping in Fig. s3 and s4.  

 70 

 
Fig.3 SEM image and elemental maps of (b) carbon, (c) sulphur, and (d) 
copper in the HD-CNT-S composites with 62 wt% sulphur. 

 Fig. 4a shows the initial galvanostatic discharge curves for 

cells from the as-prepared S/CNT samples. It is clear that the 75 

S/HD-CNT cathode shows a higher initial discharge capacity and 

higher flat voltage plateau as compared with other two samples. It 

demonstrates two potential regions, one sloping down from 2.4 – 

2.1 V (vs. Li/Li+), corresponding to the formation of long-chain 

soluble lithium polysulphides (Li2Sn; where n is typically 4-8) 80 



 
and a second region as a plateau at 2.1 V corresponding to short-

chain solid sulphides (Li2S2 and Li2S). [3, 6, 46, 47] For the 

sulphur/MD-CNT and sulphur/LD-CNT arrays, the upper 

potential regions sharply decline corresponding to very low S 

utilization. The clear difference of the electrochemical behaviour 5 

in the 1st discharge cycle of both MD- and LD-CNT based 

cathodes can be attributed to a number of factors, such as 

existence of bulk insulating sulphur and high ohmic polarization 

with these two CNT-S composites. These could be attributed to 

non-uniform sulphur loading for the LD- and MD-CNT arrays 10 

which also contain numerous and large proportion of 

electrochemically ineffective porous space (Fig. 2a, c). Sulphur 

agglomerates that are exposed outside of the CNTs could lead to 

reduction in electrical conductivity, giving rise to lower potential 

plateau. The cathode based on HD-CNTs is effective in achieving 15 

80 % of theoretical capacity in the 1st cycle with good utilization 

of S in both the high potential and the lower plateau regions. 

Only beyond 1000 mAh g-1, loss in potential, possibly due to 

ohmic polarization is visible. Thus it can be hypothesized that the 

HD-CNT vertical arrays provide a suitable network for uniformly 20 

distributing sulphur in the CNT electrode surfaces (for improving 

triple phase boundaries) and for holding the polysulphides in the 

cathode nanopores for electrochemical utilization rather than 

encouraging loss by diffusion.  

 25 

Fig.4 The first discharge curves and (b, c) cycle performance of the 
samples at a specific current of 400 mA g-1 of S between 1.0 and 3.0 V (vs 
Li+/Li) in the electrolyte (LiN(CF3SO2)2/ DOL:DME=1:1(v/v)). The weight 
percentage of the S loading in the cathode materials are 62%, 63% and 

59% respectively for HD-CNT, MD-CNT and LD-CNT. 30 

 The cycle performance of the cells is shown in Fig. 4b and 

Fig. 4c. The sulphur/HD-CNT has the best cycle performance of 

the three samples, as anticipated. It shows the highest initial 

discharge capacity of 1340 mAh g-1 of S (80 % of the theoretical 

capacity) and a reversible capacity of 910 mAh g-1 of S in the 35 

second cycle, corresponding to impressive values of 831 and 564 

mAh g-1 of the cathode mass. The irreversible capacity loss in the 

first cycle is due to unembedded polysulphide species which 

might diffuse throughout the electrode and deposit on the lithium 

side where they are reduced. After the second cycle, the average 40 

fading rate is small at 0.054% per cycle and the capacity was 

stabilized to a constant value at 503 mAh g-1 of the cathode mass 

(corresponding to 812 mAh g-1 of S) after the 200th cycle. This 

stable capacity over long cycles can be attributed to the uniform 

distribution of lithium polysulphides that are appropriately locked 45 

in the HD-CNT structures (Fig. 3c). Thus even after 200 cycles, 

nearly 50% of S participates in the electrochemical redox 

reactions. Long cycle life utilization of 50% of the loaded sulphur 

can still provide impressive capacity thus taking practical 

application of Li-S battery further forward. Dramatically, the 50 

average decay rate seems to decrease as the cycle number 

increases, thus a steady state is likely to be achieved with respect 

to sulphur utilization in the discharge cycle and sulphur formation 

during charging. Addtionally, the sulphur/HD-CNT yields an 

average columbic efficiency of ~95%, which is superior to that of 55 

sulphur/MD-CNT( ~77%) and sulphur/LD-CNT(~82%) cathodes. 

 

 
Fig.5 Schematic of the lithiation process in Sulphur/CNT array composites 

 The mechanism of the polysulphide stabilization by the CNT 60 

scaffold is shown schematically in Fig. 5. The CNTs provide a 

good conductive path for current transport, and the flexible nature 

of the CNTs and the empty space between the tubes can 

accommodate the volume expansion of sulphur during lithiation. 

It should note that HD-CNTs can have more tolerance to the 65 

volume changes. These will result in an effective trapping of 

polysulphide during the charge and discharge cycles. In the case 

of LD-CNTs, there is excess empty space that is not covered by 

CNTs, and this will result in undesirable precipitation of large S 

crystals on the substrate (Fig. 2b), which is not-conducive to 70 

generating triple phase boundaries (TPBs).  



 

  

 The insulating nature of sulphur and non-effective locking by 

the CNTs lead to a low utilization of active material sulphur and 

encourage diffusion following chemical dissolution of the 

polysulphides. These factors will cause both a low discharge 

capacity and poor cycle performance of the cathodes. 5 

Additionally, cathodes are formulated normally using sulphur 

composite powder samples. These composite powders contain 

many interfaces and grain boundaries, resulting in several 

irregularly connected carbon networks. These interfaces act as 

scattering centres for electron transport, leading to increased 10 

internal resistances of the cathode of a Li-S battery. Therefore, a 

high density CNT forest can lead to efficient polysulphide 

stabilization, enhanced TPBs and optimal sulphur loading which 

are crucial to produce higher specific capacity Li-S batteries with 

long cycle life.  15 

To study the nanotube density dependent absorbability of S8, 

Li2S4 (representing one of the series of lithium polysulphide 

intermediates)  and Li2S, we carried out first-principles 

calculation by the CASTEP code.[48] We simulated the 

adsorption of LixSy complex on nanotube in a tetragonal supercell 20 

structure; and we were able to sample a series of nanotube area 

densities by adjusting the supercell lattice constant.  

 We first studied S8 adsorption on SWNT as shown in Fig. 6c, 

and then we sampled the smallest tube-to-tube distance with 3.34, 

5.00, 10.00, 15.00, 20.00, 30.00, 40.00, 50.00 Å. The 25 

absorbability is evaluated by the reaction energy, which is 

defined as: 

Reaction Energy =  E(SWNT+A) – E(SWNT) – E(A)              (1) 

where E(SWNT+A) is the total energy of SWNT and adsorbate in 

equilibrium adsorption, E(SWNT) the energy of isolated SWNT 30 

and E(A) the energy of isolated adsorbate. 

 A larger negative reaction energy represents a stronger 

absorbtion. As Fig. 6c shows, at the smallest tube-to-tube 

distance of 3.34 Å, which is the interlayer distance of carbon 

layers in graphite, S8 is more resistant to adsorption compared 35 

with Li2S4 and Li2S in Fig. 6d and e, respectively[49]. This is 

understandable by the large ring diameter of S8 (4.7 Å). S8 would 

undergo a significant compression when being confined by the 

dense SWNT forest. An increase of the tube-to-tube distance to 

5.00 Å is expected to release the compression to some extent and 40 

make S8 more absorbable. Further increase in the distance, 

however, makes S8 more resistant to adsorption until the distance 

reaches 20.00 Å, when the adsorption starts to increase again. 

Generally, S8 keeps a significant distance of ~3.00 Å to the 

SWNT and forms weak non-covalent bond with the CNTs, 45 

therefore the absorbability is not strong, as shown in the inset of 

Fig. 6c. For Li2S4 adsorption on a SWNT as shown in Fig. 6d, 

Li2S4 forms Li-C bond with SWNT at one end of the molecule 

chain with a bond length of about 2.20 Å, and the other end of the 

chain is slightly distorted by forming a three-membered LiS2 ring, 50 

this is due to the long and soft chain structure of Li2S4. As Fig. 6d 

shows, very dense SWNT forest is favoured for the adsorption of 

Li2S4. The reaction energy of Li2S4 is more negative than that of 

S8 over the whole range of tube-to-tube distance. For Li2S 

adsorption on the same SWNT as shown in Fig. 6e, Li2S tends to 55 

form Li-C bond with SWNT with a bond length about 2.30 Å. It 

is clear that dense nanotubes are also energetically favorable for 

the adsorption of the sulphur compounds, similar to Fig. c,d. Li2S 

 
 

 
Fig.6. (a) The discharge-charge voltage profile and chemistry of sulphur cathode in the organic electrolyte. (b) carbon nanotube 
arrays used in the simulation. S8(c), Li2S4 (d), Li2S (e) adsorptions on (6, 6) single wall nanotube. 



 
is most absorbable in the smallest tube-to-tube distance of 3.34 Å 

and maintains a large negative reaction energy (below -1.7 eV) 

upto 50.00 Å.   

  Therefore, our calculations show that a small wall-to-wall 

distance is favored to achieve large negative reaction energy of 5 

the adsorption. This is supported by experimental results which 

demonstrate that a high density nanotube forest is favored to 

achieve stronger S adsorption and improves the battery cycle life. 

5 Conclusions 

 In summary, binder-free carbon nanotube forests of different 10 

densities have been used to fabricate the S/CNT cathodes for Li-S 

batteries. By using the HD-CNT arrays, the initial specific 

capacities of 1340 mAh g-1 and 831 mAh g-1 (of sulphur and 

electrode mass, respectively) are achieved. And the discharge 

capacities of 812 and 503 mAh g-1 (of sulphur and electrode mass, 15 

respectively) are demonstrated after the 200th cycle, with a 

capacity decay of only 0.054% per cycle. The good 

electrochemical performance could be attributed to the developed 

high-density CNT forest scaffolds supporting optimal sulphur 

loading, adsorption of polysulphides and accommodating the 20 

volume expansion of sulphur in the basic organic ether eletrolyte, 

as supported by both experimental results and computational 

simulations.  

 The knowledge gained from this study is not only useful for 

the design of efficient new electrode structure, but also for 25 

understanding the effect of the density of CNTs on the 

electrochemical cycle stability. This work can be applied to other 

high energy density electrode systems, especially to those that 

undergo the active material dissolution and volume expansion 

during redox reactions. 30 
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