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We report the first numerical calculation of the total number of disordered jammed configurations
Ω of N repulsive, three-dimensional spheres in a fixed volume V . To make these calculations
tractable, we increase the computational efficiency of the approach of Xu et al. (Phys. Rev. Lett.
106, 245502 (2011)) and Asenjo et al. (Phys. Rev. Lett. 112, 098002 (2014)) and we extend
the method to allow computation of the configurational entropy as a function of pressure. The
approach that we use computes the configurational entropy by sampling the absolute volume of
basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly
strong correlation between the pressure of a configuration and the volume of its basin of attraction
in the potential energy landscape. This relation is well described by a power law. Our methodology
to compute the number of minima in the potential energy landscape should be applicable to a wide
range of other enumeration problems in statistical physics, string theory, cosmology and machine
learning, that aim to find the distribution of the extrema of a scalar cost function that depends on
many degrees of freedom.

I. INTRODUCTION

Many questions in physics are easy to pose but diffi-
cult to answer. One such question is: how many micro-
scopic states of a given system are compatible with its
macroscopic properties? In statistical mechanics, knowl-
edge of this number allows us to compute the entropy,
and thereby predict the macroscopic properties of a sys-
tem from knowledge of the interaction between atoms or
molecules.

In granular matter we can similarly ask how many mi-
crostates are compatible with a given set of macroscopic
properties. However, the computation of the correspond-
ing absolute entropy has thus far proven to be extremely
challenging. Without such knowledge, it is not possible
to explore the analogies and differences between granular
and Boltzmann entropy. Being able to compute the con-
figurational entropy is therefore clearly important. The
more so as granular materials are ubiquitous in every-
day life (sand, soil, powders). Many industrial processes
involve granular materials. In the natural world, the
Earth’s surface contains vast granular assemblies such as
dunes, which interact with wind, water, and vegetation
[1]. Packings of particles that are soft or biological in na-
ture, such as cells, hydrogels and foams are also known
to undergo jamming [2] and their behaviour to be “gran-
ular” viz not subject to thermal motion. Moreover, as
glasses and granular materials share many properties it
has been proposed that their physics may be controlled
by the same underlying principles [3].

The study of granular materials is complicated by
the fact that these materials are intrinsically out-of-
equilibrium. In fact, thermal motion plays no role in
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granular matter. It maintains its configuration unless
driven by external forces. As a consequence, the proper-
ties of granular materials depend upon their preparation
protocol.

Granular materials are athermal and cannot therefore
be described by statistical mechanics. However, these
materials can exists in a very large number of distinct
states and this fact inspired Edwards and Oakeshott
[4] well over two decades ago to propose a statistical-
mechanics-like formalism to describe the properties of
granular matter. In its original version, the Edwards
theory assumed that all mechanically stable configura-
tions (‘jammed’ states) are equally probable and that
the logarithm of the number of these states plays a role
similar to that of entropy. In this theoretical framework,
the volume of the system and its compactivity (i.e. the
derivative of volume with respect to the configurational
entropy) are the analogues of the energy and temperature
in thermal systems.

In the absence of explicit calculations (or measure-
ments) of the absolute configurational entropy, a direct
test of the Edwards hypothesis has proven difficult, and
different authors have arrived at different conclusions
based on indirect tests in either simulations [5–8] or ex-
periments [9, 10]. In addition, alternative definitions of
entropy have been proposed to characterise the complex-
ity of granular systems while circumventing explicit enu-
meration of states [11, 12].

Numerous tests of the Edwards volume ensemble have
focused on the determination of the compactivity [13–21].
However, the role of compactivity as a temperature-like
quantity is problematic as Puckett and Daniels [22, 23]
have shown that it does not satisfy the equivalent of the
zero-th law of Thermodynamics - the law that is the basis
of all thermometry.

Edwards’ theory has been generalised to include the
distribution of stresses within the system through the
force-moment tensor [24–27] and another analogue of
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temperature emerged, known as angoricity, which is a
measure of the change in entropy with stress. The exper-
iments by Puckett and Daniels [22] showed that angoric-
ity, unlike compactivity, is a temperature-like quantity as
it satisfies the zero-th law.

To date only a few examples of numerical tests of the
generalised Edwards ensemble are available [22, 26, 28,
29]. Numerical tests of the stress ensemble focus on sys-
tems of soft spheres near jamming where the compactiv-
ity X → ∞ and fluctuations in volume are negligible
compared to stress fluctuations [26, 27]. Wang et al.
[28, 29] proposed a unified test that compared ensemble
averaged results over volume and stress with predictions
for the jamming transition, finding agreement; we note,
however, that in the latter approach the results rely sig-
nificantly on the equiprobability assumption.

When the system is composed of very stiff grains, or
is close to jamming, any small deformation will lead to
a large change in the contact forces. In these limits the
geometric and the force degrees of freedom can be de-
coupled, giving rise to the force network ensemble [30]
(FNE). In this framework, force networks are constructed
on a given geometry and each force state is assumed to
be equiprobable. The FNE has been utilised as a testing
ground for statistical frameworks [31–33].

More than two decades after its introduction many fun-
damental questions concerning the Edwards hypothesis
remain unanswered. This unsatisfactory state of affairs
is at least partly due to the fact that no efficient meth-
ods existed to measure or compute the absolute config-
urational entropy directly. Until recently, the only way
to determine the configurational entropy was by direct
enumeration of the distinct jammed states of a system.
This method is inefficient and cannot be used for sys-
tems that contain more than 10-20 particles. Over the
past few years, the situation on the numerical front has
changed: recent numerical work by Asenjo et al. [34, 35],
based on an approach introduced by Xu et al. [36], has
demonstrated that it is possible to compute the number
of distinct jammed states of a system, even when this
number is far too large (e.g. 10250) to allow direct enu-
meration. The approach of Refs. [34–36] replaces an in-
tractable enumeration problem by a tractable scheme to
sample the (absolute) volume of the basins of attraction
of stable states in the potential energy landscape.

The approach described herein is completely general
and it extends to any energy landscape problem that aims
to find the extrema of a scalar cost function that depends
on many degrees of freedom. Enumerating the number
of solutions or stationary points, and their distribution,
for certain classes of random functions is a classical prob-
lem in mathematics and statistics [37–50]. In statistical
physics, ad hoc numerical and theoretical methods have
been developed in the realms of random Gaussian and
polynomial fields [51–59]. In this sense, particular atten-
tion has been devoted to the mean-field p-spin spherical
model of a spin glass with quenched disorder [60–64].
A related area is the computation of the configurational
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FIG. 1: Entropy as a function of system size N for
two (Ref. [34]) and three-dimensional (this work) jammed
sphere packings. Dashed curves are lines of best fit of the

form S = aN .

contribution to the entropy of structural glasses [65, 66].
The physical significance of this method goes even fur-
ther to encompass string theory [67–69], cosmology [70–
74] and machine learning [75–78].

We note that the geometrical structure of the basins of
attraction of jammed states had been studied by O’Hern
and co-workers [8, 79, 80]. O’Hern also reported direct
enumeration estimates of the number of jammed states
of small systems. A rather different technique (‘basin
sampling’) to count the number of energy minima in the
potential energy landscape of small clusters had been re-
ported by Wales and co-workers [81, 82].

We note that, for the system (and protocol) considered
by Asenjo et al., not all packings are equally probable.
However, as shown in Ref. [34], the equal-probability hy-
pothesis is not needed to arrive at a meaningful definition
of an extensive granular entropy. When, in the remain-
der of the present paper, we mention the configurational
(granular) entropy, we refer to the definition of Ref. [34].

We stress that, even though the approach of Refs. [34–
36] allows to solve enumeration problems which were far
from possible using direct enumeration, it is still compu-
tationally expensive. Thus far, it had only been applied
to two-dimensional packings. Substantial ‘technical’ im-
provements were needed to make the method fast enough
to deal with three-dimensional systems.

In the present paper, we present the first enumeration
of the number of jammed packings for three-dimensional
systems consisting of up to 128 soft spheres. A di-
rect comparison of the entropy measured as a function
of system size for two and three-dimensional jammed
sphere packings is shown in Fig. 1. The potential of the
method presented herein can be verified unequivocally
from Fig. 1: we are able of tackling problems at least
500 million times more complex, and of greater computa-
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tional cost, than the already spectacularly difficult ques-
tions confronted by Asenjo et al. [34]. Furthermore we
show how our improved procedure allows first-principles
computation of configurational entropy as a function of
system size and pressure. The method and the technical
improvements needed to overcome this numerical chal-
lenge are presented alongside the main results.

The remainder of this work is organised as follows. Sec-
tion II describes the basic principle of the mean basin vol-
ume method for counting, and explains how that strat-
egy can be applied to enumerate granular packings. The
enumeration and entropy results for three-dimensional
jammed sphere packings as a function of system size
and pressure are reported in Sec. III. The rest of the
manuscript is dedicated to the description of the im-
proved numerical method. Section IV outlines our pro-
tocol for sampling different granular packings, and it de-
scribes the corresponding potential energy landscape and
minimisation techniques. Application of thermodynamic
integration to compute the volume of a basin of attrac-
tion in such a landscape is described in Sec. V. Aspects of
the data analysis tools used on the histograms of sampled
basin volumes, and related configurational entropy defi-
nitions, are described in Sec. VI. Conclusions are drawn
in Sec. VII. Further technical background is given in the
appendices.

II. BASIC PRINCIPLE: COUNTING BY
SAMPLING

In this section, we briefly review the numerical ap-
proach that we use to compute the number of distinct
jammed states. We stress that the approach that we use
has much wider applicability than the counting of gran-
ular packings [51–68, 70–78, 83]. In the context of gran-
ular packings, our aim is to compute the number of ways
Ω in which N spheres can be arranged in a given vol-
ume Vbox of Euclidean dimension d. Knowledge of Ω al-
lows us to compute configurational entropies and related
quantities from first principles [4, 34]. Our approach is
based on a rigorous mapping of the enumeration prob-
lem onto counting the number of minima of a potential
energy landscape [36]. The approach makes no use of a
harmonic [84] or quasi-harmonic [85] approximation. For
a system of hard particles the potential energy function is
discontinuous, that is, the energy of the system is either
zero, if no two particles overlap, or infinity otherwise.
Then, at jamming, in the absence of rattlers, basins of
attraction are single points in configuration space and
they have no associated volume. This does not mean
that we cannot sample the energy minima of a system
of hard particles. The reason is that all jammed struc-
tures of hard particles correspond to the zero potential
energy minima of a system with a continuous repulsive
potential with the same range as the hard-core diameter
of the hard particles. In what follows, we focus on this
class of systems, but we generalise the problem by also

considering minima with a non-zero potential energy. In
particular, we consider spherical particles with a hard
core and a short-ranged continuous repulsive interaction.
Under conditions where this system is jammed, a system
with only the hard-core interactions would still be fluid
and would sample the accessible configuration space uni-
formly. This remaining accessible volume is partitioned
in basins of attraction defined by the soft shells. The
HS-WCA potential used to simulate hard-core plus soft-
shell interactions and the packing preparation protocol
are described in Sec IV B. For an illustration of the pack-
ing preparation protocol refer to Fig. 2. As we argue
below, using an HS-WCA model greatly improves the ef-
ficiency of determination of basin volumes.

Let us denote the total available volume in dN -
dimensional space as V. Note that V is not the total
volume of configuration space (V N ), but just that part
of the volume that is free of hard-core overlaps. It is
the configurational part of the partition function of the
hard-core system at the number density under consider-
ation. Since the accessible configuration space is tiled
by the basins of attraction of the distinct energy minima
[84, 86–88] we can write:

V =

Ω∑

i=1

vi, (1)

where vi is the volume of the i-th basin of attraction and
Ω is the total number of distinct minima. We thus make
the simple observation:

Ω∑

i=1

vi =
Ω

Ω

Ω∑

i=1

vi = Ω〈v〉, (2)

where 〈v〉 is the mean basin volume, from which it follows
immediately that

Ω =
V
〈v〉 . (3)

We note that, for sphere packings, V is known from the
equation of state of the underlying hard sphere fluid (see
Appendix E) and we can measure 〈v〉 by thermodynamic
integration, as discussed in detail in the Sec IV. The ap-
proach of [34, 36] has thus turned the intractable enumer-
ation problem of finding Ω into a sampling one, namely
measuring 〈v〉.

III. RESULTS: COUNTING DISORDERED 3D
SPHERE PACKINGS

The mean basin volume method for enumerating the
number of mechanically stable packings was introduced
by Xu et al. [36], and tested on a small system of soft
disks. Asenjo et al. [34] then made a number of modifi-
cations to the algorithm that allowed them to apply it to
larger systems of up to 128 disks. As was the case with
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FIG. 2: Hard sphere fluid at φHS = 0.5, left, and HS-WCA jammed packing at φSS = 0.7, right, for a system
of 44 polydisperse hard spheres with mean radius 〈rh〉 = 1 and standard deviation σHS = 0.05. We prepare the
polydisperse HS fluid configurations at fixed packing fraction φHS = 0.5 by a Monte Carlo simulation. Particles are
then inflated by the same factor, proportional to their radius (spheres are coloured according to their radius), to obtain

an over-compressed soft spheres jammed packing at φSS = 0.7 by an infinitely fast quench (energy minimisation).

Ref. [36], the calculations of Ref. [34] focused on two-
dimensional systems because of the high computational
costs involved in studying 3D systems. Here we present
results for systems of three-dimensional soft spheres. We
are thus in a position to compute the configurational en-
tropy of a real (but idealised) three-dimensional system.

We first describe an analysis similar to the one reported
by Asenjo et al. [34] to verify the extensivity of the en-
tropy S(V ) at constant packing fraction. Next, we ex-
tend our approach to the generalised Edwards ensemble,
i.e. one based on a description of the system in terms
of its volume and pressure, to compute the generalised
entropy S(V,P).

We investigate three-dimensional packings with sys-
tem sizes ranging from 24 to 128 HS-WCA particles, see
Eq. (15), at φHS = 0.5 hard-sphere fluid packing frac-
tion and φSS = 0.7 soft sphere packing fraction, corre-
sponding to a ratio of the soft and hard-sphere radii ratio
rSS/rHS = 1.12, prepared following the protocol outlined
in Sec. IV. For each system size we compute the volume of
the basin of attraction of approximately 1000 packings.
Each PT run (see Sec. V) was performed on 15 paral-
lel threads of a single eight-core dual Xeon E5 − 2670
(2.6GHz, Westmere) node. Our choice of convergence
criterion was such that when the uncorrelated statistical
error for each of the replicas’ mean square displacement
fell below 5% the calculations were terminated. This set-
up translated in run times ranging from 10 to 300 hours
per basin depending on system size, which amounts to
O(106) hours of total run time and O(107) total cpu

hours. We then analyse the corresponding distribution
of dimensionless free energies following the protocol de-
scribed in Sec. V and VI and summarised in Appendix A.

A. Extensivity of the entropy

We first computed two alternative definitions of en-

tropy: the Gibbs entropy SG = −∑Ω
i=1 pi ln(pi)− ln(N !)

and Edwards (Boltzmann) entropy SB = ln(Ω)− ln(N !),
where pi is the probability to sample packing i and Ω is
the total number of mechanically stable states (or min-
ima in the energy landscape). A detailed discussion of
these definitions is outlined in Sec. VI. The results of
these calculations are summarised in Fig. 3. Our results
strongly suggest that, also in three dimensions, the en-
tropy thus defined is extensive. Note that extensivity re-
quires not only that the entropy scales linearly with sys-
tem size, but also that it crosses zero at the origin. The
slightly higher value of the Edwards entropy compared
to the Gibbs entropy is consistent with the observation
that Edwards’ equiprobability corresponds to the maxi-
mum possible entropy of a system with Ω states. We also
show that our estimates for the Edwards’ entropy are rel-
atively insensitive to the precise strategy used to compute
it. In Fig. 3, we compare three methods: a parametric fit
to a generalised Gaussian cumulative distribution func-
tion (c.d.f.) using a non-linear least squares method, a fit
to the corresponding probability density function (p.d.f.)
using maximum likelihood, and a non-parametric fit by
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FIG. 3: Top left, entropy as a function of the system size
N computed, in order, according to the Gibbs configura-
tional entropy and the Edwards configurational entropy
using a non-parametric fit by kernel density estimation
(KDE), a parametric fit to a generalised Gaussian c.d.f.
using a non-linear least squares method and a fit to the
corresponding p.d.f. using maximum likelihood (ML).
Comparison of generalised Gaussian best-fit parameters
for 2D (see Ref. [34]) and 3D sphere packings: scale pa-
rameter σ (bottom left) and mean log-volume µ (top
right) scale linearly with system size N ; distributions are
more peaked for 2D packings. In 2D we observe much
stronger dependence of the shape parameter ζ (bottom

right) as a function of system size than in 3D.

kernel density estimation, which makes no a priori as-
sumption about the shape of the distribution, other than
the choice of the kernel function. We note, once again,
that no post-processing is needed to compute the Gibbs
version of the configurational entropy. Our results are in
line with those reported by Asenjo et al. [34] for two-
dimensional systems.

The number of mechanically stable states Ω required
by the Edwards’ definition of entropy is obtained subse-
quently to fitting the numerically obtained distribution of
log-basin volumes (dimensionless free energies) to a gen-
eralised Gaussian distribution and unbiasing it appropri-
ately, as described in Sec VI. We observe that the best-fit
mean and scale parameters of the generalised Gaussian
for the distribution of dimensionless free energies, µ and
σ in Eq. (27) respectively, are also extensive, which al-
though in line with what was found in two dimensions,
is not a priori obvious. Finally we find that the shape
parameter, ζ in Eq. (27), appears to depend only weakly
on system size. The statistics are poor, but the data are
compatible with the assumption that ζ → 2 (Gaussian
distribution) as N →∞. In 2D, the same limiting distri-
bution of ζ, but with a much stronger size dependence,
was observed.

B. Entropy in the generalised Edwards ensemble

We next consider the situation where the configura-
tional entropy is a function of both the volume V and
the stress tensor Σ̂ of the system. The number of pack-
ings with fixed V and Σ̂ is denoted by Ω(Σ̂, V ).

In the generalised Edwards ensemble [23, 26, 27], we fix

the variables conjugate to V and Σ̂, viz. the compactivity
X and the inverse angoricity tensor α̂. The generalised
‘partition function’ can then be written as [23]:

Zdyn =
∑

ν

ω(Σ̂ν , Vν)e−Vν/Xe−Tr(α̂Σ̂ν), (4)

where Vν and Σ̂ν are the volume and the force-moment
(stress) tensor for state ν. The weights ω account for
the protocol dependence of the probability to generate
a state, and the sum runs over all mechanically stable
states ν.

We can rewrite this partition function in terms of the
density of states:

Zdyn =
∏

l,k>l

∫∫
dΣ̂lk dV Ωdyn(Σ̂, V )e−V/Xe−Tr(α̂Σ̂).

(5)
For a system under hydrostatic pressure, and in the ab-
sence of shear, we can write the force-moment tensor
as Σ̂ = ÎΓ, where Γ = PV = Tr(Σ̂)/3 is the internal
Virial of the system. The inverse angoricity tensor α̂
becomes a scalar α = ∂S/∂Γ [27]. This result allows
to simplify the notation significantly and at fixed vol-
ume, through the mean basin volume method, we obtain
the number of states integrated over all pressure states,
Ω(V ) =

∫
dPΩ(V,P). We now discuss how to gener-

alise this procedure so that one can compute Ω(V,P),
and therefore the configurational entropy, in the context
of the generalised Edwards ensemble.

1. Pressure to basin volume power-law relation

To compute Z(X,α) directly, we would have to evalu-
ate Ω(P, V ) as a function of both P and V . Whilst, with
the tools that we have, this calculation is in principle
possible, the computational costs would be several orders
of magnitude larger than the, already quite substantial,
costs of computing Ω(V ). This would suggest that the
computation of Z(X,α) is not possible at present.

However, it turns out that we can still estimate the
generalised configurational entropy because, as we dis-
cuss below, we observe a surprisingly strong correlation
between pressure and basin volume.

From Fig. 4 we see that the basin volume for a given
pressure state at fixed volume is strongly correlated with
the pressure P. As the figure suggests, the relation be-
tween − ln(v) and ln(P) is approximately linear, and
hence

F (P|N,φSS) ≡ − ln(v) =
N

κ
ln(P) + C(N), (6)
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of mechanically stable states at fixed volume for several
system sizes. Best fit lines are in black. In the bottom
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of the best fit lines as a function of system size. Both

slope and intercept scale linearly with system size.

where κ denotes the slope of the linear fit, and C(N) its
value at P = 1 (see Fig. 4). The value of κ is not known
a priori. It seems likely that κ depends on the functional
form of the potential. C(N) is a even less universal linear
function of N , as it depends on the choice of units.

We anticipate that this power law relationship survives
for packings in two dimensions for a wide spectrum of
packing fractions φ > φJ viz. as long as the system is
jammed and sufficiently over-compressed [89].

2. Gibbs configurational entropy

Using our approximate relation between pressure and
basin volume, we can now rewrite Eq. (6) in terms of the
probabilities for each jammed state

ln(pi) = −N
κ

ln(Pi)− C(N)− ln(V), (7)

which when substituted in the definition for the Gibbs
entropy Eq. (22), gives the configurational entropy at a
given volume in terms of the biased mean log-pressure

SG =
N

κ
〈ln(P)〉B + C(N) + ln(V)− ln(N !). (8)

The significance of this equation should be apparent: for
a sufficiently over-compressed packings of soft spheres at
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FIG. 5: Empirical cumulative distribution functions of
the pressures for several system sizes. Dashed lines in
the corresponding colour are curves of best fit to a gen-
eralised log-normal distribution. The curves are mostly
indistinguishable. Inset: best fit parameters for the gen-
eralised log-normal distribution as a function of system
size. The mean µ and scale parameter σ scale linearly
with 1/N , while the shape parameter ζ is approximately

insensitive with respect to system size.

a given packing fraction, the Gibbs configurational en-
tropy can be approximately computed from sole knowl-
edge of the average pressure, provided that κ is known.

3. Generalised Edwards configurational entropy

To recover the number of states as a function of volume
and stress we note that

Ω(V,P) = Ω(V )

∫ P+δP

P
U(x|V ) dx, (9)

where U(P|V ) is the unbiased probability distribution
function of stresses at some specified volume. The di-
rectly measured distribution of pressures depends on the
protocol with which packings are generated.

We distinguish between the biased, B(P|N,φSS) (as
sampled by the packing protocol), and the unbiased,
U(P|N,φSS), pressure distributions. Since the configu-
rations were sampled proportional to the volume of their
basin of attraction, using Eq. (6) we can compute the
unbiased distribution analogously to Eq. (25) as

U(P|N,φSS) = Q(N,φSS)B(P|N,φSS)eC(N)PN/κ, (10)

where Q(N,φSS) = 〈v〉(N,φSS) is the normalisation con-
stant.

Upon substitution of ln Ω(V ) = ln(V) − ln(〈v〉) and
of Eq. (10) for U(x|V ), we write an expression for the
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arrows indicates their value at α = 0.

Edwards entropy as a function of volume and pressure

SB(V,P) = ln

(∫ P+δP

P
B(x|V )xN/κ dx

)

+ ln(V) + C(N)− ln(N !).

(11)

We fit the empirical cumulative distribution function
(c.d.f.) of B(P) with the generalised log-normal c.d.f. cor-
responding to Eq. (28) (see Fig. 5). We then numerically
evaluate the generalised Edwards entropy SB(P, V ) at
fixed volume, as shown in Fig. 6.

In the thermodynamic limit we find

sB(φSS) = 1 + c+
〈ln(P)〉B

κ
− ln(φSS)− fex(φHS), (12)

where c = C(N)/N , see Appendix F for details of the
derivation and further discussion.

In Fig. 6 we also show the predicted expectation value
for the pressure obtained via the ensemble average at
arbitrary inverse angoricity α,

〈P〉(ens)α =

∫ ∞

0

PB(P|V )PN/κe−αPV dP
∫ ∞

0

B(P|V )PN/κe−αPV dP
. (13)

IV. PACKING PREPARATION PROTOCOL

A. Sampling packings

The physical properties of granular packings may de-
pend strongly on the preparation protocol. This is il-
lustrated by the Lubachevsky-Stillinger algorithm (LSA)
procedure to prepare jammed packings of hard parti-
cles [90] by compression (or, equivalently, by ‘inflation’ of
the particles). If a monodisperse HS fluid is compressed
rapidly the LSA will generate a low volume-fraction dis-
ordered packing. However, for (very) slow compression
rates, LSA will produce dense crystals [90, 91].

In the present work, we study a fluid of polydisperse
spheres. We use a protocol related to a Stillinger-Weber
quench that maps each fluid state to a local minimum,
or “inherent structure”, connected by a path of steepest
descent [86, 92].

To prepare the polydisperse fluid, we draw N
particle radii {r}N from a Gaussian distribution
Normal(1, σHS) > 0, truncated at r = 0 (note that in
our application the standard deviation σHS is sufficiently
small that it is extremely improbable to ever sample a
negative radius). We set the box size to meet the target
packing fraction of the hard sphere fluid φHS and then
place the particles in a random valid initial hard spheres
configuration. The initial configuration is then evolved
by a MC simulation [93] consisting of single particle ran-
dom displacements and particle-particle swaps, and after
equilibration, new configurations are recorded at regular
intervals. We choose the length of these intervals such
that, on average, each particle diffuses over a distance
equal to the diameter of the largest particle. As long as
φHS is well below the volume fraction where the fluid un-
dergoes structural arrest, the allowed configurations of
the fluid can be sampled uniformly. Importantly, this
volume fraction is well below the random close packing

(φ
(RCP, 3D)
HS ≈ 0.64 and φ

(RCP, 2D)
HS ≈ 0.82 [79]).

Given these HS fluid configurations, we now switch
on the soft, repulsive interaction to generate over-
compressed jammed packings of the particles (see Fig. 2).
The particles are inflated with a WCA-like potential [94]

to reach the target soft packing fraction φSS > φ
(RCP)
HS >

φHS. The hard spheres are inflated proportional to their
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radius, so that the soft sphere radius is

rs =

(
φSS

φHS

)1/d

rh, (14)

where d is the dimensionality of the box. Clearly, this
procedure does not change the polydispersity of the sam-
ple.

B. Soft shells and minimisation

We define the WCA-like potential around a hard core
as follows: consider two spherical particles with hard core
distance rh and soft core contact distance rs = rh(1 +
θ), with θ = (φSS/φHS)1/d − 1. We can then write a
horizontally shifted hard-sphere plus WCA (HS-WCA)
potential as

vHS-WCA(r) =





∞ r ≤ rh,

4ε

[(
σ(rh)
r2 − r2

h

)12

−
(
σ(rh)
r2 − r2

h

)6
]

+ ε

rh < r < rs,

0 r ≥ rs
(15)

where σ(rh) = (2θ + θ2)r2
h/2

1/6 guarantees that the po-
tential goes to zero at rs. For computational convenience
(avoidance of square-root evaluations), the potential in
Eq. 15 differs from the WCA form in that the inter-
particle distance in the denominator of the WCA po-
tential has been replaced with a difference of squares.
Note that this implies that our potential resembles a 6-3
potential more than a 12-6 potential. For our purpose,
this difference is immaterial: we just need a short-ranged
repulsive potential that diverges at the hard-core diame-
ter and vanishes continuously at the soft-core diameter.
The functional form of this potential is very similar to
the HS-WCA potential used by Asenjo et al. [34], but
cheaper to compute. We note that this potential is a C1

type function, that is, its first derivative is continuous
but not differentiable and its second derivative is discon-
tinuous at rs. We take advantage of this property for the
identification of rattlers (non-jammed particles) in our
packings.

Numerically evaluating this potential, we match the
gradient and linearly continue the function vHS-WCA(r)
for r ≤ rh + ε, with ε > 0 an arbitrary small constant,
such that minimisation is still meaningful if overlaps do
occur.

The HS-WCA pair-potential was implemented using
cell-lists [95, 96] with periodic boundary conditions, guar-
anteeing O(N) time complexity to the energy and gra-
dient evaluations. Energy minimisations were performed
with the CG DESCENT algorithm [97–99] which, com-
pared to FIRE [96, 100], reduces the average number of
function evaluations for our system by a factor of 5, while
preserving many of its desirable properties.

V. BASIN VOLUME BY THERMODYNAMIC
INTEGRATION

The basin of attraction of a given minimum-energy
configuration is the collection of all points connected to
that minimum via a path of steepest descent [81, 101].
To measure the volume of a basin of attraction in the
PES, we use thermodynamic integration [102, 103] and
parallel tempering (PT) [93, 104–106].

The basic idea behind the method is that, but for the
sign, the logarithm of the basin volume can be viewed as
a dimensionless free energy. We cannot determine this
free energy directly. We now switch on an increasingly
harmonic potential that has its minimum at the mini-
mum of the basin. In the limit of very large coupling
constants (how large depends on the shape of the basin)
the boundaries of the basin no longer affect the free en-
ergy of the system, which has effectively been reduced
to a dN dimensional harmonic oscillator with known free
energy (for more details, see Appendix D). For zero cou-
pling constant, instead, the system is completely uncon-
strained and therefore in the state of interest. Thermo-
dynamic integration allows us to compute the free energy
difference between a reference state of known free energy
and the (unknown) free energy associated with the orig-
inal basin of attraction.

A closely related approach is often used to compute the
free energy of crystals of particles with a discontinuous
potential, such as hard spheres [102, 103, 107]. Details of
that method are summarised in the Appendix B, and the
extension of the technique to basin volume measurement
is described below. Details of the Hamiltonian PT are
discussed in Appendix C.

A. Free energy calculation for basin volumes

To measure the volume of a basin by thermodynamic
integration, we perform a walk inside the basin, that is,
we start the MCMC random walk from the minimum
energy configuration ri and we reject every move that
takes us outside the basin [34, 36, 83]. This procedure
can be cast in normal Monte Carlo language by defining
an effective potential energy function (oracle) UB(r|ri)
which is zero inside the basin and infinite outside. We
can then write the volume of the basin:

vi =

∫
dre−UB(r|ri). (16)

In order for the oracle to test whether a proposed config-
uration is inside or outside the basin, a full energy min-
imisation must be performed. The numerous potential
energy calls required for a full energy minimisation rep-
resent the major obstacle to the scalability of the method.

We view the negative log-basin-volume as a dimension-
less free energy Fi ≡ − ln(vi) [36] and compute it by
thermodynamic integration, as described in Appendix B.
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Therefore, we write, analogously to Eq. (B2):

− ln vi = Fhar(kmax)− 1

2

∫ kmax

0

dk 〈|r− ri|〉k , (17)

where ri denotes the coordinates of the i-th energy mini-
mum. Unless kmax, the maximum spring constant of the
harmonic reference system, is very large, a finite fraction
of the points belonging to the purely harmonic reference
system will be located in the region where UB =∞.

We can correct for this effect in our calculation of
Fhar(kmax) by computing the ratio of the partition func-
tions of a system with a harmonic spring constant kmax,
both with and without the basin potential energy func-
tion UB . This ratio is given by

R ≡

∫
dr exp[−V (r|ri, kmax)− UB(r|ri)]
∫

dr exp[−V (r|ri, kmax)]

, (18)

where V is the sum of the hard-core potential and
the harmonic potential with spring constant kmax, see
Eq. (B1). We note that R can be computed using a
‘static’ (i.e. non-Markov chain) Monte Carlo simulation,
sampling directly from the Boltzmann distribution of the
harmonic oscillator with spring constant kmax. Since the
integral in the denominator is known [see Eq. (D2)], we
write the dimensionless free energy of the harmonic ref-
erence state for basin i as

Fhar(kmax) = −dN
2

ln

(
2π

kmax

)
− lnR. (19)

We note that, in order to avoid a singularity in the
integrand, it is useful to perform the simulations fixing
the centre of mass. It follows that the same corrections
to the free energy as derived in Refs.[102, 103, 107] must
be applied: similarly to Eq. (B5), but with the additional
correction in Eq. (19), we write the basin volume as:

− ln vi = ∆F (CM) − ln (Vbox)

− (N − 1)d

2
ln

(
2π

kmax

)
− lnR,

(20)

where ∆F (CM) is the integral in Eq. (17), and the en-
semble averages have been computed with a constrained
centre of mass and it is evaluated as in Eq. (B13).

Figure 7 shows an example of the mean squared
displacement

〈
|r− r0|2

〉
k
, as a function of the spring

constant k, along with the approximate expression in
Eq. (B8) used to construct the change of variables in
Eq. (B13). The resulting integrand, after the variable
transform, is shown in the inset of Fig. 7.

VI. BASIN VOLUME DISTRIBUTIONS AND
DATA ANALYSIS

Once the volumes of multiple basins have been sam-
pled, these data can be used to compute the number of

0 100 200 300 400 500 600 700 800
k
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−

r 0
|2 〉

k
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t
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150
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FIG. 7: Average squared displacement
〈
|r− r0|2

〉
k

as a

function of the spring constant k (symbols). The dashed
line shows the expression in Eq. (B8). The data is mea-
sured for a packing of N = 32 spheres, with φHS = 0.5
and φSS = 0.7 via Hamiltonian PT. Inset: corresponding
integrand for the thermodynamic integration, resulting

from the change of variables in Eq. (B13).

distinct packings [34], and from that, the Edwards en-
tropy [4]. Furthermore we analyse the distribution of
pressures of the different energy minima at given volume.
In this work, we express pressure and volume in reduced
units P/P∗ and v/v∗ everywhere with v∗ ≡ (4π/3)〈r3

h〉
and P∗ ≡ ε/v∗ being the units of volume and pressure,
respectively.

A. Gibbs configurational entropy

Let us first consider the ‘Gibbs’ configurational en-
tropy, SG, defined by Asenjo et al. [34]:

SG = −
Ω∑

i=1

pi ln(pi)− ln(N !), (21)

where pi is the probability to sample packing i. For our
preparation protocol, packings are sampled according to
the volume of their basin of attraction, such that pi =
vi/V. Then Eq. (21) gives

SG = −
Ω∑

i=1

pi ln(vi) + ln(V)− ln(N !)

= 〈F 〉B + ln(V)− ln(N !).

(22)

The sum in Eq. (22) is the mean of the negative log-
basin volumes (dimensionless free energies), as computed
above, and weighted by the probabilities of preparing
the corresponding basins. Therefore, the entropy can be
obtained directly, and without approximation, from the
sampled mean basin dimensionless free energy.



10

From Eq. (22) we can also write the entropy per par-
ticle in the thermodynamic limit as

sG(φSS) = 1 + 〈f〉B + ln(φSS)− fex(φHS), (23)

where fex(φHS) is the excess free energy of the hard
spheres fluid. In deriving this results we used Stirling’s
approximation for large N and the fact that Vbox/v

∗ =
N/φSS.

B. Edwards configurational entropy

Edwards [4] suggested a Boltzmann-like entropy, where
S equals the logarithm of Ω, the total number of pack-
ings. Asenjo et al. [34] showed that, even for poly-
disperse particles, indistinguishability of macrostates re-
quires that

SB = ln(Ω)− ln(N !), (24)

The subtraction of ln(N !) is necessary to guarantee ex-
tensivity of the entropy. Unlike the Gibbs definition
of entropy, Eq. (24) makes the explicit assumption of
equiprobability of states.

For a direct computation of the number of packings
Ω, using Eq. (3), we need the average basin volume
〈v〉. Since our preparation protocol samples each mini-
mum with a probability proportional to the volume of its
basin of attraction, our samples of v are biased accord-
ingly. Therefore, to obtain the unbiased average basin
volume 〈v〉, the sampled basin volume distribution needs
to be unbiased [34, 35, 83]. The unbiasing method used
in the following work requires an analytical (or at least
numerically integrable) description of the biased basin
free energy distribution function. Different approaches
to modelling this distribution give rise to somewhat dif-
ferent analysis methods, which all yield consistent results.
Again, we stress that no such additional steps are needed
to compute the ‘Gibbs’ version of the configurational en-
tropy.

We distinguish between the biased, B(F |N,φSS) (as
sampled by the packing protocol), and the unbiased,
U(F |N,φSS), free energy distributions. Since the con-
figurations were sampled proportional to the volume of
their basin of attraction, we can compute the unbiased
distribution as

U(F |N,φSS) = Q(N,φSS)B(F |N,φSS)eF (25)

where Q(N,φSS) is the normalisation constant

Q(N,φSS) =

[∫ ∞

Fmin

dFB(F |N,φSS)eF
]−1

= 〈v〉(N,φSS).

(26)
From Eq. (25), unbiasing of the raw free energy distri-
bution seems straightforward, however Asenjo at al. [34]
noted that the most probable basins are about O(103)
more probable than the small ones. Upon unbiasing, this

factor is multiplied by a factor of about e−20, hence they
observe that small basins are much more numerous than
large ones and grossly under-sampled.

To overcome this problem, one can fit the biased mea-
sured free energy distribution B(F |N,φSS) and perform
the unbiasing via Eq. (26) on the best fitting distribu-
tion. B(F |N,φSS) must be bounded, hence it should de-
cay with a functional form exp(−F ν) where ν > 1.

Before performing the fit we remove outliers from the
free energy distribution following the distance-based out-
lier removal method introduced by Knorr and Ng [108].
This is a form of clustering for which we choose to keep
only those points for which at least half of the remain-
ing data set is within 3σ from the point, where σ is the
standard deviation computed for the raw data set. This
procedure typically results in the exclusion of one or two
points and it is essential for a successful fit to a gener-
alised Gaussian model.

1. Generalised Gaussian

Assuming that U(F |N,φSS) is unimodal, which has
been verified for very small systems [36], one can fit
the raw distribution B(F |N,φSS) with a three-parameter
generalised normal distribution

p(F |F , σ, ζ) ≡ ζ

2σΓ(1/ζ)
exp

[
−
( |F − F |

σ

)ζ]
, (27)

where Γ(x) is the gamma function, σ is the scale parame-
ter, ζ is the shape parameter and F is the mean (free en-
ergy) with variance σ2Γ(3/ζ)/Γ(1/ζ). In the limit ζ → 2
we recover the Gaussian distribution with standard devi-
ation σ. In practice it appears to be most stable to fit the
empirical biased cumulative distribution function, rather
than the histogram shape [34]. Alternatively, we also
tested fitting to the observed p.d.f. with the maximum-
likelihood method, obtaining consistent, but more scat-
tered, results (see also Sec. III).

2. Kernel density estimate

To relax the assumption that the empirical distribu-
tions can be fitted by a generalised Gaussian, one can
also describe the distributions by kernel density estima-
tion [109, 110]. Bandwidth selection is then done using
Silverman’s rule of thumb as the initial guess for inte-
grated squared error cross-validation [111]. The numer-
ical integration step is performed, as for the generalised
Gaussian description, via Eq. (26).

C. Distribution of pressures

In Sec. III B we have established a link between the
pressure of a packing and the volume of its basin of at-
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traction. In order to compute the entropy as a function
of volume and pressure it is necessary to unbias the dis-
tribution of pressures with respect to the sampling bias
exp(−F ), analogous to the previous section. We choose
to describe the distribution of pressures P using the gen-
eralised log-normal distribution [112]

p(P|ln(P), σ, ζ) =
ζ/P

2(ζ+1)/ζσΓ(1/ζ)

exp


−1

2

∣∣∣∣∣
ln(P)− ln(P)

σ

∣∣∣∣∣

ζ

 ,

(28)

with the first term on the r.h.s. being the normalisation
constant and the remaining notation analogous to that
of Eq. (27). For ζ = 2 this distribution reduces to the
log-normal distribution.

VII. CONCLUSIONS

The study of a statistical mechanics of granular materi-
als has been complicated by the impossibility of directly
computing fundamental thermodynamic quantities. In
the present paper we have shown that configurational
entropies of three-dimensional packings can, in fact, be
computed.

We have presented a method for the direct enumera-
tion of the mechanically stable states of systems consist-
ing of up to 128 frictionless soft three-dimensional spheres
and we have shown that a definition of extensive entropy
is possible, in line with the results for two dimensional
systems reported by Asenjo et al. [34], with very minor
differences in our observations. The study of 3D pack-
ings is computationally demanding: the computational
time required for each packing ranged between 10 and
104 cpu hours, depending on system size. The present
study therefore required substantial algorithmic optimi-
sation.

We find that there is an approximately linear relation-
ship between the logarithm of the pressure of a mechan-
ically stable configuration and the logarithm of the vol-
ume of its basin of attraction.

The unexpected power law relationship between pres-
sure and basin volume provides a way to extend our ap-
proach to the generalised Edwards ensemble. We can
analytically unbias the observed distribution of pressures
and compute the entropy as a function of pressure at
a given volume. Hence we have obtained consistent ex-
pressions for the entropy in the thermodynamic limit.
Knowledge of this distribution enables the first direct
computation of angoricity.

Tackling the study of granular materials from the en-
ergy landscapes point of view is rather advantageous, al-
though this does not come without burdens. This sort
of approach is limited to soft frictionless particles, and
we expect it to be reliable only at φ > φJ when the
system is at least slightly over-compressed. Other theo-
retical approaches are useful in more limiting situations,

see for instance the discussion of the stress ensemble in
the limit φ → φJ by Henkes and Chakraborty [26, 27]
and the work on the force network ensemble for systems
of almost hard grains [31–33].
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Appendix A: Basin volume method summary

In summary, to count the number of ways spheres can
pack into a given volume, we use the mean basin volume
method outlined in Sec. II. We perform the following sim-
ulations and analysis steps to obtain the required results:

1. Obtain a number of different snapshots of an equili-
brated hard sphere fluid at the desired volume frac-
tion φHS, as described in Sec. IV A. This procedure
fixes the number of measured basin volumes.

2. Over-compress the sphere configuration by adding
a soft shell. This compression yields, upon energy
minimisation, a jammed packing with soft volume
fraction φSS > φHS.

3. Estimate the maximum spring constant for the
PT simulations, kmax in Eq. (17), such that ρ in
Eq. (18) reaches a value between 0.85 and 0.9.
This is done by direct sampling and also gives the
value of the average squared displacement for kmax,〈
|r− r0|2

〉
kmax

.

4. Obtain a preliminary estimate of the average
squared displacement without harmonic tethering,〈
|r− r0|2

〉
0
, by performing a MCMC walk in the

basin. Use this result, with the estimate of kmax

from the previous step, to determine the spring con-
stants k for the PT simulation, using Eqs. (B11)
and (B14).

5. Perform a PT simulation to sample
〈
|r− r0|2

〉
k
, as

described in Sec. C.

6. Compute the volume in Eq. (20) for each basin and
analyse the distributions for all basins, at fixed vol-
ume fraction and number of particles, as discussed
in Sec. VI. This makes use of the total accessible
volume, computed in Appendix E.



12

Section III shows examples of the type of results that
can be obtained. Evaluation and minimisation of poten-
tial energy functions was performed with the pele [96]
and PyCG DESCENT [99] software packages. Monte
Carlo simulations were performed with the mcpele pack-
age [93].

Appendix B: Free energy calculation for solids

To compute the free energy of a system with discontin-
uous potential energy function (e.g., hard disks or hard
spheres), we construct a reversible path to the corre-
sponding Einstein solid (see e.g. [107]). The harmonic
potential with spring constant k is switched on while
maintaining the hard core interactions intact:

V (r|r0, k) = VHS(r) + kVhar(r|r0)

= VHS(r) +
1

2
k|r− r0|2,

(B1)

where r0 are the equilibrium coordinates of the Einstein
crystal and VHS(r) denotes the hard core interactions.
We can then compute the free energy difference between
the Einstein crystal and the hard core system by evalu-
ating the integral:

FHS = Fhar(kmax)−
∫ kmax

0

dk

〈
∂V (r|r0, k)

∂k

〉

k

. (B2)

As discussed in Appendix D, we take the centre of mass
to be fixed to avoid numerical issues in the limit k → 0.
For a system with fixed centre of mass, we write the free
energy difference between the target and the reference
state as

∆F (CM) ≡ F (CM) − F (CM)
har . (B3)

From the partition function of the Einstein crystal with
fixed centre of mass, Eq. (D7), and for the unconstrained
crystal, Eq. (D11), we can rewrite Eq. (B3) and rearrange
it for the free energy of the unconstrained crystal:

F = ∆F (CM) + ln (P(rCM = 0))

+
d

2
ln

(
2π
∑
i µi

kmax

)
− Nd

2
ln

(
2π

kmax

)
,

(B4)

where the last term is Fhar and the second and third
terms on the right hand side are the CM corrections for
the unconstrained and the constrained solid, respectively.
For a system with unit cell identical to the simulation box
(with periodic boundary conditions), we have P(rCM =
0) = 1/Vbox. Assuming that all particles have unit mass
we can rewrite Eq. (B4) as

F = ∆F (CM) − ln (Vbox)− (N − 1)d

2
ln

(
2π

kmax

)
. (B5)

We are only left with ∆F (CM), which can be found by
evaluating the integral in Eq. (B2). In order to do so, we

would like the integrand to be a well behaved function,
possibly flat, permitting Gauss-Lobatto (GL) quadrature
[113]. We transform the integration variable so that

∆F (CM) =

∫ kmax

0

dk

g(k)
g(k)

1

2

〈
|r− r0|2

〉(CM)

k

=

∫ G−1(kmax)

G−1(0)

d
[
G−1(k)

]
g(k)

1

2

〈
|r− r0|2

〉(CM)

k
,

(B6)
where g(k) is some function of k and G−1(k) is the prim-
itive of the function 1/g(k).

To choose an appropriate g(k), we note that in
Eq. (D8) for very large k the mean squared displacement
for the solid is

〈|r− r0|2〉kmax
=

(N − 1)d

kmax
. (B7)

For k other than kmax, we expect the mean squared dis-
placement to depend on some effective spring constant.
Hence we write

〈
|r− r0|2

〉
k
≈ (N − 1)d

(k + ξ)
, (B8)

such that the mean squared displacement at k = 0 is

〈
|r− r0|2

〉
k=0
≈ (N − 1)d

ξ
, (B9)

from which we find ξ = (N − 1)d/〈|r − r0|2〉k=0 [note
that we can self consistently replace this definition for ξ
in Eq. (B8) to obtain an approximation for the mean
squared displacement at arbitrary k]. We would like
the integrand g(k)〈|r− r0|2〉k in Eq. (B6) to be roughly
constant. Given the considerations above we choose
g(k) ≈ k + ξ. One can easily verify that the integrand
is now approximately constant. We can then rewrite the
integral in Eq. (B6) as

∆F (CM) =

∫ ln(kmax+ξ)

ln(ξ)

{
(k + ξ)

1

2

〈
|r− r0|2

〉(CM)

k

d [ln(k + ξ)]

}
.

(B10)
Finally, to integrate Eq. (B10) by GL quadrature, we
require a variable, t, such that the integral upper and
lower bounds are [−1, 1]:

t =
2 ln (1 + k/ξ)− 1

ln (1 + kmax/ξ)
(B11)

with differential

dt =
2

ln (1 + kmax/ξ)
d [ln (1 + k/ξ)] . (B12)

Therefore we rewrite Eq. (B10) as a function of t:

∆F (CM) =

∫ 1

−1

{
dt ln

(
1 +

kmax

ξ

)

[k(t) + ξ]
1

4

〈
|r− r0|2

〉(CM)

k

}
,

(B13)
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where k(t) can be found by rearranging Eq. (B11). An
example of the variable transform is shown in Fig. 7.

It is straightforward to perform GL quadrature for a
general number of abscissas n ≥ 2 [113], because

∫ 1

−1

dtf(t) = w1f(−1) +

n−1∑

i=2

wif(ti) + wnf(1), (B14)

where wi are the weights and ti are the abscissas. The
abscissas different from −1, 1 are the n − 2 roots of
dPn−1(t)/ dt, with Pn−1 a Legendre polynomial. We
evaluate this sum numerically using Numpy’s Legendre
module [114]. The weights wi can also be evaluated nu-
merically for general n ≥ 2, since they are related to
Pn−1 evaluated at ti [113]. For all results in this work,
we choose n = 16 abscissas.

Appendix C: Sampling the integrand: Hamiltonian
Parallel Tempering

To compute the integral in Eq. (B13), we need to mea-
sure the integrand for different values of k, as given by
Eq. (B11). Equilibration of the corresponding simula-
tions can be accelerated using extensions of the parallel
tempering technique, where replicas differ in chemical po-
tential [115] or in the potential energy function [116, 117].

The Parallel-tempering acceptance rule for a swap of
configurations between replicas with different Hamiltoni-
ans follows from the condition of detailed balance:

acc[(ri, Vi), (rj , Vj)→ (rj , Vi), (ri, Vj)]

acc[(ri, Vj), (rj , Vi)→ (ri, Vi), (rj , Vj)]

=
exp{−β[Vi(rj) + Vj(ri)]}
exp{−β[Vi(ri) + Vj(rj)]}

= exp {−β [(Vi(rj) + Vj(ri))− (Vi(ri) + Vj(rj))]} ,
(C1)

where acc[· → ·] denotes the swap acceptance probability.
For the particular case of replicas coupled to a reference
state r0 by a harmonic potential with different coupling
strengths ki, we find the swap acceptance rule

acc[(ri, Vi), (rj , Vj)→ (rj , Vi), (ri, Vj)]

= min

{
1, exp[

β

2

[
(kj − ki)(|rj − r0|2 − |ri − r0|2)

]}
.

(C2)
To check whether the replicas are well equilibrated, we
consider the correlations in the “time series” of |r− r0|k
vs number of Monte Carlo steps for each replica.

Appendix D: Einstein crystal

The harmonic potential is defined as follows:

V (r|r0, k) =
k

2
|r− r0|2 =

k

2

N∑

i

|ri − ri,0|2 (D1)

where r0 denotes the equilibrium position, the index i
denotes the i-th of N particles, each with d degrees of
freedom, and we have assumed that the spring constant k
is the same for all directions of motion. We can compute
the mean squared particle displacement for a harmonic
oscillator in the canonical ensemble analytically. We start
with the partition function:

ZNV T =

(
2π

βk

) dN
2

. (D2)

We consider the free energy for the system F =
−β−1 lnZ and observe that

(
∂F (k)

∂k

)

NV T

=− β−1 ∂

∂k
lnZ = −(βZ)−1 ∂Z

∂k
lnZ

=

∫ ∞

−∞
drdN

1

2
|r− r0|2e−βk|r−r0|

2/2

∫ ∞

−∞
drdNe−βk|r−r0|

2/2

=
1

2
〈|r− r0|2〉,

(D3)
hence we can compute the mean squared distance for a
dN -dimensional harmonic oscillator

〈|r− r0|2〉 = 2

(
∂F (k)

∂k

)

NV T

=
dN

βk
. (D4)

For thermodynamic integration we are interested in the
limit k → 0. In this limit there is no penalty for moving
the system as whole, hence the mean squared displace-
ment becomes of the order of L2, where L is the box side
length. This result means that the function 〈|r − r0|2〉k
will be strongly peaked at k = 0, thus making its integra-
tion difficult. For this reason, we would like this function
to vary slowly with k. This behaviour can be achieved by
fixing the centre of mass of the system, so that drifting
as a whole is forbidden [107].

The centre of mass is defined as:

rCM =
∑

i

µiri, where µi =
mi∑
imi

. (D5)

When computing the potential energy for the harmonic
spring, we must apply the following correction:

|r(C) − r
(C)
0 |2 =

N∑

i

|r(U)
i − r

(U)
i,0 −∆r

(CM)
i |2, (D6)

where i is the index for the i-th particle and C and
U denote the corrected and the uncorrected coordinates
respectively. The configurational partition function re-
quires a correction, hence we define the corrected parti-
tion function ZCM with centre of mass fixed at rCM = 0
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and note that:

ZCM =

∫ ∞

−∞
drdNe−βk|r−r0|

2/2δ

(∑

i

µiri

)

=

(
βk

2π
∑
i µ

2
i

)d/2(
2π

βk

)Nd/2
=

(
βk

2π
∑
i µ

2
i

)d/2
Z,

(D7)
where solution of the integral was obtained after a fair
amount of algebra by rewriting the Dirac delta as the
Fourier sum δ(x) = 1/(2π3)

∫
dk exp(ikx) [103, 118].

Using Eq. (D4) we find the mean squared displacement
for the constrained Harmonic oscillator:

〈|r− r0|2〉CM = 2

(
∂FCM(k)

∂k

)

NV T

=
(N − 1)d

βk
. (D8)

This result can be interpreted as the mean squared dis-
placement of the (N − 1)d harmonic oscillator: fixing
the centre of mass is equivalent to fixing one particle
and integrating Eq. (D7) over the remaining degrees of
freedom by doing the change of variables r′i = ri − rN
(conveniently with unit Jacobian) if the N -th particle is
fixed.

To conclude, let us relabel the potential as

V (r|r0, k, λ) = (1− λ)Φ(r) +
1

2
λk|r− r0|2, (D9)

where Φ(r) is an arbitrary field, it could be, for instance,
an additional inter-atomic interaction independent of k
or, even the zero field. Let us consider the limit λ → 0:
from the ratio of the partition functions for the con-
strained and unconstrained centre of mass, we find:

ZCM(λ = 0)

Z(λ = 0)
=

∫ ∞

−∞
drdNe−βΦ(r)δ(

∑

i

µiri)

∫ ∞

−∞
drdNe−βΦ(r)

=

〈
δ

(∑

i

µiri

)〉
= P(rCM = 0),

(D10)

where δ is the Dirac delta function and P(rCM = 0) is
the probability density of the centre of mass being at 0
when λ = 0. Hence we write:

ZCM(λ = 0) = Z(λ = 0)P(rCM = 0) (D11)

where P depends on the details of the system. If the
equilibrium structure is invariant to translations, a con-
dition that holds true in a system with periodic boundary
conditions, then we can take P = 1/Vcell, where Vcell is
the smallest repeating unit in the periodic system (unit
cell). This is at worst Vcell = Vbox, while for a fcc Ein-
stein crystal it would correspond to the Wigner-Seitz cell
Vcell = Vbox/N [102].

Appendix E: Polydisperse hard-sphere fluid and
total accessible volume

We can write the total accessible volume as

− lnV(N,φ) = −N lnVbox +Nfex(φ), (E1)

where φ is the volume fraction and fex(φ) is the excess
free energy, which is the difference in free energy between
the hard sphere fluid and the ideal gas. We can compute
the excess free energy by thermodynamic integration
[107]. We start by noting that ∂F/∂(1/Vbox) = V 2

boxP
and define the number density ρ = N/Vbox, hence we
write

fex(ρ) =
F (ρ)

N
− F (id)(ρ)

N
=

∫ ρ

0

dρ′
(
P (ρ′)− ρ′

ρ′2

)
.

(E2)
By noting that the volume fraction of a polydisperse sys-
tem is φ = vdρ〈σd〉 [119], where vd is the volume of the
d-dimensional unit sphere and 〈σd〉 is the d-th moment
of the distribution of diameters, we can change variable
and write

fex(φ) =
F (φ)

N
− F (id)(φ)

N
=

∫ φ

0

dφ′
(
Z(φ′)− 1

φ′

)
,

(E3)
where Z(φ) = P/ρ is the compressibility factor (we set

β = 1 everywhere).
Analytical approximations for the compressibility fac-

tors for the two and three-dimensional polydisperse hard
sphere fluid have been proposed. For the hard disk fluid
we use the Santos-Yuste-Haro (eSYH) equation of state
[119]

Zpoly
eSHY(φ) =

〈σ〉2/〈σ2〉
1− 2φ+ (2φ0 − 1)φ2/φ2

0

+
1

1− φ

(
1− 〈σ〉

2

〈σ2〉

)
,

(E4)

where φ0 = π/
√

12 is the crystalline close packing frac-
tion.

For three-dimensional fluids, depending on the volume
fraction, we choose two different equations of state. For
volume fraction φ > 0.5, Santos et al. [119] suggest
the following equation of state based on the Carnahan-
Startling (CS) equation of state for the monodisperse
fluid:

Zpoly
eCS (φ) = 1+

[
1 + φ+ φ2 − φ3

(1− φ)3
− 1

]

× 〈σ2〉
2〈σ3〉2

(
〈σ2〉2 + 〈σ〉〈σ3〉

)

+
φ

1− φ

[
1− 〈σ

2〉
〈σ3〉

2 (
2〈σ2〉2 − 〈σ〉〈σ3〉

)
]
.

(E5)
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For volume fractions φ ≤ 0.5 the eCSK equation
of state should be preferred (based on the Carnahan-
Starling-Kolafa equation of state for the monodisperse
fluid)

Zpoly
eCSK(φ) = Zpoly

eCS (φ)

+
φ3(1− 2φ)

(1− φ)3

〈σ2〉
6〈σ3〉2

(
〈σ2〉2 + 〈σ〉〈σ3〉

)
.

(E6)

The excess free energy can thus be obtained by substi-
tuting one of Eq. (E4) to (E6) in the integral of Eq. (E3),
which can then be evaluated numerically for the desired
volume fraction.

Appendix F: Thermodynamic limit of the
generalised configurational entropy

From the fit to the empirical c.d.f. of B(P) with the
generalised log-normal cumulative distribution function,
corresponding to Eq. (28), we obtain the set of param-
eters µ, σ, and ζ. From the inset in Fig. 5, we observe
that the mean µ and scale parameter σ scale linearly with
1/N . In particular we note that σ seems to approach
zero in the thermodynamic limit, as expected. Further-
more we note that the shape parameter ζ seems to be
approximately independent of 1/N and to have a value
of approximately 2 for all system sizes, thus suggesting
that the distributions of pressures are consistent with a
log-normal distribution.

Therefore, under the reasonable assumption that the
biased distribution of pressures B(x|V ) is log-normal, we
write the integrand in Eq. (11) as

I(x;µ, σ,N) ≡ B(x|V )xN/κ =

1

x
√

2πσ2
exp

(
− (ln(x)− µ)2

2σ2
+
N

κ
ln(x)

)
,

(F1)

which is a unimodal distribution with mode xM =
exp(Nσ2/κ+ µ− σ2). The distribution is such that

∫ ∞

0

I(x;µ, σ,N) dx = exp

[
σ2N2

2κ2
+
Nµ

κ

]
. (F2)

Since σ ∝ 1/N , for large N we have
∫∞

0
I(x;µ, σ,N �

κ) dx = ε exp(Nµ/κ), with ε some constant. Thus in
the thermodynamic limit (N,V, 1/σ →∞) we obtain the
expression for the Gibbs configurational entropy per par-
ticle, see Eq. (12).

Consider Eq. (6) which we rewrite in terms of the di-
mensionless free energy per particle

f(P|φSS) ≡ − 1

N
ln(v) = c+

1

κ
ln(P), (F3)

where c = C(N)/N ; to test the consistency of the results
thus obtained we compare the expression for Edwards
configurational entropy, see Eq. (12), to the Gibbs con-
figurational entropy per particle, see Eq. (23). We thus
find that

〈f〉B = c+
1

κ
〈ln(P)〉B, (F4)

which is consistent with Eq. (F3) in the thermodynamic
limit. We have thus correctly recovered the power law
relation between pressure and basin volume, Eq. (6).
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