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Abstract

We have previously deleted both endogenous copies of the clathrin heavy-chain gene in the chicken pre B-cell-line DT40
and replaced them with clathrin under the control of a tetracycline-regulatable promoter (Tet-Off). The originally derived
cell-line DKO-S underwent apoptosis when clathrin expression was repressed. We have also described a cell-line DKO-R
derived from DKO-S cells that was less sensitive to clathrin-depletion. Here we show that the restriction of transferrin
uptake, resulting in iron deprivation, is responsible for the lethal consequence of clathrin-depletion. We further show that
the DKO-R cells have up-regulated an anti-apoptotic survival pathway based on the chemokine SDF-1 and its receptor
CXCR4. Our work clarifies several puzzling features of clathrin-depleted DT40 cells and reveals an example of how SDF-1/
CXCR4 signalling can abrogate pro-apoptotic pathways and increase cell survival. We propose that the phenomenon
described here has implications for the therapeutic approach to a variety of cancers.
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Introduction

Clathrin plays a fundamental role in membrane trafficking

pathways in eukaryotic cells. It is responsible for receptor-

mediated endocytosis of selected molecules from the plasma

membrane and the transport of some lysosomal enzymes from the

trans-Golgi network to the lysosome [1]. The chicken pre-B cell-

line DT40 was originally isolated as an avain-leukosis virus-derived

chicken B-lymphocyte cell-line [2]. It exhibits an extraordinarily

high rate of homologous recombination, and this property greatly

facilitates gene targeting [3]. The DT40 cell-line has thus become

established as an important tool for the study of a wide range of

cell-biological phenomena [4]. To understand the function of

clathrin in more detail, we inactivated both endogenous copies of

the clathrin gene in DT40 and replaced them with clathrin under

the control of the Tet-Off inducible promoter. In the presence of

doxycycline, clathrin expression was strongly inhibited and this

allowed the functional consequences of clathrin-depletion to be

investigated in a vertebrate cell context. The originally generated

cell-line conditionally deficient in clathrin expression was desig-

nated DKO-S (double knockout cells, sensitive to clathrin-

depletion). In this cell-line, we found that clathrin-depletion

induced apoptosis. We also described a variant derived from

DKO-S that did not die in the absence of clathrin. We designated

this cell-line DKO-R (double knockout cells resistant to clathrin-

depletion) [5]. We have used both of these DKO cell-lines to study

clathrin function [5,6,7,8,9].

The apoptotic response of clathrin-depleted DT40 cells is

particularly curious. Clathrin expression has been dramatically

reduced in other vertebrate cell-lines such as HeLa cells without

the activation of apoptosis, or indeed without inducing any form of

cell death [10]. Why then does clathrin-depletion in DT40 cells

differ? The distinct phenotype of the DKO-R variant raises further

questions. What adaptations has this variant acquired to overcome

the apoptotic response to clathrin-depletion shown by its DKO-S

parent? Here we show that iron deficiency is a major apoptotic

signal stemming from clathrin depletion. We furthershow that the

resistant cell-line DKO-R has increased survival under these

conditions due to endogenous expression of the chemokine SDF-1

and the autocrine stimulation of a survival pathway based on its

receptor CXCR-4. We show that this surprisingly small change

can explain all the known phenotypic differences between DKO-S

and DKO-R cells.

Materials and Methods

Cell culture and materials
Except where stated, all reagents were purchased from Sigma,

Poole, UK. All cell-lines were maintained in RPMI 1640 media,

0.2% (wt/vol) Na2HCO3, 1% (wt/vol) L-glutamine with 10%

(vol/vol) heat-treated foetal calf serum (FCS) and between 0 and

2% (vol/vol) heat-treated chicken serum as indicated in the text.

Serum and media were purchased from Gibco, Paisley, UK.

Cells were maintained at 37uC and with 5% CO2. Some
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batches of bovine serum contain the protease dipeptidylpepti-

dase IV (CD26) that destroys SDF-1 activity [11]. To avoid this

complication for experiments using SDF-1, the media was

supplemented with the selective CD26 inhibitor diprotin A

(0.1 mM) [12]. Cell numbers were counted with a haemocy-

tometer after Trypan Blue staining. Fully iron-saturated chicken

transferrin (conalbumin from Sigma) was produced by incubat-

ing 10 mgs of protein in 1 ml of 0.1 mg/ml ferric ammonium

citrate in phosphate buffered saline (PBS) pH 7.2 for 3 hours at

room temperature, then dialysing the protein overnight at 4uC
against PBS [13]. Iron-saturated chicken transferrin was stored

in 0.1 ml aliquots at 220uC until use. Apotransferrin was

produced by dialysing chicken transferrin against two overnight

changes of 0.1 M sodium citrate, 0.1 M sodium acetate buffer

pH 4.5 at 4uC, followed by an overnight dialysis at 4uC against

PBS [14]. Aliquots (0.1 ml) were stored at 220uC until used.

Electrophoresis and western blotting
Cells were lysed in PBS with 0.1% Triton X-100 (vol/vol) and

16 protease inhibitor cocktail (Boehringer Ingelheim, Bracknell,

UK). Total protein was determined using the BCA protein assay

kit (Pierce, Cramlington, UK) with bovine serum albumin as

standard. Protein (about 50–80 mg cell extract; about 1–2 mg

partially purified chicken transferrin) was separated by sodium

dodecyl sulphate (SDS) polyacrylamide gel electrophoresis in gels

of 8% acrylamide [15]. For western blots, proteins in the gel were

transferred to Hybond C membrane (Amersham Biosciences,

Chalfont St.Giles, UK). Blots were blocked by incubation for

1 hour in PBS, 0.1% Triton X-100 and 5% powdered milk, then

incubated overnight at 4uC with primary antibody (typically 0.1–

1 mg/ml) diluted into PBS, 0.1% (vol/vol) Triton X100 and 5%

(vol/vol) FCS. Specific signal was detected using horseradish

peroxidase-labelled second antibodies and enhanced chemilumi-

nescence (Pierce). To confirm protein loading, nitrocellulose was

stained with 0.1% amido black in 10% acetic acid, 45% methanol

and destained with 10% acetic acid, 45% methanol. Clathrin was

detected using mouse monoclonal antibody TD1 [16]. Chicken

transferrin was detected using mouse monoclonal antibodies [17].

Transferrin receptor was detected using mouse monoclonal

antibody H68.4 (Invitrogen).

Apoptosis assays
Cells with apoptotic bodies were counted on a fluorescent

microscope following staining with 1 mg/ml Hoechst 33342 [5].

Caspase 3 activity was determined as described [18]. Cells were

centrifuged at 12,000 rpm for 8 minutes, washed twice in PBS and

lysed in 20 mM HEPES pH 7.4, 10 mM KCl, 250 mM sucrose,

1.5 mm MgCl2, 0.5 mM EDTA, 0.5 mM EGTA and protease

inhibitor cocktail (Roche, Welwyn Garden City, UK). Samples

were incubated with 14 mM acetyl-DEVD-AMC substrate for

40 minutes and fluorescence at 450 nm determined. The rate of

reaction was linear over this time period. For inhibitor studies, a

1 mM stock of inhibitor (AMD3100, CCX771 or CCX704) in

DMSO was diluted into at final concentration for the assays of

0.5 mM. The same volume of DMSO used in the experimental

samples was added to control cells.

Partial purification protocols
Saturated ammonium sulphate solution was added slowly to

30 ml heat–treated chicken serum at 4uC. Precipitates were

redisolved in 3 ml PBS (to give a nominally 106 stock), dialysed

overnight against PBS and sterilised by filtration through a 0.45

micron filter [19]. Separate fractions corresponding to proteins

precipitated by 0–40%, 40–80% and 80–100% saturated ammo-

nium sulphate were prepared and frozen in aliquots at 220uC
until used. DKO-S cells were seeded into the wells of a 24 well

plate at 16104/ml in 2 ml in medium lacking chicken serum and

supplemented with 0.1 mg/ml doxycycline to repress clathrin

expression. Wells were supplemented with 0.01 ml sterile ammo-

nium sulphate fractions and cell numbers counted after 3 days in

those wells showing evidence of cell growth. The ammonium

sulphate fraction promoting the strongest growth was loaded onto

a Sephadex G-200 column maintained at 4uC and pre-calibrated

with high and low molecular weight standards kit (Pharmacia,

Sandwich, UK). Elution flow was maintained at 1 ml/min with

PBS, collecting 3 ml fractions. Each fraction from the column was

filter sterilized and 0.1 ml added to the DKO-S cell bioassay as

described above. Positive fractions were pooled, concentrated by

ultrafiltration to a final volume of 5 ml and dialysed against

50 mM Tris buffer pH 7.5. The sample was applied to a Mono Q

HR 5/5 anion exchange column at room temperature and eluted

by Fast-Protein Liquid Chromatography (FPLC) with a linear

gradient of 0 21 M NaCl in 50 mM Tris buffer pH 7.5. Aliquots

(0.1 ml) from each fraction were examined by SDS polyacryl-

amide gel electrophoresis and stained with Coomassie Briliant

Blue R-250 (Bio Rad, Hemel Hempstead, UK). The remaining

samples of each column fraction were dialysed against PBS, filter

sterilised and 0.1 ml aliquots added to the DKO-S bioassay.

Mass spectrometry of gel excised fractions
Coomassie-stained proteins within the gel pieces were reduced,

carboxyamidomethylated, and digested to peptides using trypsin

on a MassPrepStation (Waters, Manchester, UK). The resulting

peptides were applied to a LC-MS/MS column. For LC-MS/MS,

the reverse phase liquid chromatographic separation of peptides

was achieved with a PepMap C18 reverse phase, 75 mm i.d., 15-

cm column (LC Packings, Amsterdam) on a capillary LC system

(Waters) attached to QTof2 (Waters) mass spectrometer or the

same column attached to a Dionex Dual Gradient LC system

attached to a QSTAR XL (Applied Biosystems, Framingham,

MA, USA). The MS/MS fragmentation data achieved was used to

search the National Center for Biotechnology Information

database using the MASCOT search engine (http://www.

matrixscience.com).

Microarray analysis
We used the 13,209 EST chicken microarray designed by the

collaboration between Fred Hutcheson Cancer Research, Uni-

versity of Delaware and ARK Genomics (Roslin Institute) [20].

Full details are available from ArrayExpress (‘ARK-Genomics G.

gallus 13 K v 4.0’, accession number: A-MEXP-831). The

contents for the array were selected from a clustering of all

chicken EST information available in 2003. A single representa-

tive of each cluster was selected and supplemented with a range of

singleton expressed sequence tags (ESTs) that targeted known

genes and some that were known to show differential expression in

immune tissues. This array gives a broad coverage of genes from

the chicken transcriptome being sourced from over 39 different

EST libraries, representing 20 different adult tissues and stages of

developmental growth.

Detailed protocols for the microarray analysis are available from

the website www.ark-genomics.org (RNA extraction, RNA QC,

Amino-allyl labelling, dye coupling, fluorescent labelling QC and

hybridisation). Total RNA was prepared from DKO-S and DKO-

R cell-lines using two stages, initial extraction was with Trizol

(Invitrogen, Paisley, UK) followed by RNAeasy (Qiagen, Crawley,

UK). The purified RNAs were quality tested using an Agilent

Bioanalyser 2100 (Agilent UK) with all samples having a RIN
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number in excess of 7.0 which we have found to be acceptable for

microarray analysis [20]. The total RNA (20 mg per sample) was

tagged with amino-allyl UTP using the Fairplay II kit (Stratagene,

UK) according to the manufacturers protocol with the exception

that the tagged cDNA was precipitated overnight at 220uC. The

precipitate was resuspended in coupling buffer (0.1 M carbonate

buffer pH 9.0) and the appropriate Cy3 or Cy5 mono-reactive dye

added (GE Healthcare, UK) as required by the experiment. Two

fluorescent labels were prepared from each total RNA sample and

labelled with different dyes. Samples from DKO-S and DKO-R

cells were randomly paired for hybridisation analysis with

reciprocal dye combinations for each pair. Hybridisations and

washes were carried out overnight on GenTac Hybridisation

stations (Genomics Solutions, Huntingdon, UK) as outlined in the

protocol. The dried slides were scanned in a Scanarray 5000 XL

scanner (GSI Lumonics) at constant laser power of 80% and 78%

for Cy3 and Cy5 respectively.

Data was extracted from the slide using BlueFuse software

(BlueGnome, Cambridge, UK). Features with poor confidence

information (confidence ,0.30, flagged D and E) were eliminated

from the analysis. M v A plots [where M = log2 (Cy5/Cy3) and

A = 1/2*[log2(Cy5) + log2(Cy3)] of the data for each slide (data not

shown) were suitably linear to require only a simple global

normalisation of the data. Analysis was performed using Gene-

Spring software (Agilent UK) on the fused data (mean of replicate

values for features on individual slides) from the BlueFuse

program. The data was filtered with a probability of 5% with a

false discovery rate (FDR) [21] of 15%. The resulting list of

differentially expressed genes was then re-annotated using the EST

sequence from the feature to update the information available on

each cDNA target on the array.

The microarray data described in this manuscript has been

deposited with the Gene Expression Omnibus (GEO) data

repository under the accession number GSE57328

RT-PCR
Total RNA was isolated with the ‘Absolutely RNA’ kit from

Stratagene, following the manufacturer’s instructions. RNA (1 mg)

was used for cDNA synthesis using an Moloney Murine Leukemia

Virus (MMLV) reverse transcriptase and random primers

(Promega). One mL of RT reaction was used for the PCR

following the protocol: 1 min 94uC and 20 cycles of amplification

by 1 min 94uC, 1 min 55uC, 1 min 72uC, and finishing with

5 min at 72uC. Amplified products were visualised in 1% agarose

with ethidium bromide. The following primers were used:

Actin 59-attcctatgtgggcgacgag-39 F, 59-tggatagcaacgtacatggc-39

R (259 bps)

SDF-1 59-gcctgacttaccgatgcc-39 F, 59-ggccaactccaaacccatc-39 R

(333 bps)

CXCR4 59-ccttgccattctggtctgtgg-39 F, 59-ccgggcaagacaagtcc-

tacc-39 R (367 bps)

For real time PCR, the following primers were used:

Cyclophilin A 59-gcgagaagggatttggctacaaggg-39F, 59-ggatttgc-

caccagtgccgttgtg-39R (102 bp)

SDF-1 59-cttcgagagcaacgtggcgag-39F, 59-gcacacttgcttgctgttgctc-

39R (112 bp)

CXCR4 59-ggcagcatggacggtttgg-39F, 5-gcacggctctccatagtctcc-

39R (108 bp)

CXCR7 59-cctcgtccagcataaccaatgg-39F, 59-ccacgctcatgcatgc-

cag-39R (113 bp)

Tf 59-cgagaagggtgatgtggc-39F, 59-ggcagagcaactcaaagtc-39R

(118 bp)

TfR 59-cagttggagtgctggagact-39F, 59-gggctggcagaaaccttg-39R

(147 bp)

For amplification with SYBR Green PCR master mix, following

the settings recommended by the manufacturer.

Statistical tests
Apoptotic responses for cells grown either with or without

clathrin expression were determined using two-tailed unpaired

Student’s t-test.

Results

Iron-deprivation induces apoptosis in DT40 cells
Addition of 0.1 mM doxycycline to the media of both DKO-S

and DKO-R cells completely repressed clathrin expression

(Figure 1). DT40 cells are typically grown in media supplemented

with 10% foetal-calf serum (FCS) and 1% chicken serum [3]. We

previously showed that when DKO-S cells were seeded into this

standard medium in the presence of doxycycline, the clathrin-

depleted cells died by apoptosis after 3–4 days, reflecting the

decline in the level of clathrin over this period. The cells died more

quickly when clathrin-depleted DKO-S cells were grown in the

presence of 10% FCS, but only 0.25% chicken serum [5]. This

suggests that chicken serum contains a factor required by DKO-S

cells that becomes growth limiting in the absence of clathrin. To

investigate the nature of this factor, we first extended the growth

experiments to include a wider range of chicken serum concen-

trations (0 to 5%) (Figure S1A and S1B). The inhibitory effect of

clathrin-depletion on cell growth was particularly dramatic at low

levels of chicken serum (0.25%). When seeded into medium

lacking chicken serum altogether, DKO-S cells grew noticeably

less well even when expressing clathrin, and they needed a seeding

density of at least 26104 cells/ml to grow. In the absence of

clathrin, DKO-S cells in this medium died rapidly. By contrast we

found that at chicken serum concentrations higher than normally

used (up to 5%), DKO-S cells increasingly survived clathrin-

depletion (Figure S1A). Presumably, at this high concentration the

increased availability of the potential factor helped the cells to

survive longer when clathrin expression was repressed. When the

same experiment was conducted for the DKO-R cell-line we

found a similar pattern, but with the striking difference that DKO-

R cells required less chicken serum to survive clathrin-depletion

compared to DKO-S cells (Figure S1B). For both clathrin-

depleted DKO-S and R cells, reduction in the level of chicken

serum increased apoptosis as measured both by caspase activity

and nuclear condensation, but the DKO-S cell-line was markedly

more sensitive to this effect compared to DKO-R cells as the

chicken serum levels were reduced (Figure 2A and B). This

suggests that the response of these two cell-lines to clathrin-

depletion reflects a similar underlying mechanism, but with a

quantitative difference in sensitivity to restriction of the chicken

serum factor. Hence, at the level of chicken serum that we

routinely used (1%), the DKO-S cells typically died but the DKO-

R cells survived in the absence of clathrin.

In order to identify this putative factor, chicken serum was

fractionated with ammonium sulphate and the capacity of the

different fractions to support growth was examined. For this

experiment, DKO-S cells were seeded in a multiwell plate at

16104 cells/ml in medium without chicken serum (see materials

and methods), together with doxycycline to repress clathrin

expression. Under these conditions, clathrin-depleted DKO-S

cells did not grow (Figure S1A). The ammonium sulphate fractions

from chicken serum were added to these cells to give an equivalent

chicken serum concentration of about 5%. Only the 40–80%

ammonium sulphate fraction supported growth under these

conditions (Figure S2A). Gel filtration of this fraction on G-200

Apoptosis Signalling in Clathrin-Depleted Cells
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Sepharose eluted the growth activity as a broad peak between the

69 and 150 kDa size marker (Figure S2B). Subsequent FPLC ion-

exchange chromatography of this gel-filtration fraction produced a

single sharp leading peak of growth-supporting biological activity

separated from most of the other proteins (Figure 3A). When

analysed by SDS PAGE, this peak yielded two major protein

bands of apparent molecular weight of about 80 kDa and 60 kDa

(Figure 3B). Each of these proteins was separately excised from the

gel and analysed by mass spectrometry (MS) sequencing. The

lower molecular weight band was identified as vitamin D binding

protein [22]. Purified samples of this protein did not support the

growth of clathrin-depleted DKO-S cells in the absence of chicken

serum (data not shown) even at the highest concentration used.

The higher molecular weight band, which did support growth, was

identified as chicken transferrin, and this identification was further

confirmed by western blotting (Figure 3C).

Purified iron-saturated chicken transferrin mimicked the effect

of full chicken serum both on cell growth, apoptotic response and

sensitivity to clathrin-depletion od DKO-S cells (Figures 4A, B, C).

These cells survived clathrin-depletion if they were grown in

standard medium without chicken serum, supplemented with

concentrations of fully iron-saturated chicken transferrin of 10 mg/

ml or higher (Figure 4A). At lower concentrations, (eg 2 mg/ml

shown in Figure 4B), clathrin-depleted DKO-S cells died, but

DKO-R cells survived (Figure 4B). Using quantitative western

blotting, the level of transferrin in our chicken serum was

estimated at about 0.5 mg/ml (data not shown) so that 10 mg/

ml corresponds to the level of chicken transferrin present in media

supplemented with 2% chicken serum. The degree of iron

saturation in commercial chicken serum is unknown, but if it is

similar to human serum transferrin (about 30% iron-loaded) [23],

then this value is consistent with the observed quantitative effects

of chicken serum on the two clathrin-depleted cell-lines. Although

the DKO-S and -R cells were always grown in media with 10%

FCS, it should be noted that, as with other mammalian

transferrins [24], bovine transferrin binds relatively weakly to the

chicken transferrin receptor (FRW/APJ data not shown). So in

these experiments it is likely to be the chicken serum that supplies

the majority of the iron. When supplemented with chicken

apotransferrin, from which iron had been removed by prior

chelation and dialysis [14], growth of clathrin-depleted DKO-S

cells was significantly reduced (Figure 4A). It has been reported

that FCS contains high levels of iron stores [25], which could

supply some intake into the cells via coupling to apotransferrin and

could explain the residual growth under this condition. By

contrast, growth was completely abolished for clathrin-depleted

DKO-S cells with apotransferrin (Figure 4A). The role of

transferrin and iron in cell survival was confirmed with deferox-

amine, a powerful and highly specific iron chelator that is known

to prevent iron uptake into cells, and which induced apoptosis of

DKO-S cells [26] (Figure 4C).

Does the differential survival of clathrin-depleted DKO-S and R

cells reflect differences in transferrin receptor (TfR) expression? A

quantitative RT-PCR analysis showed similar levels of TfR

mRNA in DKO-R and DKO-S (Figure 5A). Likewise, western

blotting confirmed similar levels of TfR protein in the two cell-

lines (Figure 5B). These results are consistent with our previous

Figure 1. Western blot showing the complete repression of
clathrin expression in DKO-S and DKO-R cells when grown in
the presence of 0.1 mM doxycycline (dox). Cells were grown for
72 hours in media with or without doxycycline as indicated. Following
development of the blot, the nitrocellulose was stained with amido
black to detect total protein.
doi:10.1371/journal.pone.0106278.g001

Figure 2. DKO-S cells show a higher apoptotic response to clathrin-depletion than DKO-R cells. (A) The proportion of apoptotic cells and
(B) caspase activity were measured as described in materials and methods for DKO-S and DKO-R cells grown with or without 0.1 mM doxycycline (dox)
and in media supplemented with increasing concentrations of chicken serum are as indicated. Values are means of three measurements +/2
standard deviation. Statistically significant differences, with p values, are indicated.
doi:10.1371/journal.pone.0106278.g002
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report showing that the rates of transferrin internalisation into

DKO-S and DKO-R cells are similar and reduced to similar levels

when clathrin is depleted [8]. An alternative possibility is that

DKO-R cells synthesise their own transferrin, which could then

support survival. However, neither cell line expresses detectable

levels of transferrin mRNA (Figure 5C) so the difference between

DKO-S and DKO-R does not rely on changes in expression of the

transferrin iron uptake pathway. Hence, the lower apoptotic

sensitivity shown by the DKO-R cells must result from an

additional mechanism.

Endogenous expression of SDF-1 is responsible for DKO-
R resistance to clathrin-depletion-induced apoptosis

Since the distinctive phenotypes of the DKO-S and R cells are

stable [5], they could reflect changed gene expression profiles. To

search for the pathway responsible for cell survival, we compared

the global patterns of mRNA expression between the two cell-lines

using an EST chicken microarray [20] (see Materials and

Methods). There was a limited number of statistically significant

differences between DKO-S and DKO-R cells (Table S1). This is

to be expected, since the DKO-R cell-line derives from the DKO-

S parent [5]. One ribosomal protein was up-regulated in DKO-S

cells, but the physiological significance of this is unclear. On the

other hand, several genes were up-regulated in DKO-R cells by a

factor of two-fold or more compared to DKO-S cells (Figure 6 and

Table S1). Figure 6A shows these genes in decreasing order of

significance and from these, groups of functionally related genes

have been highlighted in Figure 6B. Strikingly, 65% of the up-

regulated genes in DKO-R cells whose function is known, are

components of the pathways implicated in signalling, trafficking

and cell interaction. Of these genes, the chemokine receptor

CXCR4 was of particular interest. CXCR4 is a serpentine G-

protein coupled receptor that is commonly expressed on lympho-

cyte cell-lines, including B and pre-B-cells [27]. When activated by

its ligand, stromal cell-derived factor 1 (SDF-1, CXCL12), the

CXCR4 receptor stimulates calcium entry, MAP kinase and Akt-

dependent pathways [28] (Figure 6C). Indeed, in previous work

we found constitutively active Akt and ERK1/2 in DKO-R cells

Figure 3. Identification of the putative chicken survival factor as transferrin. (A) FPLC separation of the positive fraction from the gel
filtration step showing separation of the main bioactivity peak from major protein fractions. In each case, cell growth after 72 hours was determined
as described in materials and methods. (B) SDS polyacrylamide gel electophoresis of the fractions from the FPLC column. Fraction 6, which contains
the major bioactivity peak contains only two major proteins identified as vitamin D binding protein and transferrin. (C) Western blot of FPLC fraction
6 using anti-(chicken transferrin) monoclonal antibody.
doi:10.1371/journal.pone.0106278.g003
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[5], which is consistent with the activation of CXCR4 signalling.

These pathways in turn modulate actin cytoskeletal rearrange-

ments, enhanced integrin expression, and stimulate chemotaxis

towards SDF-1 secreting cells [29,30,31], Several genes potentially

connected to these pathways were up-regulated in DKO-R cells

including MAP kinase kinase 3, integrin b5, actin capping protein

and Tara, a regulator of actin rearrangement (Figure 6 and

Table S1). Crucially in the present context, SDF-1/CXCR4

signalling has been implicated in cell survival with a predomi-

nantly anti-apoptotic effect in lymphocyte cell-lines [32,33,34].

SDF-1 was not present in the microarray data set, so to confirm

and extend the microarray results, we examined CXCR4 and

SDF-1 mRNA expression in DKO-S and DKO-R cells by

qualitative and quantitative RT-PCR. Both cell-lines expressed

CXCR4, although there was a higher expression in DKO-R

compared to DKO-S cells and SDF-1 was detectable in DKO-R

cells, but not DKO-S (Figure 7A). Consistent with the microarray

data and the qualitative RT-PCR, there was a significant increase

in CXCR4 mRNA in DKO-R cells compared to DKO-S cells.

Strikingly, SDF-1 expression showed an 7.5 fold increase in DKO-

R cells compared to DKO-S (Figure 7B). Wild-type DT40 cells

expressed SDF-1 mRNA at a level comparable to the DKO-S cell-

line and the differential expression of CXCR4 and SDF-1 in these

cell lines was independent of the presence of clathrin in the cells

(Figure S3).

It has previously been shown that recombinant human SDF-1

can activate CXCR4 signalling on DT40 cells [35]. Treatment of

clathrin-depleted DKO-S cells with recombinant human SDF-1a
significantly reduced apoptosis at a chicken serum concentration

(1%) that was normally lethal for these cells (Figure 7C). The

selective activation of CXCR4 signalling in DKO-S cells led to a

more DKO-R-like phenotype in their response to clathrin-

depletion. The reciprocal experiment was performed with the

drug AMD3100 which is a highly selective inhibitor of CXCR4

signalling [36,37]. At a concentration of 5 mg/ml, AMD3100 did

not affect apoptotic behaviour of clathrin-expressing DKO-R cells

in medium containing 1% chicken serum. However, when clathrin

expression was repressed in DKO-R cells, under conditions where

Figure 4. Purified chicken transferrin reproduces the effect of full chicken serum on the cell growth and apoptotic response of
DKO-S cells to clathrin-depletion. (A) Fully iron-loaded transferrin, but not apoptransferrin rescues clathrin-depleted DKO-S cells. DKO-S cells
were seeded at 26104 cells/ml in media lacking chicken serum and treated as indicated. Cell growth was monitored as described in Figure 1. (B)
Clathrin-depleted DKO-R cells require less chicken transferrin for survival. Cell growth was monitored as described in the legend to Figure 1. (C)
Caspase activity in clathrin-expressing or clathrin-depleted DKO-S cells treated with 10 mM iron-loaded transferrin or 50 mM deferoxamine as
indicated. Cells were seeded into flasks at (26104 cells/ml) in treated media and caspase activity measured 72 hours later. Values are means of three
measurements +/2 standard deviation.
doi:10.1371/journal.pone.0106278.g004
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they normally survived (ie 1% chicken serum), the AMD3100-

treated, clathrin-depleted DKO-R cells now underwent apoptosis

(Figure 7D).

Although SDF-1 is the only ligand for CXCR4, it can also bind

another receptor in this family, CXCR7 [38]. In order to assess

the participation of CXCR7-mediated signalling, we examined

CXCR7 expression in both cell lines. The levels of CXCR7 were

similar between DKO-R and DKO-S and approximately 100 fold

lower than the levels of CXCR4 (note the different ordinance

scales in Figure 8A compared to Figure 7B). In order to assess the

potential role of CXCR7 we investigated the effect of a highly

specific inhibitor: CCX771 [39] and an inactive close analogue

compound CCX704 on the apoptotic response of DKO-R cells to

clathrin-depletion. In contrast to the CXCR4 inhibitor

AMD3100, neither CCX771 nor CCX704 had any effect on

caspase activity (Figure 8B). Although a small increase in apoptosis

was observed, this was the same with both the active and inactive

CXCR7 antagonists and was not accompanied by an increase in

caspase activity. Taken together, our data indicates that DKO-R

cells, unlike the DKO-S cells, can operate an anti-apoptotic

autocrine pathway, due to the simultaneous expression of SDF-1

ligand and its receptor CXCR4.

Discussion

Our initial observation that clathrin-depletion in DKO-S cells

induced apoptosis is surprising because in mammalian cells,

RNAi-mediated clathrin knockdown does not produce the same

effect [10,40]. However, proliferation and survival of some tumour

cell lines are correlated with transferrin uptake [41]. In particular,

iron restriction is known to induce apoptosis in activated T-

lymphocytes and the promyelocytic cell-line HL60 [42]. Further-

more, a monoclonal antibody that blocks transferrin binding to its

receptor induced apoptosis in adult T-cell leukaemia cells [43]. As

with DT40, these are all fast growing lymphocyte-derived cells,

suggesting that a relatively high apoptotic sensitivity to iron

deficiency may be a common feature of this type of cell-line. A

comparison of several human and mouse cell-lines with regards to

sensitivity to iron deprivation showed that cell-lines of haemato-

poietic origin are indeed particularly sensitive to iron restriction.

Interestingly HeLa cells, commonly used in assays of clathrin-

function have a relatively high resistance to apoptotic stimuli [44].

Iron is a cofactor for key enzymes required for purine and

pyrimidine synthesis, the tricarboxylic acid cycle and the

mitochondrial electron transport chain [45]. Thus in fast growing

cells, iron deficiency may limit both DNA synthesis and the

Figure 5. Analysis of the expression of transferrin and its receptor. (A) Quantitative RT-PCT of the transferrin receptor in both cell lines. (B)
Western blot for the transferrin receptor in DKO-R and DKO-S cells. (C) Quantitative RT-PCR of transferrin in a control hepatic human cell line (Huh7)
and DKO-R and DKO-S cells. Statistically significant differences, with p values, are indicated.
doi:10.1371/journal.pone.0106278.g005
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capacity to generate ATP from aerobic respiration. Iron restriction

reduces transcription of the cell cycle control protein p21(WAF1/

CIP1) [46], downregulates anti-apoptotic Bcl-2, up-regulates the

pro-apoptotic Bax [47] and activates a mitochondrial caspase

pathway [48]. Clathrin-depletion in the DT40 cells reduced, but

did not abolish transferrin uptake [5,8]. This clathrin-independent

residual transferrin uptake probably accounts for the survival of

clathrin-depleted DKO-S cells when grown in media with high

levels of chicken serum. We have found that some batches of

chicken serum are better than others at supporting the growth of

clathrin-depleted DKO-S cells [8], and this correlates with the

level of transferrin (APJ, data not shown). Additionally, in cells

with increased requirements for iron due to their rapid prolifer-

ation rate, such as neoplastic cells, alternative routes of iron uptake

to transferrin have been observed. Thus non-receptor-mediated

pinocytosis has been suggested as a significant mechanism of iron

uptake in human hepatoma and melanoma cell-lines [49].

The different apoptotic thresholds shown by clathrin-depleted

DKO-S and DKO-R cells is a notable example of how cells can

modulate their apoptotic response to iron deficiency depending on

the activity of other signals. We propose that the DKO-R cell-line

has induced an autocrine loop mediated by the anti-apoptotic

chemokine SDF-1 and its receptor CXCR4. Thus the DKO-R

cells have enhanced an important survival pathway that helps to

damp down the apoptotic signal generated by partial iron

restriction. Our work suggests that SDF-1/CXCR4 autocrine

signalling can play an important role in regulating tumour survival

[32] and is consistent with the observation that activation of this

pathway reduces apoptosis in serum-starved murine embryonic

stem cells [12]. High expression of CXCR4 was associated with

carcinoma, migration, proliferation and metastasis [50]. The

DT40 cell-line was derived from a pre B-cell [2] and indeed, SDF-

1 was initially named ‘Pre B-cell growth-stimulating factor’ in

recognition of its role in promoting the survival of pre B-cells in
vitro [51]. In T cells, activated CXCR4 stimulates both MAP

kinase and Akt-dependent pathways [34,52]. We showed that

phospho-Akt is much more abundant in DKO-R than DKO-S

and though a decrease is observed in both lines after clathrin

depletion, this decrease is less prominent in DKO-R and Akt

activity remains much higher than in DKO-S. We also examined

ERK1/2 showing that it is constitutively active in DKO-R cells

[5]. As Akt and ERK are pivotal to the CXCR4 signalling

pathway, and since CXCR4 only binds SDF-1 [53], the

constitutive stimulation of these enzymes in DKO-R cells is

consistent with an autocrine effect of endogenously synthesised

SDF-1. In agreement with our observations, a dramatic increase in

Akt and ERK1/2 phosphorylation in response to SDF-1

stimulation has been noted in MEF cells and this activation was

inhibited by the CXCR4 inhibitor AMD3100 but not by a

CXCR7 inhibitor [54].

SDF-1 activated CXCR4 receptors modulate integrin signal-

ling, promote chemotaxis towards SDF-1 secreting cells and

Figure 6. Microarray analysis of the gene expression profiles of DKO-s and DKO-R cells. (A) differentially expressed genes ordered in
descending significance according to the P value UK: unknown. (B) functional clusters of genes of processes implicated in cell fate. (C) depiction of
the CXCR4 signalling pathway.
doi:10.1371/journal.pone.0106278.g006
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induce major actin cytoskeletal rearrangements [28]. It is possible

that some of these changes could affect additional aspects of the

DKO-R phenotype. For example, it has been observed that

receptor-mediated endocytosis of the B-cell receptor (but not other

receptors) is significantly less clathrin-dependent in DKO-R cells

compared to DKO-S cells [8]. It will now be interesting and

Figure 7. RT-PCR for CXCR4, SDF-1 and CXCR7 in DKO-S and DKO-R cells. (A) standard RT-PCR as described in materials and methods
followed by agarose gel migration. Controls (RNA) for genomic DNA contamination in which the RT-PCR reaction was conducted without prior
treatment with reverse transcriptase are shown. (B) real time PCR from cDNA obtained from both cell-lines, results are expressed as DCp normalising
the levels of expression to Cyclophilin A. (C) Caspase activity and percentage of apoptosis of clathrin-expressing and clathrin-repressed DKO-S cells in
the presence or absence of 20 nM recombinant human SDF-1a. Values are means of four determinations +/2 standard deviation. (D) Caspase activity
and percentage of apoptosis of clathrin-expressing and clathrin-repressed DKO-R cells in the presence or absence of 5 mM AMD3100. In both (C) and
(D), cells were grown in standard DT40 medium with 1% chicken serum. Values are means of four determinations +/2 standard deviation. Statistically
significant differences, with p values, are indicated.
doi:10.1371/journal.pone.0106278.g007

Figure 8. CXCR7 signaling is not responsible for the apoptotic-resistace shown by clathrin-depleted DKO-R cells. (A) Quantitative RT-
PCR for CXCR7 in both cell lines. (B) Caspase activity and percentage of apoptosis of clathrin-expressing and clathrin-repressed DKO-R cells in the
presence or absence of 0.5 mM CCX771 and inactive analog CCX704. Cells were grown in standard DT40 medium with 1% chicken serum. Values are
means of four determinations +/2 standard deviation.
doi:10.1371/journal.pone.0106278.g008
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important to investigate whether SDF-1 signalling can explain this

unusual result. Evidently, the altered expression of only a small

number of genes is enough to produce the DKO-R phenotype and

several of these are directly related to the SDF-1 signal pathway.

In prostate tumour cell-lines, SDF-1 signalling up-regulates the

expression of CXCR4 and other downstream targets of its

signalling pathway [55]. If this is also true for DT40, then the

primary change that produced the DKO-R phenotype could have

been an up-regulation of SDF-1 expression. This is supported by

our observation that wild-type DT40 cells do not express SDF-1

(Figure S3). The DKO-R cells were originally isolated from an

overgrown population of DKO-S cells, and it seems likely that this

condition selected for an enhanced anti-apoptotic phenotype. We

have subsequently identified other cells derived from DKO-S that

are similarly resistant to clathrin-depletion, although in these cases,

the molecular mechanism has not been investigated. It appears

that such variants are not uncommon in DT40 populations and

this may in turn have important implications for the use of DT40

to study apoptotic pathways.

Our results provide a worked example of how the phenotypic

consequences of gene inactivation are contingent upon the wider

physiological background and how this needs to be taken into

account when interpreting gene knockout experiments. Further-

more, many tissue-culture cells possess great plasticity to adapt to

their environment via genetic changes, and these adaptations can

have an impact on the phenotype generated by research

manipulations. Our results further emphasise that cell survival

depends on a balance of positive and negative signals that can be

independently modulated. A number of therapeutic strategies for

the treatment of leukaemia and other lymphocyte-derived tumours

have been proposed and are currently undergoing clinical trials.

Several of these aim to stimulate apoptosis by blocking transferrin

endocytosis [43,56], or prevent iron uptake using chelating agents

[57]. Moreover, the up-regulation of SDF-1/CXCR4 expression is

a known mechanism used by some tumour cells that contributes to

chemotherapy resistance [30]. In this context, the relative ease

with which the DKO-R cells emerged from the DKO-S

background should raise a cautionary note, as it implies a simple

mechanism by which cells can escape from such therapies.

Adaptive changes based on CXCR4-SDF-1 regulation and

signalling may be important factors in the resistance to chemo-

therapy.

Supporting Information

Figure S1 Figure S1A: growth of DKO-S cells in
increasing levels of chicken serum, as indicated. Figure
S1B: growth of DKO-R cells in increasing levels of chicken serum

as indicated.

(TIF)

Figure S2 Cell growth of clathrin-deficient DKO-S cells.
(A) in ammonium sulfate fractionated chicken serum. (B) in G-200

Sepharose filtered fractions of the 40–80% ammonium sulphate

fraction.

(TIF)

Figure S3 Effect of doxycycline on expression of CXCR4
and SDF-1. Wild-type DT40 cells as well as the DKO-R and

DKO-S clones were grown with or without 0.1 mM doxycycline

(DOX) for 72 hours prior RNA extraction. The levels of CXCR4

and SDF-1 expression were assessed by qRT-PCR normalising to

cyclophilin A.

(TIF)

Table S1 Microarray data showing genes differentially
expressed in DKO-S and DKO-R cells. For genes upregu-

lated in DKO-R cells, CXCR4 and other components of pathways

known to be modified by activated CXCR4 signalling are shaded.

(XLS)
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