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Phenotype Similarity Regression for Identifying
the Genetic Determinants of Rare Diseases

Daniel Greene,1,2 NIHR BioResource, Sylvia Richardson,2,3 and Ernest Turro1,2,3,*

Rare genetic disorders,which cannowbe studied systematicallywith affordable genome sequencing, are often causedbyhigh-penetrance

rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained

with variable clinical precision. Existingmethods for identifying genes with variants responsible for rare diseases summarize phenotypes

with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be repre-

sented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present

a Bayesianmethod to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the proba-

bility of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to

phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by

uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases.
Introduction

There is widespread interest in the study of rare diseases as

a way of understanding the genetic architecture of biolog-

ical processes. Consequently, tens of thousands of subjects

are being phenotyped extensively and enrolled to genome-

sequencing studies worldwide. To discover the cause of dis-

ease, these subjects would ideally be grouped a priori into

clusters with a shared (though unknown) genetic etiology,

but this is often hindered by extensive phenotypic and ge-

netic heterogeneity (see Web Resources and examples1–9).

Rare variant association tests, even those accounting for

some degree of genetic heterogeneity, typically summarize

the clinical manifestations of a disease with a single vari-

able,10 which can limit power when multiple phenotypic

traits contain complementary information about the

same causal genotype. Methods for modeling pleiotropy

have proven successful in the context of genome-wide as-

sociation studies11,12 but they are ill suited for rare disease

studies in which the phenotype data are typically of mixed

type and collected with variable detail and completeness.

The Human Phenotype Ontology (HPO)13 addresses the

need for a standardized vocabulary for rare disease pheno-

types and is being used to code patients in several large in-

ternational projects14–16 (see also Web Resources). The

HPO is a directed acyclic graph representing more than

10,000 phenotypic abnormalities in which the nodes

(HPO terms) are connected to each other through ‘‘is-a’’ re-

lations, represented as edges. The HPO was created with

the support of experts inmany areas of medicine to accom-

modate coding of phenotypic data derived from diverse

sources, such as laboratory assays, images, graphs, and clin-

ical interpretation. Methods exist that compare patient

HPO data with HPO-coded profiles corresponding to
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known diseases for the purpose of differential diag-

nosis.17,18 The HPO-coded profiles can be supplemented

with functional gene-specific information to prioritize

genes.19,20 If genotype data are available, these and other

methods21,22 can be used to prioritize variants and poten-

tially to suggest new causes of disease.19,20,23 However, the

existing approaches do not share information between

individually coded patients and as such are not statistical

association methods.

Here, we present a regression-based method for discov-

ering associations between arbitrarily diverse sets of HPO-

coded phenotypes and genotypes at rare variant sites. To

overcome the difficulty of modeling sparse and ontologi-

cally structured phenotype data, we treat the HPO-coded

phenotypes of the subjects as the explanatory variables

and their corresponding genotypes as the response. This

is an example of ‘‘inverse regression’’ and is adequate in

our setting because we are not interested in interpreting

the regression coefficients per se but only in evaluating

the probability of association. We define a subject’s ‘‘geno-

type’’ y as a binary label that can take on the values ‘‘rare’’

(1) or ‘‘common’’ (0) according to a pre-specified function

of the genetic data. For example, we could define the label

‘‘rare genotype’’ to mean that there is at least one rare

variant in a particular gene (dominant inheritance) or at

least two rare variants in a particular gene (recessive

inheritance).

Our method then seeks to compare two models for the

data, indexed by g. Under the baseline model (g ¼ 0),

the probability of observing the rare genotype is the

same for each case. Under the alternate model (g ¼ 1),

the probability of observing the rare genotype depends

on the ‘‘phenotypic similarity’’ S (to be defined later) of

the case to a latent characteristic HPO phenotype f.
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Figure 1. Example HPO Coding of a Sub-
ject with Wiskott-Aldrich Syndrome
The nodes in blue imply the presence
of the more general ancestral pheno-
types depicted as gray nodes. No blue
node has a directed path to any other,
which means that the blue nodes
comprise a minimal set of HPO terms.
The graph has been simplified by
removing nodes that link together only
two other nodes.
We adopt a Bayesian inference framework, where the

model selection indicator g and characteristic phenotype

f are estimated through their posterior distributions. Of

particular interest is the posterior mean of g, which repre-

sents the probability that g ¼ 1, thus indicating the

strength of evidence for an association.

A crucial element of our approach is the construction of

an appropriate function for quantifying the semantic simi-

larity of the characteristic phenotype f to the phenotypes

of the subjects. The choice of function is motivated by the

need to optimally discriminate between subjects having

clinical features that are pertinent to a disorder from those

having overlapping or unrelated phenotypes due to a

different disorder. To achieve this, we have chosen a func-

tion that accounts for the ontological structure of the HPO

and induces a parsimonious characteristic phenotype: it

selects the required terms to distinguish patient groups

whileavoidingoverfittingand is robust to codingofpatients

with spurious or sporadic terms. Importantly, the function

is flexible with respect to the phenotypic variability of dis-

ease and robust to the HPO coding practices of clinicians.

Our Bayesian approach provides a natural means of

incorporating information from the scientific literature

into our prior belief about the characteristic phenotype.

In this work, we focus on gene-specific inference and up-

weight the prior probability of characteristic phenotypes

that are similar to clinical23 andmurine phenotypes24 rele-

vant to the gene.

We demonstrate the effectiveness of ourmethod in iden-

tifying associations between genotype and phenotype

through a simulation study, whereby phenotypes are simu-

lated given genotypes in such a way as to emulate the effect

of a hypothetical set of pathogenic variants. We go on to

apply our inference procedure to a real dataset of more

than 2,000 unrelated individuals enrolled to a variety of

rare-disease sequencing studies under the auspices of the

BRIDGE projects run by the NIHR BioResource – Rare Dis-

eases (Web Resources). We show that our method, imple-

mented in the SimReg software package, can identify genes

with rare variants responsible for a diverse set of pathol-

ogies in a single application and can estimate recognized

disease phenotypes.
The Ame
Material and Methods

Model Specification
We use a logistic regression framework to specify the two models

under comparison:

yi � Bernoulli
�
pi
�
;

g ¼ 0 : log

�
pi

1� pi

�
¼ a;

g ¼ 1 : log

�
pi

1� pi

�
¼ aþ bSðf; xiÞ:

(Equation 1)

Here, y1, ..., yN are the genotypes of theN subjects in the collection,

where yi ¼ 1 if subject i possesses the rare genotype and yi ¼ 0 if

subject i possesses the common genotype. x1, ..., xN are the corre-

sponding phenotypes of the subjects, where xi comprises the

minimal set of HPO terms required to describe the phenotypic ab-

normalities of subject i. Loosely speaking, a set of terms is minimal

if it describes a patient’s phenotype without redundancy (e.g., it

does not include both ‘‘Abnormal bleeding’’ and ‘‘Joint hemor-

rhage’’). More formally, a set of terms is said to be minimal if

and only if it lacks elements implied by other terms in the set

through directed edges in the HPO. The terms highlighted blue

in Figure 1 comprise such a set, because there is no directed path

between any pair of blue nodes.

The term S(f, xi) denotes a chosen measure of phenotypic sim-

ilarity between the characteristic phenotype and subject i’s

phenotype. Note that our response and predictor are inverted

compared to classical regression methods to avoid having to treat

sparse and structured HPO data as the response. Under the base-

line model, the intercept a is the global rate of rare genotypes.

Under the alternate model, there is an additional parameter b,

which is strictly positive and captures the effect of a unit increase

in phenotypic similarity to the characteristic phenotype f on

the log odds of having the rare genotype. Thus, the probability

that g ¼ 1 is greater in expectation when S(f, xi) is larger if

yi ¼ 1 than if yi ¼ 0.
Similarity Measure
Our chosen similarity measure S is built with consideration for (1)

quantification of the similarity of terms, (2) quantification of the

similarity of a patient phenotype xi to the characteristic pheno-

type f, and (3) flexible transformation of the similarity between

phenotypes.
rican Journal of Human Genetics 98, 490–499, March 3, 2016 491



Consistent with the ontological literature, we base our measure

for the similarity of terms on the information content (IC) of each

individual term,

ICðtÞ ¼ �logðfrequencyðtÞÞ;

where the frequency of term t can be derived from its appearance

in the case collection, including instances in which this is implied

by the presence of more specific terms in the ontology.

We use Lin’s25 similarity function to compare two different

terms:

sðt1; t2Þ ¼ 23maxt˛ancðt1ÞXancðt2ÞICðtÞ
ICðt1Þ þ ICðt2Þ ;

where anc(t) denotes the union of term t and its ancestral nodes in

the HPO graph. For example, for the hypothetical subject shown

in Figure 1, the expression maxt˛ancðt1ÞXancðt2ÞICðtÞ if t1 were

‘‘Thrombocytopenia’’ and t2 were ‘‘Joint hemorrhage’’ would

correspond to the IC of ‘‘Abnormality of blood and blood-forming

tissues.’’ Because terms cannot have a higher IC than their descen-

dants, the similarity s between two terms can range between zero

and one. Next, we consider asymmetric measures of similarity be-

tween a case phenotype and f inspired by the best-match-average

(BMA) function,17 which computes the best match for each term

and takes the mean:

Sfðf/xiÞ ¼ 1

jf j
X
tf˛f

max
tx˛xi

sðtf; txÞ1tf˛ancðtxÞ;

Sxðxi/fÞ ¼ 1

j xi j
X
tx˛xi

max
tf˛f

sðtx; tfÞ1tf˛ancðtxÞ:

The standard BMA function does not include the indicator var-

iable above, which evaluates to 1 only if the node in f is among

the ancestors of the node in xi. We prefer to include this restric-

tion, which penalizes similarity to fwhen it includes over-specific

terms, in order to concentrate the posterior weight of f preferen-

tially on nodes that are present among the subjects.

The presence of a term in f that is absent from xi has the effect of

lowering Sf, whereas the presence of a term in xi that is absent

from f has the effect of lowering Sx. Summation of two asym-

metric similarities, as used in BMA, would allow reasonably high

overall similarities to be obtained even when one of the two asym-

metric similarities is close to zero. We prefer to multiply rather

than add up the two similarity measures to obtain an expression

for the overall similarity function used in Equation 1 because it en-

sures that the overall similarity can be high only when there is a

high asymmetric similarity in both directions. However, because

the values of Sx and Sf are influenced by factors such as how

frequent terms are in the reference database (which affects nodal

IC) and the structure of the HPO graph, there is no guarantee

that a linear function of their product optimally distinguishes sub-

jects with objectively distinct clinical features. To ensure the

model is robust to the choice of S, we allow modulation of the

shapes of the similarity parameters, Sf and Sx, through transforma-

tions f and g, respectively. A reasonable choice for f and g is the

beta cumulative distribution function (CDF), because it maps

[0,1] to [0,1] monotonically and allows a wide variety of shapes:

f
�
z; af ; bf

� ¼ Iz
�
af ; bf

�
;

g
�
z; ag ; bg

� ¼ Iz
�
ag ; bg

�
;
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where Iz is the regularized incomplete beta function (see Supple-

mental Note) and af, ag, bf, and bg are unknown parameters to be

estimated.

Finally, the overall similarity function is given by

Sðf; xiÞ ¼ f
�
Sfðf/xiÞ; af ; bf

�
,g

�
Sxðxi/fÞ; ag ; bg

�
: (Equation 2)

Priors
We propose the following prior distributions for the model indica-

tor and the regression parameters:

g � BernoulliðpÞ;

a � Normalðmean ¼ 0; sd ¼ 5Þ;

log b � Normalðmean ¼ 2; sd ¼ 1Þ:

The value of p indicates how likely we believe a priori that there is

a true association. All of the analyses in this paper assume p ¼
0.05. We place a vague prior on a around 0. Additionally, we

include an offset on a by a constant bhi for each individual that

can take into account batch effects and factors affecting the back-

ground rate of rare genotypes (not shown in Equation 1 for clarity

of exposition, see Supplemental Note). The prior distribution on b

is positive because the probability of yi ¼ 1 increases with S(f,xi),

given g¼ 1. The prior variance of b allows for a wide range of effect

sizes given the range of S. The priors on the beta CDF transforma-

tions are discussed in the Supplemental Note. In brief, the choice

of prior for f favors parsimonious characteristic phenotypes and

the prior for g allows for an indeterminate number of nodes ap-

pearing sporadically among patients.

By default, our prior distribution on the characteristic pheno-

type f places a uniform prior probability on all minimal sets of

terms of size less than or equal to k. We choose k ¼ 3 on the

grounds that three nodes should adequately distinguish between

the primary features of most rare diseases. If y is set based on var-

iants in a particular feature, such as a gene, then our prior can up-

weight HPO phenotypes comprising terms annotated to that

feature on the basis of reports in the scientific literature. Thus,

the prior on f is given by

PðfÞ ¼

8>>>>><
>>>>>:

1

jFðkÞ j No literature phenotype

S0ðM/fÞX
j˛FðkÞ

S0ðM/jÞ Literature phenotype M

(Equation 3)

where FðkÞ denotes the set of all minimal sets of up to kHPO terms

and S0 is an unstandardized similarity function (see Supplemental

Note). In practice, the literature phenotype could be obtained

from OMIM or from the Mouse Genome Informatics (MGI) data-

base24 after mapping murine phenotypes coded using the

Mammalian Phenotype Ontology26 to HPO terms through a

cross-species phenotype ontology.27
Inference
We perform model comparison using the Markov chain Monte

Carlo (MCMC)-based method of Carlin and Chib.28 We sample

the model selection parameter g from its full conditional distribu-

tion while the remaining parameters are sampled using the
, 2016



Figure 2. Results of Inference on Simu-
lated Data
Phenotype data were simulated using three
levels of expressivity r of the disease terms.
The plots within each panel correspond to
different frequencies

P
iyi of the rare geno-

type. In each plot, the red dots mark the
estimated posterior mean of g for 64 data-
sets simulated under ~g ¼ 1 and the gray
dots show an equivalent set of estimates
for datasets simulated under ~g ¼ 0 (i.e.,
whereby phenotypes for subjects having
yi ¼ 1 are sampled from the same distribu-
tion as for subjects having yi ¼ 0). The
position of points on the x axis within a
plot is arbitrary.
Metropolis-Hastings algorithm or from a pseudoprior distribution,

depending on the value of g at each iteration.

It is not straightforward to sample from the space of minimal

sets FðkÞ when g ¼ 1 because not all possible HPO term combina-

tions comprise such a minimal set. To overcome this difficulty, we

propose an unrestricted vector of k HPO terms ~f and then derive

the associated underlying phenotype f by applying a mapping

function y. We therefore need to impose a prior distribution on

the unrestricted space which is compatible with the desired prior

for f (Equation 3) on the restricted space. To be precise, the prior

on ~f is given by:

P
�
~f
� ¼ P

�
y
�
~f
��

j�~f0˛Hk : y
�
~f0� ¼ y

�
~f
�� j ;

where Hk is the space of all vectors of k HPO terms and y maps an

arbitrary such vector of terms to its corresponding minimal set.

The denominator accounts for the number of unrestricted vectors

that map to the same minimal set. For further details on the

method used to calculate PðfÞ and Pð~fÞ, the MCMC algorithm,

and the tuning of the pseudopriors, refer to the Supplemental

Note.
Results

Simulation Study

We assessed the performance of SimReg by analyzing data-

sets generated under two scenarios, labeled by ~g. Under

~g ¼ 1, the HPO phenotypes x1,...,N were simulated condi-

tional on the genotypes y1,...,N of N individuals whereas

under ~g ¼ 0 they were simulated independently of the

genotypes. When ~g ¼ 1, phenotypes for all subjects

having yi ¼ 1 were formed by selecting terms from an arbi-

trarily chosen disease template (‘‘Decreased mean platelet
The American Journal of Human
volume,’’ ‘‘Thrombocytopenia,’’ and

‘‘Autism’’). Each term was selected

with a pre-specified probability r,

termed ‘‘expressivity,’’ and m further

noise terms drawn at random

from a set of approximately 1,000

HPO terms were appended, where

m ~ Poisson(l ¼ 5). The set of terms
from which the noise terms were drawn was created by se-

lecting 200 HPO terms at random, taking the union with

the disease template terms, and then aggregating all the

ancestral terms. Phenotypes for subjects having yi ¼ 0

were drawn at random using terms from the above set

with l ¼ 8 and then mapped to minimal sets. When

~g ¼ 0, all phenotypes were sampled from the noise term

set with l ¼ 8. This ensures that on average individuals

have approximately 8 terms, irrespective of yi and ~g.

The simulation was performed with the set of disease

template terms and set of noise terms fixed but with

different numbers of individuals carrying the rare geno-

type ðPiyi˛f2;4;6;8; 10;20g out of N ¼ 1;000Þ and varied

levels of expressivity r˛f1=3;2=3;1g. The low expressivity

set-ups capture situations in which a fraction of the indi-

viduals having a rare genotype can be considered to carry

a neutral variant with respect to the disease in question

because they have none of the template terms. For the

same reason, they capture scenarios of incomplete pene-

trance of a subset of the underlying rare variants. Further-

more, a degree of genetic heterogeneity is built into our

simulation setup, because there is a non-zero probability

of a template phenotype term being randomly allocated

to an individual with the common genotype.

The results of repeating the simulation 64 times for each

value of ~g and combination of r and
P

iyi, depicted in

Figure 2, show that power to detect a true association, as as-

sessed by the posterior mean of g, increases with the ex-

pressivity of the disease terms r and also with the frequency

of the rare genotype in the study sample
P

iyi (red dots).

Under ~g ¼ 0, the posterior mean of g remains very close

to zero in all circumstances (gray dots). Specifically, we

find that 2, 6, and 20 cases out of 1,000 subjects are
Genetics 98, 490–499, March 3, 2016 493



Table 1. Studies from which Genetic and Phenotypic Data Were Obtained

Study Phenotype Unrelated Subjects Known Genes

Bleeding and Platelet Disorders (BPD) detailed patient-specific HPO terms 709 74

Primary ImmunoDeficiency (PID) Abnormality of the immune system (HP:0002715) 201 131

Pulmonary Arterial Hypertension (PAH) Pulmonary hypertension (HP:0002092) 422 9

Specialist Pathology Evaluating Exomes in
Diagnostics (SPEED)

Retinal dystrophy (HP:0000556) 384 241

Abnormality of the nervous system (HP:0000707) 215 689

Abnormality of the nervous system and Retinal dystrophy
(HP:0000707, HP:0000556)

7

Phenotypic abnormality (HP:0000118) 107

Note that the SPEED project has a branch dealing with retinal dystrophy and another branch dealing with abnormalities of the nervous system and that 7 indi-
viduals are included in both branches. In addition, 107 subjects could not be assigned to a specific sub-project at the time of writing due to lack of information and
we assigned them a single abstract HPO term ‘‘Phenotypic abnormality’’ (HP:0000118).
sufficient to obtain perfect or near-perfect discrimination

between the two models when the expressivity is 1, 2=3,

and 1=3, respectively. When the number of subjects with

the rare genotype is equal to 6 and the expressivity is

2=3, which implies that any two individuals with the

rare genotype have only a 0.17 chance of having exactly

the same template terms, our method can achieve a

positive predictive value of 1, even when the negative pre-

dictive value is as high as 0.95, by thresholding at

Pðg ¼ 1 j yÞR0:25. Under this set-up, we expect 1.78 of

the 6 individuals with the rare genotype to have none of

the template terms at all, which indicates that the method

has some resilience to the presence of yi ¼ 1 induced by

neutral rather than pathogenic variants. In order to assess

the specificity of the method more accurately, we have

simulated 20,000 datasets under the scenario in which

there is no association and
P

iyi ¼ 6 and found that only

7 datasets yield Pðg ¼ 1 j yÞ > 0:25, which equates to a

specificity of 99.97% for this chosen cut-off (Supplemental

Note). We have also extended our simulation study to

include a variable controlling genetic heterogeneity,

whereby many individuals are drawn from the same tem-

plate but only a subset have the rare genotype. Power is

maintained even in challenging scenarios in which there

is substantial genetic heterogeneity and moderate pheno-

typic expressivity (Supplemental Note). Overall, the results

of our simulation study show that our method produces

accurate results even in the presence of significant pheno-

typic or genetic heterogeneity and low expressivity of the

rare genotype’s characteristic terms. Because these are

typical hallmarks of many rare disease studies, our evalua-

tion substantiates the utility of our approach.

Results from Real Data

Our dataset comprises HPO phenotypes and correspond-

ing variant call data for 2,045 unrelated individuals

enrolled to a variety of rare-disease sequencing studies

(Table 1). Detailed HPO data were available only for sub-

jects enrolled to the Bleeding and Platelet Disorders

(BPD) project.14 BPDs are a heterogeneous group of
494 The American Journal of Human Genetics 98, 490–499, March 3
diseases, including polysymptomatic examples, making

them an interesting use-case for the modeling we present.

For the other projects, only high-level HPO terms were

used (Table 1). A set of genes within which variants are

known to be implicated in each class of disorders was pro-

vided by BRIDGE collaborators to assess the performance

of the model (Supplemental Note).

We used variant call data from 686 sequenced exomes

and 1,359 sequenced whole genomes. To account for

biases that might alter the baseline rate of rare genotypes

(e.g., sequencing platform), we use a plug-in offset in the

regression Equation 1, estimated a priori (see Supplemental

Note). Variants were retained only if they were predicted to

alter protein sequence and were either absent from ExAC

(Web Resources) or had an allele frequency therein below

1/1,000 or 1/10,000 when a recessive or dominant mode

of inheritance, respectively, was assumed in the analysis.

Rare variants were aggregated within genes to account for

genetic heterogeneity and increase power. We defined the

binary genotypes y based on three different aggregation

approaches corresponding to the following hypothetical

modes of inheritance: (1) dominant, i.e., presence of at

least one rare allele; (2) recessive, i.e., presence of at least

two rare alleles; or (3) high-impact dominant, i.e., presence

of at least one rare allele predicted29 to introduce a splice

site aberration, frameshift, start loss, or stop gain.

ACTN1 as Exemplar Gene

We now describe the properties of SimReg’s output by

focusing on a gene, ACTN1 (MIM: 102575), that has

recently been reported to harbor rare variants responsible

for reduced platelet number and increased platelet size

(macrothrombocytopenia).30 We note that data for

ACTN1 were used to inform and motivate our choice for

the similarity measure given in Equation 2 (Supplemental

Note). Once learnt on the ACTN1 data, this choice has

then been used universally for all genes. We observe

strong evidence that the rare genotype for ACTN1 is asso-

ciated with similarity to a characteristic phenotype

(Pðg ¼ 1 j yÞ ¼ 1), as expected. The estimated characteristic
, 2016
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Figure 3. Results for ACTN1
The panels show results obtained by applying the SimRegmethod to phenotype data for all subjects and genotype data for ACTN1. There
were 43 individuals in our dataset coded with the rare genotype for this gene, of which 22 were coded with ‘‘Thrombocytopenia’’ and
‘‘Increased mean platelet volume.’’ The graph shows the estimated probabilities of inclusion of individual terms in f (only the seven
terms with the highest probabilities of inclusion and their ancestors are shown). The acronym ‘‘BBFT’’ refers to ‘‘Abnormality of blood
and blood-forming tissues.’’ The heat map shows the estimated probabilities of pairs of terms co-occurring in f, for pairs composed from
the ten most frequently included individual terms.
phenotype focuses primarily on phenotypes that include

‘‘Thrombocytopenia’’ and ‘‘Increased mean platelet vol-

ume’’ (Figure 3), which together correspond to macro-

thrombocytopenia. The slightly more general terms

‘‘Abnormal platelet count’’ and ‘‘Abnormal platelet vol-

ume’’ also have substantial marginal posterior weight

whereas the rest of the nodes in the HPO have a marginal

posterior probability of inclusion less than 0.02. As can be

seen in a two-dimensional matrix of themarginal posterior

on pairs of terms (Figure 3), there is a high degree of co-

occurrence of the two primary terms representing the

ACTN1-related phenotype, which implies that they are

not alternatives but rather complements that together pro-

duce a good model fit.

DIAPH1 and RASGRP2

Under the high-impact dominant mode of inheritance

described above, one of the genes with the highest esti-

mated value of g that also has a BPD-like inferred pheno-

type is DIAPH1 (MIM: 602121) (g ¼ 0.87). We recently

showed, through an application of our similarity regres-

sion approach, that the introduction of a premature stop

codon present in two unrelated individuals in the BPD

project truncates DIAPH1’s 30 auto-inhibitory domain

and causes macrothrombocytopenia, hearing loss, and

mild bleeding.31 As shown in Figure 4 (left), the salient

terms in f relate to hearing impairment and abnormality

of blood and blood-forming tissues, with the latter driven

mainly by thrombocytopenia and bleeding. The high
The Ame
posterior estimate of g was obtained in part because a

sensorineural hearing loss phenotype had previously

been reported in the literature,32 which up-weighted hear-

ing abnormality terms in the prior for f (Table 2). However,

even without using an informative prior on f, a high pos-

terior probability of an association (g ¼ 0.59) could be

found for DIAPH1.

RASGRP2 (MIM: 605577) was recently implicated in a

new form of Glanzmann’s-like thrombasthenia (MIM:

273800) based on data from a single pedigree.33 Glanz-

mann’s is characterized by impaired platelet aggregation,

leading to excessive bleeding. Under a recessive mode of

inheritance, our similarity regression successfully detects

an association (g ¼ 0.75) for RASGRP2 and estimates a

characteristic phenotype concentrated around ‘‘Abnormal

platelet aggregation’’ (Figure 4). It is characteristic of Glanz-

mann’s that platelet aggregation is impaired in response

to multiple agonists because their common downstream

effect—the binding of platelets to fibrinogen—is impeded

by the presence of reduced numbers of fibrinogen recep-

tors. Here we also observe this phenomenon but only

collagen-induced platelet aggregation carries significant

weight in the characteristic phenotype because it is the

only specific aggregation term that is shared by all the cases

of this recently discovered disorder. There is also a very low

probability of inclusion of two rare terms that are not

related to the disease—‘‘Atypical scarring of skin’’ and

‘‘Intracranial meningioma’’—because of a chance comor-

bidity in one of the affected cases.
rican Journal of Human Genetics 98, 490–499, March 3, 2016 495



Figure 4. Results for DIAPH1 and RASGRP2
Estimated posterior probabilities of individual terms being included in the characteristic phenotype f using phenotype data for all sub-
jects and variant data for DIAPH1 ðPiyi ¼ 2Þ encoded under a high-impact dominant model and RASGRP2 ðPiyi ¼ 7Þ encoded under a
recessive model. The ten terms with the highest marginal posterior probability are shown. The estimated posterior probability that g¼ 1
is equal to 0.872 and 0.750 for DIAPH1 and RASGRP2, respectively.
Overall Results

Finally, we turn our attention to the overall results of

applying the inference procedure to data for all genes un-

der the three modes of inheritance considered, subject toP
iyiR2. In total, we applied the inference to 19,573,

3,134 and 9,733 genes for the dominant, recessive, and

high-impact dominant modes of inheritance, respectively.

The estimates of Pðg ¼ 1 j yÞ are shown as vertical density

plots in Figure 5. For the majority of genes (65%),

Pðg ¼ 1 j yÞ < Pðg ¼ 1Þ ¼ 0:05, which implies that no

characteristic phenotype can be found that helps distin-

guish carriers of the rare genotype from other subjects.

This result is consistent with the expectation that variants

in only a small proportion of genes are implicated in these

rare diseases and indicates that specificity is largely

controlled.

Strikingly, under all three assumedmodes of inheritance,

most of the highly confident results (i.e., the genes for

which the estimates of Pðg ¼ 1 j yÞ are close to one) are

for genes known to be relevant to the pathologies of the

patients (indicated by red labels in Figure 5). In all but

one case (KIF1A [MIM: 601255]), where a gene had

Pðg ¼ 1 j yÞ > 0:25 and was in one of the projects’ set of

known genes, a characteristic phenotype similar to the

known phenotype was inferred (Table 2). Above a

threshold of Pðg ¼ 1 j yÞ ¼ 0:25, there was a significant

enrichment for known genes (Fisher exact test p ¼
2.39 3 10�4, 1.98 3 10�4, and 2.23 3 10�7 for the domi-

nant, recessive, and high-impact dominant modes of in-
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heritance, respectively). Some of the inferred known genes

are highlighted more than once across the three modes of

inheritance in Figure 5 because there is power to detect

the association even when the mode of inheritance is mis-

specified. For example, RASGRP2-related Glanzmann’s is

recessive, yet Pðg ¼ 1 j yÞ > 0:25 even if a high-impact

dominant mode of inheritance is assumed.

The black dashes in Figure 5 correspond to unknown

genes for which the inferred Pðg ¼ 1Þ is greater than

0.25, of which there were 8, 1, and 5 found for the domi-

nant, recessive, and high-impact dominant model of in-

heritance, respectively. These candidates are genes with

potentially novel roles in disease and are being actively

explored.
Discussion

We have described amethod for identifying the genetic de-

terminants of rare diseases that does not require the disease

phenotype to be specified a priori. The method uncovers

associations between rare genotypes and the similarities

between subject phenotypes and a latent characteristic

phenotype. Throughout this paper, rare variants have

been aggregated within genes according to a hypothesized

mode of inheritance in order to define presence or absence

of a rare genotype. However, the unit of analysis could be a

set of interacting domains or any other arbitrary genomic

grouping. During final review of this work, a prioritization
, 2016



Table 2. Known Genes for which ℙ(g=1 | y) > 0:25 and the Inferred Phenotype Was Compatible with the Known Disorder

Gene MIM No. Mode of Inheritance Known Disorder ℙ(g=1 | y) Highest Marginal Posterior Probability Terms in f

ACTN1 102575 dominant bleeding and platelet
disorder

1.00 increased mean platelet volume (0.79),
thrombocytopenia (0.56), platelet count (0.44)

BMPR2 600799 dominant pulmonary arterial
hypertension

1.00 pulmonary hypertension (0.34), elevated pulmonary
artery pressure (0.31), pulmonary artery (0.11)

ABCA4 601691 recessive retinal dystrophy 0.99 retinal dystrophy (0.22), retina (0.22), fundus (0.16)

USH2A 608400 recessive retinal dystrophy 0.99 retina (0.23), retinal dystrophy (0.2), fundus (0.17)

CRB1 604210 recessive retinal dystrophy 0.97 retinal dystrophy (0.21), retina (0.18), fundus (0.18)

F11 264900 high-impact dominant bleeding and platelet
disorder

0.95 reduced factor XI activity (0.89), intrinsic pathway
(0.11), platelet aggregation (0.07)

RASGRP2 605577 recessive bleeding and platelet
disorder

0.75 platelet aggregation (0.67), collagen-induced platelet
aggregation (0.2), platelet function (0.1)

EYS 612424 high-impact dominant retinal dystrophy 0.70 retinal dystrophy (0.2), retina (0.17), fundus (0.14)

F7 613878 high-impact dominant bleeding and platelet
disorder

0.68 extrinsic pathway (0.5), reduced factor vii activity (0.46),
white hair (0.1)

RPGR 312610 high-impact dominant retinal dystrophy 0.42 retina (0.2), retinal dystrophy (0.17), posterior segment
of the eye (0.16)

We display the mode of inheritance under which the association was found, the known disorder, the probability of association, and the top three HPO terms
(shown in abbreviated form) in the inferred phenotypes. The marginal posterior probability of inclusion in the characteristic phenotype is shown in brackets
next to each term. When an association was found under multiple modes of inheritance, only the true mode is shown. Note that the inferred phenotypes are
influenced by prior phenotypic information in the form of OMIM and MGI annotations.
procedure was proposed that combines a standardmeasure

of strength of phenotypic clustering among individuals

having two loss-of-function variants in a gene and the

probability of the variants appearing in opposite haplo-

types in an outbred population.34 In contrast, our infer-

ence procedure is based on statistical principles and the
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The Ame
formulation of a model that is flexible with regards to

phenotypic expressivity and genetic architecture and

robust to noisy clinical coding and moderate genetic het-

erogeneity. Our Bayesian model naturally accounts for

prior evidence of disease phenotypes associated with vari-

ants in particular genes by differentially weighting the
−
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prior probability of inclusion of HPO terms in the charac-

teristic phenotype. Our finding that variants in DIAPH1

can cause macrothrombocytopenia is an example of how

this up-weighting can improve the inference.

The approachwehavedescribed is anatural andpowerful

way of modeling many rare disease phenotypes because it

accounts for phenotypic abnormalities across all organ sys-

tems encodedwith variable precision. Studies of syndromic

diseases in particular can benefit from this way of uncover-

ing associations. Our model can also be used for predicting

the log odds of the rare genotype using solely phenotype

data by means of a function implemented in our SimReg

software. This could be used to aid diagnosis by indicating

which of a patient’s genes should be prioritized for

sequencing based on his or her HPO terms. Finally, our

regression approach might prove useful for performing

inference using notions of similarity between terms in

other ontologies where a binary response can be encoded.

Althoughourmethod improves significantlyonmodeling

of phenotypic heterogeneity, our treatment of genetic het-

erogeneity can still be refined, because we currently rely on

aggregation of genetic information into single binary

variables. In the future we will explore improved modeling

of genetic heterogeneity, in which the possibility of a

mixture of pathogenic and neutral variants is accounted

for explicitly. This would be applicable to genes in which

different variants can cause drastically different clinical

pathologies (e.g., LMNA [MIM: 150330]). Allele frequency,

conservation, and functional information could also be

used to modulate prior distributions.

In summary, our work represents an advancement in the

statistical modeling of ontological heterogeneity that

might prove useful at a time in which large collections of

deeply phenotyped and sequenced cases are being assem-

bled to uncover hitherto elusive causes of rare heteroge-

neous diseases.
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Care for Rare, http://care4rare.ca
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ExAC Browser, http://exac.broadinstitute.org/

Genomics England, http://www.genomicsengland.co.uk

HPO, http://compbio.charite.de/jenkins/job/hpo/

Mouse Genome Informatics, http://www.informatics.jax.org/

NIHR BioResource – Rare Diseases, https://bioresource.nihr.ac.uk/

rare-diseases/

OMIM, http://www.omim.org/

RetNet – Retinal Information Network, https://sph.uth.edu/

retnet/home.htm
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1 Diagram representing the γ = 1 model

γ=0

! yi=1
Subjects

yi=0

γ=1

Figure S1: Cartoon depicting the γ = 1 model. Individuals are more likely to carry a rare genotype (indicated
by a filled dot) if they are phenotypically similar (as indicated by short edges) to the characteristic phenotype
φ than if they are dissimilar to it (as indicated by long edges). The angular directions of the edges are purely
representational and should not be interpreted. In contrast, under γ = 0, the rare genotype occurs at a fixed rate
irrespective of phenotype.

2 Detailed model specification

The full specification of the two alternative models, γ = 0 and γ = 1, described in the main text is given below.

γ = 0

yi ∼ Bernoulli(pi),

log

(
pi

1− pi

)
= α+ ĥi,

with

α ∼ Normal(µα, σ
2
α),

and where ĥi is an optional plug-in offset parameter (see Section 3).

γ = 1

yi ∼ Bernoulli(pi),

log

(
pi

1− pi

)
= α+ βf (Sφ(φ→ xi), af , bf ) · g (Sx(xi → φ), ag, bg) + ĥi,



with

α ∼ Normal(µα, σ
2
α),

log(β) ∼ Normal(µβ , σ
2
β),

log
af
bf
∼ Normal(µf , σ

2
f ),

log(af + bf ) ∼ Normal(µf ′ , σ
2
f ′),

log
ag
bg
∼ Normal(µg, σ

2
g),

log(ag + bg) ∼ Normal(µg′ , σ
2
g′),

P(φ) =


1

|Φ(k)| No literature phenotype
S′(M→φ)∑

ψ∈Φ(k)

S′(M→ψ) Literature phenotype M

where Φ(k) is the set of all minimal sets of HPO terms of size k. We use the following definitions of Sφ, Sx, f , g, S′:

Sφ(φ→ xi) =
1

|φ|
∑
tφ∈φ

max
tx∈xi

s(tφ, tx)1tφ∈anc(tx),

Sx(xi → φ) =
1

|xi|
∑
tx∈xi

max
tφ∈φ

s(tx, tφ)1tφ∈anc(tx),

f(z, af , bf ) = Iz(af , bf ),

g(z, ag, bg) = Iz(ag, bg),

S′(M → τ) =
1

|τ |
∑
t∈τ

max
m∈M

exp (s′(m, t)) ,

with

s′(t1, t2) = max
t∈anc(t1)∩anc(t2)

IC(t),

s(t1, t2) =
2× s′(t1, t2)

IC(t1) + IC(t2)
,

Iz(a, b) =

∫ z
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

and where anc(t) is the union of t and all the ancestors of t in the HPO graph and IC(t) is the information content
of term t. Finally, we use the following values for the hyperparameters (see also Section 4):

µα = 0, σ2
α = 5, µβ = 2, σ2

β = 1, µf = 1, σ2
f = 1, µf ′ = 2, σ2

f ′ = 1, µg = 0, σ2
g = 1.5, µg′ = 2, σ2

g′ = 1 (S1)

3 Estimation of the offset ĥi

In order to accommodate prior beliefs about the background rate of observing the rare genotype for a particular
gene, we obtained point estimates of the effects of gene length and sequencing platform on the log odds of observing
the rare genotype. We fitted a generalised linear model linking these variables to the genotype data across all genes
for all 2,045 sequenced individuals described in the main text. The model used was:

yij ∼ Bernoulli(pij),

log

(
pij

1− pij

)
= λlj + ωT zi·,

where yij = 1 indicates presence of the rare genotype in gene j for individual i, which occurs with probability pij ,
lj is the length in base pairs of the coding region of gene j and zik = 1 if individual i was sequenced on sequencing
platform k and 0 otherwise. Thus, λ is interpretable as the effect size of gene length and ω1, . . . , ωK as the effect



sizes of sequencing platforms 1, . . . ,K. We found that certain sequencing platforms led to gene-specific biases in
variant calls. To ensure robustness to these biases, we only used data for genes having a Fisher exact p-value
of association between the rare genotype and the sequencing platform greater than 0.05. Under a model of no
association, the offset for gene j is given by:

yi ∼ Bernoulli(pi),

log

(
pi

1− pi

)
= α+ ĥi,

where ĥi = λ̂lj + ω̂T zi·. The ĥi was obtained for all genes in all the hypothetical modes of inheritance described in
the main text.

4 Prior on f and g

Recall that the overall predictor for the log odds of having a rare genotype under the alternate model is given by

f(Sφ(φ→ xi), af , bf ) · g(Sx(xi → φ), ag, bg).

As described in the main text, the presence of a term in the characteristic phenotype φ that is absent from the
patient phenotype xi has the effect of lowering Sφ, while the presence of a term in xi that is absent from φ has the
effect of lowering Sx. For example, if φ has one HPO term and it is also present in xi, then Sφ = 1. However, the
presence of one or two additional spurious terms can reduce Sφ to as low as 0.5 or 0.33 respectively.

In order to discourage non-parsimonious characteristic phenotypes, we place a high prior weight on f transfor-
mations whose corresponding probability density functions have means above 0.5 (i.e.

af
af+bf

> 0.5) as this ensures

that a good prediction of the log odds cannot be obtained if the absolute value of Sφ is low. Specifically, we specify
the priors on the parameters of f described in Section 2. The resultant distribution of transformations f and g are
represented in Figure S2 (left). However, in order to allow for patients coded with sporadic terms that are not part
of the core disease phenotype, we specify a more flexible prior distribution on g than we do on f , as illustrated in
Figure S2 (right).
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Figure S2: Prior on f and g. We show the distribution of shapes for the incomplete beta function transformation of
phenotype similarities Sφ and Sx for select values of the parameters, given the hyperparameter values in Equation S1.
The thickness and opacity of each line is proportional to the prior probability of the corresponding parameterisation
of the transformation.

Our choice of hyperparameter values was informed by a sensitivity analysis assessing the model’s performance
on data for ACTN1. We found that not using a transformation at all (i.e. not modulating the similarity with f and



g, which is equivalent to using the identity function obtained by setting af = bf = ag = bg = 1), or using an overly
flexible prior on f , discourages inclusion of the essential ‘Thrombocytopenia’ term relative to inclusion of spurious
alternative terms, conditional on inclusion of the other essential term, ‘Increased mean platelet volume’. This occurs
because if the value of

af
af+bf

has high posterior weight near 0.5, then spurious terms can be accommodated by

mapping values near 0.5 to near 1. As more prior weight is shifted to f transformations with a value of
af

af+bf

greater than 0.5, the probability of joint inclusion of the two key nodes of this disease is increased (Figure S3).
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Figure S3: Inferred φ for various parameterisations of the similarity function. Graphical representation
of the posterior distribution of φ when no f/g transformations are used and for different values of µf (with σ2

f =

1, µg = 0, σ2
g = 1.5) using the data for ACTN1. Each node shows the marginal probability of inclusion in φ.

Without the f/g transformations, the essential ‘Thrombocytopenia’ term carries low posterior weight. If the f/g
transformations are included, as the value of µf is increased, from 0 through 0.5 to 1, the probability of inclusion
of the term ‘Thrombocytopenia’ increases.

Our choice of prior can nevertheless accommodate sporadic absence of disease terms in patients that are part
of the characteristic phenotype, provided it can be estimated accurately. Our simulation study (see main text)
confirms this because we observe a gradual reduction of the posterior mean value of

af
af+bf

as the expressivity

of the terms of the template phenotype for the hypothetical disease phenotype decreases from 1 through 2
3 to 1

3
(Figure S4).
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Figure S4: The posterior mean value of
af

af+bf
for different levels of expressivity. Distribution of the

posterior mean value of
af

af+bf
for three different values of expressivity r. The distributions were obtained over 384

repetitions of our simulation, with
∑
i yi = 20. A decrease in the expressivity, r, of individual terms in the template

phenotype results in a decrease in the posterior mean value of
af

af+bf
.

5 Genetic heterogeneity

We performed a different version of the simulation study in the main text to assess the performance of our method
when genetic heterogeneity is controlled explicitly. Here, we vary a parameter representing the extent of genetic
heterogeneity, v, so that for each individual having yi = 1, there were v additional individuals with phenotypes
simulated from the same distribution but having yi = 0.

We applied the inference to data sets generated with v ∈ {0, 1, 3, 9}. Thus, the simulations where v = 0
correspond to the scenario of the simulations described in the main text, and those where v = 9 represent situations
where only one tenth of the cases having a phenotype arising from the disease template have yi = 1.

The results of the simulation, given as box plots of the estimated posterior means of γ under the various scenarios
(Figure S5), demonstrate that although power goes down as genetic heterogeneity increases, the sensitivity of the
method, thresholding on γ > 0.25, approaches 100% when expressivity r is 1 and

∑
i yi is at least 6, and also when

expressivity r is 2
3 and

∑
i yi is at least 10, irrespective of v. When v = 3 and r = 1

3 , which means the HPO terms
have very low expressivity and only a quarter of individuals drawn from the template phenotype carry the rare
genotype, γ exceeded 0.25 in 87.5% of our simulations as long as 20 out of 1, 000 individuals carried the genotype.
Thus we conclude that our method is powerful even in challenging scenarios in which there is substantial genetic
heterogeneity and low phenotypic expressivity.
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Figure S5: Relationship between genetic heterogeneity and power. Box plots showing the distribution of
the posterior estimates of γ at various levels of phenotypic expressivity, r, for various sample frequencies of the
rare genotype,

∑
i yi and with different levels of genetic heterogeneity as captured by v. The boxes contain the

inter-quartile range, with whiskers extending to the extreme values up to 1.5 times the inter-quartile range from
the box.

6 Specificity

The simulation study presented in the main text shows that if the phenotypes are homogeneously selected from
a wide range of HPO nodes, then our method is unlikely to produce high posterior estimates of γ. However, the
simulation in the main text is based on only 64 repetitions for each simulation set-up (shown as 64 grey dots in
each panel). In order to more accurately assess the specificity of our method we simulated 20,000 independent
sets of phenotypes, simulated with a total of 6 cases having the rare genotype. The distribution of the posterior
mean values of γ inferred for the data sets are shown in the left panel of Figure S6. There were a total of 7
simulated data sets for which the value was greater than 0.25, with the highest estimate being equal to 0.86, which
equates to a specificity of 99.97%. The data set for which the highest value was obtained contained four (out of
six) individuals with the rare genotype, labelled, 3–6, who had a high mean posterior similarity (> 0.3) to the
characteristic phenotype (middle panel of Figure S6). By chance, these four individuals had been assigned highly
specific terms relating to bone ossification, the toe and long bone morphology (right panel of Figure S6). This
coincidental sharing of HPO terms by these individuals who also carried the rare genotype led to the abnormally
high posterior estimate of γ. However, this is a desirable property of our method because in practice it is not
possible to know whether such a correlation is causal or spurious.
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Figure S6: Evaluation of the specificity of the inference procedure. The distribution of posterior γ for
applications of the inference to the 20,000 repeats of the simulation is shown as a box plot. The box contains the
inter-quartile range, with whiskers extending between the lowest posterior γ obtained and 0.25. For the simulated
data set for which the highest posterior mean value of γ was inferred, the posterior mean similarities to φ, xi,
for the 1,000 simulated patient phenotypes are shown as a histogram, with those of the individuals with the rare
genotype, i|yi = 1, marked by red lines. The inferred characteristic phenotype φ for this data set is shown as a
graph. Each node is labelled with a) the HPO term b) the number of simulated individuals out of 1,000 who had
the term c) which individuals with the rare genotype had the term (as labelled in the middle panel) and d) the
posterior probability of inclusion in φ conditional on γ = 1 (also represented by node size).

7 Inference using Markov chain Monte Carlo (MCMC)

7.1 Carlin and Chib method

The method of Carlin and Chib is a means of inferring the parameters in two models and computing a Bayes factor
comparing them. Instead of targeting the posterior distribution of each model individually, the following function
is targeted:

(γ, θ(0), θ(1)) 7→ (1− γ)L(0)
y (θ(0))p0(θ(0))f1(θ(1)) + γL(1)

y (θ(1))p1(θ(1))f0(θ(0)).

Here, θ(0) and θ(1) are vectors of the parameters of models 0 and 1 respectively and p0(θ(0)) and p1(θ(1)) are their

respective priors. The likelihood functions under model 0 and 1 are given by L
(0)
y (θ(0)) and L

(1)
y (θ(1)) respectively.

The functions f0(θ(0)) and f1(θ(1)) are arbitrary probability density functions called ‘pseudopriors’ representing the
conditional probability distributions of the parameters of one model given the alternate model is true, i.e. θ(0)|γ = 1
and θ(1)|γ = 0 respectively. The conditional posterior distributions of the parameters θ(0)|γ = 0 and θ(1)|γ = 1
can be estimated from MCMC samples made at iterations when γ = 0 and γ = 1, respectively, and the posterior
probability that model 1 is true can be estimated from the proportion of iterations in which γ = 1.

Let α∗ be the intercept parameter under γ = 0 and α be the intercept parameter under γ = 1 so that they may
be distinguished. For convenience, we perform inference of φ̃, which is on the unrestricted space of vectors of HPO
terms, rather than φ, because it is difficult to propose uniformly from the space of minimal sets Φ(k). However, φ
can be recovered from φ̃ easily by mapping to the corresponding minimal set. The MCMC algorithm proceeds to
target the following distribution:

P(γ, α, β, af , bf , ag, bg, φ̃|y) ∝
(1− γ)L(0)

y (α∗)p0(α∗)f1(α)f1(β)f1(af )f1(bf )f1(ag)f1(bg)f1(φ̃)

+γL(1)
y (α, β, af , bf , ag, bg, φ̃)p(α)p(β)p(af )p(bf )p(ag)p(bg)p(φ̃)f0(α∗).



For optimal mixing of the Markov chain, the pseudopriors should approximate the respective conditional poste-

rior distribution given the model, that is, f0(θ(0)) ∝ L(0)
y (θ(0))p0(θ(0)) and f1(θ(1)) ∝ L(1)

y (θ(1))p1(θ(1)). To achieve
this, we tune the pseudopriors using empirical summary statistics obtained by running initial Markov chains under
each model separately. For parameters α∗ and α, Normal pseudopriors are used, while for the strictly positive
parameters β, af , bf , ag and bg, Log-Normal pseudpriors are used. The hyperparameters of these pseudopriors are

obtained using maximum likelihood estimation based on the MCMC samples. We compose a pseudoprior for φ̃ by
counting the number of appearances of HPO terms in any of the k slots of φ̃ throughout the tuning iterations:

P(t) =

∑I
i=1

∑k
j=1 1(φ̃ij = t) + ε

Ik + ε|H|
, (S2)

where I is the number of MCMC tuning iterations, t is a term in the set of HPO terms H and φ̃ij is the jth element

of φ̃ in the ith iteration. We allow a non-zero probability of inclusion of terms which have not been sampled at all
during the tuning batch by setting ε = 1. Using the above expression, we define the pseudoprior on φ̃ as

f1

(
φ̃
)

=

k∏
j=1

P
(
φ̃j

)
.

7.2 MCMC updates

Each iteration of the MCMC algorithm comprises the following steps:

1. An update of α∗:

γ = 0 Propose an update of α∗ by drawing from

α∗
′
∼ Normal(α∗, s2

α)

and accepting with probability

min

(
1,
L

(0)
y (α∗

′
)p(α∗

′
)

L
(0)
y (α∗)p(α∗)

)
.

γ = 1 Sample α∗
′

from the pseudoprior distribution for α∗:

α∗
′
∼ Normal(µ̂α∗ , sd = σ̂2

α∗).

2. An update of α:

γ = 0 Sample α′ from the pseudoprior distribution for α:

α′ ∼ Normal(µ̂α, σ̂
2
α).

γ = 1 Propose an update of α by drawing from

α′ ∼ Normal(α, s2
α)

and accepting with probability

min

(
1,
L

(1)
y (α′, β, af , bf , ag, bg, φ̃)p(α′)

L
(1)
y (α, β, af , bf , ag, bg, φ̃)p(α)

)
.



3. An update of β:

γ = 0 Sample log β′ from the pseudoprior distribution for log β

logβ′ ∼ Normal(µ̂β , σ̂
2
β).

γ = 1 Propose an update of log β by drawing from

logβ′ ∼ Normal(β, s2
β)

and accepting with probability

min

(
1,
L

(1)
y (α, β′, af , bf , ag, bg, φ̃)p(β′)

L
(1)
y (α, β, af , bf , ag, bg, φ̃)p(β)

)
.

4. An update of the shape parameters af , bf , ag and bg analagously as is done for β.

5. An update of φ̃:

γ = 0 Sample φ̃ from the pseudoprior distribution for φ̃ by sampling all k terms independently from the distribution
described in Equation S2.

γ = 1 Propose updating φ̃ to φ̃′ by setting component t =
[
φ̃
]
j

(where j is chosen at random from 1, . . . , k) to a

random term t′, selected with probability πt. Hence φ̃′ can be specified as

[
φ̃′
]
h

=

{
t′ h = j[
φ̃
]
h

otherwise.

The proposal is accepted with probability

min

(
1,
L

(1)
y (y|α, β, af , bf , ag, bg, φ̃′)p(φ̃′)πt
L

(1)
y (α, β, af , bf , ag, bg, φ̃)p(φ̃)πt′

)
.

We set the proposal distribution of the new term {πt : t ∈ H} to equal that of the individual components of
φ̃ under its pseudoprior (see Equation S2). An alternative approach that does not rely on a tuning chain is
to propose a new term proportionally to the number of subjects having yi = 1 whose phenotypes include the
term or one of its descendants in the HPO:

πt ∝
N∑
i=1

1yi=11t∈
⋃
t′∈xi

anc(t′).

6. An update of γ by Gibbs sampling:

γ′ ∼ Bernoulli

(
ω(1)

ω(0) + ω(1)

)
,

where

ω(0) = (1− π)L(0)
y (α∗)f1(α)f1(β)f1(af )f1(bf )f1(ag)f1(bg)f1(φ̃)p(α∗),

ω(1) = π L(1)
y (α, β, af , bf , ag, bg, φ̃)p(α)p(β)p(af )p(bf )p(ag)p(bg)p(φ̃)f0(α∗),

where π is the prior probability that γ = 1.



8 Calculation of prior probability for φ and φ̃

In order to calculate p(φ) when using a uniform distribution over Φ(k), we need to calculate the number of distinct
minimal sets

∣∣Φ(k)
∣∣. This is trivial when k = 1, as

∣∣Φ(k)
∣∣ = |H|. However it becomes more computationally intensive

as k increases, so in our implementation we use the approximation
(|H|
k

)
. This approximation works well in practice

when k is small. It has no effect on the update of the φ̃ parameter, as the
∣∣Φ(k)

∣∣ = |H| expression cancels out in

the acceptance probability for φ̃′, but it does affect the update of γ as it penalises the model γ = 1 slightly by
overestimating the size of

∣∣Φ(k)
∣∣.

When using an informative prior distribution, weighted by similarity to the literature phenotype as described
in the main text, we need to calculate

∑
ψ∈Φ(k) S′ (M → ψ). In order to avoid having to sum over the entire space

Φ(k), we employ the approximation
∣∣Φ(k)

∣∣× k ×meanψ∈HS
′(M → ψ).

Finally, to compute p(φ̃), we also need to calculate the number of alternative unrestricted vectors that map to

the same minimal set, i.e.
∣∣∣{φ̃′ ∈ Hk : υ(φ̃′) = υ(φ̃)

}∣∣∣, where ν maps an unrestricted vector to a minimal set. We

use the following expression for the number of representations:∣∣∣∣∣∣
⋃

t∈υ(φ̃)

anc(t)

∣∣∣∣∣∣
k

+

|υ(φ̃)|∑
i=1

(−1)i
(
|υ(φ̃)|
i

)∣∣∣∣∣∣
⋃

t∈υ(φ̃)

anc(t)

∣∣∣∣∣∣− i
k
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Table S1 lists the ethics authorities for which the NIHR BioResource – Rare Diseases study has approval. All study
procedures were performed after the participants provided informed written consent and were in accordance with
the Declaration of Helsinki.

Name of national ethics authority Ethics approval number Country
Cambridgeshire 1 Research Ethics Committee 10/H0304/66 United Kingdom
East of England – Cambridge Central 13/EE/0325 United Kingdom
Institut National de La Santé et de la Recherche Médicale RBM-01-14 France
Sir Charles Gairdner Group Human Research Ethics Committee 2012-095 Australia
Ethics Committee of the University Hospital Leuven ML3580 Belgium
Ethics Board of the University of Greifswald n/a Germany
Ethics Board 2 at Campus Virchow – Klinikum, Charité University Hospital, Berlin EA2/170/05 Germany
Children’s Hospital of Philadelphia Institutional Review Board IRB#12-008603 USA
Beth Israel Deaconess Medical Center IRB Protocol #: 2011P000337 USA

Table S1: Ethics approval information. Names, ethics approval numbers and countries of ethics authorities
approving the NIHR BioResource – Rare Diseases study.

10 SimReg performance

We applied the inference procedure to simulated data sets to assess the performance of SimReg. We varied the
number of phenotyped individuals and the number of terms (sampled from a preset collection of approximately
1,000 terms) allocated to each individual, and programmed the algorithm to generate 20,000 MCMC samples (of
which 10,000 are tuning iterations). The results of the performance test are shown in Table S2.

N 2 terms 4 terms 8 terms
100 7.31 9.03 11.55

1,000 47.38 65.70 91.74
10,000 451.54 627.75 879.78

Table S2: Computational performance. Completion times in seconds for applications of the SimReg procedure.
The rows indicate the total number of individuals included in the inference, and the columns indicate the number
of HPO phenotype terms allocated to each individual. These results were obtained by running SimReg on a single
CPU of a computer with 2.40GHz processors.



11 Lists of known genes for the BRIDGE projects

Genes for which variants are known to underlie a BRIDGE project disorder are listed below:

Bleeding and Platelet Disorders (BPD)
ACTN1, ANKRD26, ANO6, AP3B1, BLOC1S3, BLOC1S6, CYCS, DTNBP1, ETV6, F10, F11, F13A1, F13B,
F2, F5, F7, F8, F9, FERMT3, FGA, FGB, FGG, FLI1, FLNA, GATA1, GFI1B, GGCX, GNE, GP1BA, GP1BB,
GP6, GP9, HOXA11, HPS1, HPS3, HPS4, HPS5, HPS6, HRG, ITGA2B, ITGB3, LMAN1, LYST, MCFD2, MPL,
MYH9, NBEA, NBEAL2, ORAI1, P2RY12, PLA2G4A, PLAT, PLAU, PLG, PROC, PROS1, RASGRP2, RBM8A,
RUNX1, SERPINC1, SERPIND1, SERPINE1, SERPINF2, STIM1, STXBP2, TBXA2R, TBXAS1, THBD, THPO,
VIPAS39, VKORC1, VPS33B, VWF, WAS

Pulmonary Arterial Hypertension (PAH)
ACVRL1, BMPR2, CAV1, EIF2AK4, ENG, KCNK3, SMAD1, SMAD4, SMAD9

Primary Immune Disorders (PID)
ADA, AICDA, AIRE, AK2, AP3B1, ATM, BLM, C1QC, C2, C4B, C5, C6, C7, C8A, C8B, C8G, C9, CARD11,
CARD9, CASP10, CD19, CD27, CD3D, CD3E, CD40, CFD, CFH, CFI, CFP, CHD7, CIITA, CORO1A, CTLA4,
CXCR4, CYBA, CYBB, DCLRE1C, DKC1, DNMT3B, DOCK8, ELANE, F12, FAS, FERMT3, FOXP3, G6PC3,
GATA2, HAX1, IFNGR1, IFNGR2, IKBKB, IKBKG, IL10, IL10RA, IL10RB, IL12B, IL12RB1, IL2RA, IL2RG,
IL7R, IRAK4, IRF8, ISG15, ITK, JAGN1, JAK3, KRAS, LCK, LIG1, LIG4, LRBA, LYST, MAGT1, MBL2,
MEFV, MPO, MRE11A, MVK, MYD88, NBN, NCF1, NCF2, NCF4, NFKB2, NFKBIA, NHEJ1, NHP2, NLRP3,
NOP10, ORAI1, PGM3, PIK3CD, PNP, PRF1, PRKCD, PSMB8, RAB27A, RAG1, RAG2, RBCK1, RFX5,
RFXANK, RFXAP, RPSA, RTEL1, SERPING1, SH2D1A, SLC29A3, SMARCAL1, STAT1, STAT3, STAT5B,
STIM1, STK4, STX11, STXBP2, TAP1, TAP2, TAPBP, TBX1, TCN2, TERT, TINF2, TNFRSF1A, TTC7A,
UNC13D, VPS45, WAS, XIAP, ZAP70, ZBTB24

Specialist Pathology: Evaluating Exomes in Diagnostics (SPEED) - Neurological
AAAS, ABAT, ABCB7, ABCC9, ABCD1, ABHD5, ACAD9, ACADM, ACADS, ACAT1, ACOX1, ACTB, ACY1,
ADCK3, ADSL, AFF2, AFG3L2, AGA, AGK, AGL, AKT1, ALDH18A1, ALDH3A2, ALDH4A1, ALDH5A1,
ALDH7A1, ALDOA, ALDOB, ALMS1, ALPL, ALS2, ALX1, ALX3, AMER1, AMPD2, AMT, ANKRD11, ANO3,
AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, APOPT1, APTX, ARG1, ARID1A, ARL6, ARSA, ARSE, ARX, ASAH1,
ASL, ASPA, ASPM, ASXL1, ATIC, ATL1, ATM, ATN1, ATP13A2, ATP1A3, ATP7A, ATP7B, ATRX, ATXN2,
ATXN3, AUH, B3GALT6, B4GALNT1, B4GALT7, BBS1, BBS10, BBS12, BBS2, BBS4, BBS5, BBS7, BBS9,
BCKDHA, BCKDHB, BCOR, BICD2, BIN1, BLM, BMP4, BMPER, BRAF, BRAT1, BRCA2, BRIP1, BRWD3,
BSCL2, BSND, BTD, BUB1B, C12orf65, C19orf12, C2orf71, C5orf42, C9orf72, CA2, CA8, CASK, CBS, CC2D1A,
CC2D2A, CCBE1, CCND2, CCT5, CDC6, CDH15, CDKL5, CDON, CDT1, CENPJ, CEP290, CEP41, CEP57,
CHD7, CHRNA4, CHST14, CHST3, CHUK, CIB2, CKAP2L, CLN3, CLN5, CLN6, CLN8, CNTNAP2, COL11A2,
COL1A1, COL2A1, COL4A1, COL4A2, COLEC11, COQ9, COX10, COX15, COX6B1, COX7B, CPS1, CRB1,
CREBBP, CSF1R, CSTB, CTC1, CTDP1, CTNS, CTSA, CTSD, CUL4B, CYP27A1, CYP2U1, CYP7B1, DAG1,
DARS2, DBT, DCTN1, DCX, DDC, DDHD1, DDHD2, DDOST, DDR2, DDX11, DHCR7, DHFR, DIS3L2, DLAT,
DLD, DMD, DMPK, DNMT3B, DOCK8, DOLK, DPAGT1, DPM1, DRD2, DYM, EBP, EFNB1, EFTUD2, EGR2,
EHMT1, EIF2AK3, EIF4G1, ELAC2, ELOVL4, EP300, EPG5, ERCC2, ERCC3, ERCC4, ERCC6, ERCC8, ER-
LIN2, ESCO2, ETHE1, EVC, EVC2, EXOSC3, EXT1, EYA1, EZH2, FA2H, FAM111A, FAM126A, FAM20C,
FANCA, FANCC, FANCD2, FANCE, FBN1, FBN2, FBP1, FBXO7, FGD1, FGD4, FGF3, FGFR1, FGFR2,
FGFR3, FH, FIG4, FKRP, FKTN, FLNA, FLNB, FLVCR1, FMR1, FOLR1, FOXG1, FOXRED1, FRAS1, FREM2,
FTCD, FTL, FTSJ1, FUCA1, GABRA1, GABRB3, GABRG2, GAD1, GALC, GALE, GALT, GAMT, GATA6,
GATM, GBA, GBA2, GCDH, GCH1, GDAP1, GFAP, GFM1, GJA1, GJB1, GJC2, GK, GLB1, GLDC, GLI3,
GLUD1, GLUL, GM2A, GNAL, GNAS, GNPAT, GNPTAB, GNPTG, GNS, GPR56, GRIA3, GRIK2, GRIN2A,
GRN, GTF2H5, GUSB, HADH, HAX1, HCCS, HCFC1, HDAC4, HDAC8, HEXA, HEXB, HGSNAT, HK1, HOXA1,
HPRT1, HRAS, HSD17B10, HSD17B4, HSPD1, HSPG2, HTT, HUWE1, IDS, IDUA, IFT140, IGF1, IGF1R, IGF2,
IKBKG, IL1RAPL1, INPP5E, IQSEC2, ISPD, ITGA7, IVD, KANSL1, KARS, KAT6B, KBTBD13, KCNC3,
KCNJ10, KCNQ2, KCNT1, KCTD7, KDM5C, KDM6A, KIAA0196, KIAA1279, KIF11, KIF1A, KIF1C, KIF5A,
KIF7, KIRREL3, KMT2A, KMT2D, KRAS, KRIT1, L1CAM, L2HGDH, LAMA2, LAMC3, LAMP2, LARGE,
LEPRE1, LHX3, LITAF, LMBRD1, LMNA, LRP2, LRP5, LRPPRC, LRRK2, LYST, MAN2B1, MANBA, MAOA,
MAP2K1, MAP2K2, MAPT, MASP1, MC2R, MCCC1, MCOLN1, MCPH1, MECP2, MED12, MEF2C, MEGF10,



MEGF8, MFSD8, MGAT2, MGP, MID1, MITF, MKKS, MKS1, MLC1, MMAA, MMAB, MMACHC, MMADHC,
MNX1, MOCS2, MPLKIP, MPV17, MPZ, MRE11A, MT-ATP6, MT-ND4, MT-TK, MTHFR, MTMR2, MT-
PAP, MTR, MTRR, MTTP, MUT, MYCN, MYH3, MYO5A, MYO7A, NAGA, NAGLU, NAGS, NBN, NDE1,
NDP, NDRG1, NDUFA1, NDUFS1, NDUFS4, NDUFS7, NDUFS8, NDUFV1, NEFL, NEU1, NF1, NFU1, NHS,
NIPA1, NIPBL, NKX2-1, NKX2-5, NPC1, NPC2, NPHP1, NRAS, NSD1, NSDHL, NT5C2, NTRK1, NUBPL,
OCRL, OFD1, OPA3, OPHN1, ORC1, ORC4, ORC6, OTC, OTX2, PAFAH1B1, PAH, PAK3, PALB2, PANK2,
PARK2, PARK7, PAX2, PAX6, PC, PCBD1, PCCA, PCCB, PCDH19, PCNT, PDCD10, PDE4D, PDGFB,
PDGFRB, PDHA1, PDHX, PDSS2, PEPD, PEX1, PEX10, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2,
PEX26, PEX3, PEX5, PEX6, PEX7, PGAP1, PGK1, PHF6, PHGDH, PIGA, PIGL, PIGO, PIGV, PIK3CA,
PIK3R2, PINK1, PITX3, PLA2G6, PLEC, PLOD1, PLP1, PMM2, PMP22, PNKD, PNKP, PNPLA6, PNPO,
PNPT1, POC1A, POLG, POMGNT1, POMGNT2, POMT1, POMT2, PORCN, POU1F1, PPP2R2B, PQBP1,
PRKAR1A, PRKRA, PROP1, PRPS1, PRRT2, PRSS12, PRX, PSEN1, PSMB8, PSPH, PTCH1, PTDSS1,
PTEN, PTPN11, PTS, PYCR1, QDPR, RAB23, RAB39B, RAB3GAP1, RAB3GAP2, RAD21, RAF1, RAI1,
RBM8A, RECQL4, REEP1, REEP2, RET, RNASEH2A, RNASEH2B, RNASEH2C, RNASET2, RNU4ATAC,
ROGDI, ROR2, RPGRIP1L, RPS6KA3, RTN2, RYR1, SACS, SALL1, SATB2, SBF2, SC5D, SCN1A, SCN1B,
SCN4A, SCN8A, SCO1, SCO2, SDHA, SDHAF1, SETBP1, SF3B4, SGCE, SGSH, SH3TC2, SHH, SHOC2, SIG-
MAR1, SIL1, SIX3, SKI, SLC12A6, SLC16A2, SLC17A5, SLC19A3, SLC20A2, SLC22A5, SLC25A15, SLC25A20,
SLC2A1, SLC2A10, SLC33A1, SLC35C1, SLC46A1, SLC4A4, SLC52A3, SLC5A5, SLC6A1, SLC6A17, SLC6A19,
SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLX4, SMARCA2, SMARCA4, SMARCAL1, SMARCB1, SMC1A, SMOC1,
SMPD1, SNCA, SOX10, SOX2, SOX3, SPAST, SPG11, SPG20, SPG21, SPG7, SPR, SPRED1, SRD5A3, STRA6,
STS, STXBP1, SUMF1, SURF1, SYNGAP1, SYNJ1, SYP, TAF1, TARDBP, TAT, TAZ, TBC1D24, TBCE,
TBP, TBX1, TCF4, TCOF1, TECPR2, TFAP2A, TFAP2B, TFG, TGFBR1, TH, THAP1, TIMM8A, TMCO1,
TMEM165, TMEM237, TMEM67, TMEM70, TOR1A, TP63, TPP1, TRAPPC9, TREX1, TRIM32, TRIM37,
TSC1, TSC2, TSPAN7, TTC19, TTC8, TUBA1A, TUBA8, TUBB2B, TUBB4A, TUSC3, TWIST1, TYR, UBE3A,
UBR1, UGT1A1, UMPS, UPF3B, UROC1, VAMP1, VDR, VIPAS39, VLDLR, VPS35, WDPCP, WDR45, WDR62,
WNT5A, XPA, ZBTB20, ZC4H2, ZDHHC9, ZEB2, ZFYVE26, ZIC2, ZNF711

Specialist Pathology: Evaluating Exomes in Diagnostics (SPEED) - Retinal Dystrophy
ABCA4, ABCC6, ABHD12, ACBD5, ADAM9, ADAMTS18, AHI1, AIPL1, ALMS1, ARL2BP, ARL6, ARMS2,
ATF6, ATXN7, BBIP1, BBS1, BBS10, BBS12, BBS2, BBS4, BBS5, BBS7, BBS9, BEST1, C12orf65, C1QTNF5,
C2, C21orf2, C2orf71, C3, C8orf37, CA4, CABP4, CACNA1F, CACNA2D4, CAPN5, CC2D2A, CDH23, CDH3,
CDHR1, CEP164, CEP250, CEP290, CERKL, CFB, CFH, CHM, CIB2, CLN3, CLRN1, CNGA1, CNGA3, CNGB1,
CNGB3, CNNM4, COL11A1, COL2A1, COL9A1, CRB1, CRX, CSPP1, CYP4V2, DFNB31, DHDDS, DHX38,
DMD, DRAM2, DTHD1, EFEMP1, ELOVL4, EMC1, ERCC6, EYS, FAM161A, FBLN5, FLVCR1, FSCN2, FZD4,
GDF6, GNAT1, GNAT2, GNPTG, GPR179, GRK1, GRM6, GUCA1A, GUCA1B, GUCY2D, HARS, HGSNAT,
HK1, HMCN1, HMX1, HTRA1, IDH3B, IFT140, IFT172, IFT27, IMPDH1, IMPG1, IMPG2, INPP5E, INVS,
IQCB1, ITM2B, JAG1, KCNJ13, KCNV2, KIAA1549, KIF11, KIZ, KLHL7, LAMA1, LCA5, LRAT, LRIT3, LRP5,
LZTFL1, MAK, MERTK, MFN2, MFRP, MKKS, MKS1, MT-ATP6, MTTP, MVK, MYO7A, NDP, NEK2, NEU-
ROD1, NMNAT1, NPHP1, NPHP3, NPHP4, NR2E3, NR2F1, NRL, NYX, OAT, OFD1, OPA1, OPA3, OPN1LW,
OPN1MW, OPN1SW, OR2W3, OTX2, PANK2, PAX2, PCDH15, PCYT1A, PDE6A, PDE6B, PDE6C, PDE6G,
PDE6H, PDZD7, PEX1, PEX2, PEX7, PGK1, PHYH, PITPNM3, PLA2G5, PLK4, PNPLA6, POC1B, PRCD,
PRDM13, PROM1, PRPF3, PRPF31, PRPF4, PRPF6, PRPF8, PRPH2, PRPS1, RAB28, RAX2, RB1, RBP3,
RBP4, RD3, RDH11, RDH12, RDH5, RGR, RGS9, RGS9BP, RHO, RIMS1, RLBP1, ROM1, RP1, RP1L1, RP2,
RP9, RPE65, RPGR, RPGRIP1, RPGRIP1L, RS1, SAG, SDCCAG8, SEMA4A, SLC24A1, SLC7A14, SNRNP200,
SPATA7, SPP2, TEAD1, TIMM8A, TIMP3, TLR3, TLR4, TMEM126A, TMEM237, TOPORS, TREX1, TRIM32,
TRPM1, TSPAN12, TTC8, TTLL5, TTPA, TUB, TUBGCP4, TUBGCP6, TULP1, UNC119, USH1C, USH1G,
USH2A, VCAN, WDPCP, WDR19, WFS1, ZNF408, ZNF423, ZNF513
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