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ARTICLE

Systematic selection of small molecules to promote
differentiation of embryonic stem cells and experimental
validation for generating cardiomyocytes

Y KalantarMotamedi', M Peymani?, H Baharvand®, MH Nasr-Esfahani? and A Bender'

Small molecules are being increasingly used for inducing the targeted differentiation of stem cells to different cell types. However,
until now no systematic method for selecting suitable small molecules for this purpose has been presented. In this work, we
propose an integrated and general bioinformatics- and cheminformatics-based approach for selecting small molecules which direct
cellular differentiation in the desired way. The approach was successfully experimentally validated for differentiating stem cells into
cardiomyocytes. All predicted compounds enhanced expression of cardiac progenitor (Gata4, Nkx2-5 and Mef2c) and mature
cardiac markers (Actc1, myh6) significantly during and post-cardiac progenitor formation. The best-performing compound,
Famotidine, increased the percentage of Myh6-positive cells from 33 to 56%, and enhanced the expression of Nkx2.5 and Tnnt2
cardiac progenitor and cardiac markers in protein level. The approach employed in the study is applicable to all other stem cell

differentiation settings where gene expression data are available.
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INTRODUCTION

Differentiating stem cells to different tissues is of current major
and increasing importance in the context of regenerative
medicine. Transcription factors have been used for inducing the
differentiation of embryonic stem cells in a step-wise manner to
various cells of interest such as dopamine neurons, retinal
pigment epithelium, floor plate cells, hematopoietic cells,
endothelial cells, pancreatic cells and cardiomyocytes.! However,
the utilization of transcription factor still suffers from short-
comings such as reproducibility, efficiency, cost and quality (eg,
homogeneous differentiation) which prevents translation of these
methods into therapy and clinic."? Hence, the utilization of small
molecules is often preferred as it is safer, more efficient, more
robust and more cost effective.** Various small molecules have
been identified that can induce the differentiation of stem cells to
different tissues."** Selecting small molecules for the differentia-
tion of stem cells to cardiomyocytes is of particular interest®®
because this cell type can be used as a valuable cell source for
replacement therapy following myocardial injury, as well as being
able to serve as a cardiovascular disease model for drug
screening.'® However, to the best of our knowledge, currently
there exists no systematic approach to facilitate the general and
data-driven selection of small molecules for the differentiation of
stem cells.

Hence, in this work we present a systematic approach for the
selection of potent small molecules for inducing the differentia-
tion of pluripotent stem cells to the tissue of interest. We have
applied and experimentally validated this approach, which is
based both on bioinformatics and cheminformatics components,
by selecting small molecules to promote the differentiation of

stem cells to cardiomyocytes. The approach presented here
employs publicly available gene expression data for the transition
from stem cells to cardiomyocytes from the cellular side, and gene
expression data that are the result of compound treatment from
the other side. On the basis of matching changes in gene
expression in both spaces (upon compound treatment, as
well as upon differentiation) our algorithm predicts candidate
compounds to induce the differentiation of stem cells to
cardiomyocytes (Figure 1). The gene expression database that
includes both cardiomyocytes and embryonic stem cell samples
have been selected from Gene Expression Omnibus (GEO),"" while
gene expression data for 1309 compound treatments has been
employed as provided in the Connectivity Map (CMap)'? database.
The CMap database has been previously used particularly in drug
repositioning and also predicting the mode-of-action of drugs,'*'
however, its use in the context of cellular differentiation is novel.

In the area of drug repositioning it is hypothesized that if the
gene expression signature of compound treatment is strongly
anticorrelated to a given disease signature (ie, behaves in the
precisely opposite way), then that compound is potentially
capable of treating this disease.'® Experimental evidence support-
ing this hypothesis has been presented in several studies, usually
also based on the CMap database,’®' such as the repurposing of
the antiulcer drug Cimetidine for lung cancer' and antiepileptic
Topiramate for inflammatory bowel disease.'® On the basis of the
same hypothesis, the authors have recently developed transcrip-
tional approaches for repurposing drugs for various diseases with
prospective successful validation for leukemia and breast cancer.'®

In this work, we have been inspired by the idea of matching
gene signatures of a disease to drugs and applied it into
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Integrated bioinformatics and cheminformatics approach for selecting compounds for cardiomyocyte differentiation. Both gene

expression data (blue and red dots, for up- and downregulation, respectively) and target predictions (proteins in red boxes) are taken into
account in the approach presented here. The bioinformatics component was able to detect strong connectivity between the Famotidine gene
signature and the heart gene expression profile (Embryonic stem cells versus adult heart). The cheminformatics approach on the other hand,
specifies potential established (Histamine H2) and novel targets of Famotidine. CTD suggests that Complement C1s is important protein in
cardiovascular diseases. Hence, the combination of ligand-target associations and gene expression data are able to provide unified view for
guiding compound selection, and understanding its activity in a biological system.

novel application area of stem cell differentiation. Although in
drug repositioning disease and healthy samples are compared
with constitute the gene expression profile of a disease,
in the case of selecting small molecules for stem cell
differentiation adult heart samples are compared with embryo-
nic stem cells to constitute the heart gene expression profile.
Subsequently, the gene expression profile of this tissue is
matched with compound signatures using Gene Set Enrichment
Analysis (GSEA)."” The GSEA approach yields in connectivity
scores that represents how much the genes targeted by each
compound is related to genes differentially expressed in the
heart signature where correlated, anticorrelated and not
correlated gene signatures (between compound and heart
signature) results in positive connectivity, negative connectivity
and zero connectivity scores.

In addition to this gene expression-based ranking of com-
pounds for a particular purpose we also took its computationally
predicted bioactivity spectra (its predicted activities against a set
of 1080 protein targets) into account. For this purpose a
cheminformatics target prediction algorithm'® that was previously
developed was extended (see Experimental Procedures) and all
the putative protein targets of the compounds contained in CMap
were predicted. In addition, for the purpose of the study here all
the predicted protein targets in cardiovascular diseases using the
Comparative Toxicogenomics Database (CTD)'® were determined.
The aim of this step was to enhance the compound selection
process by giving insights to the potential targets of the
compounds and thereby providing a clear mechanistic hypothesis
for the mode-of-action of the compounds selected for
differentiation.

Subsequently, the combined bioinformatics and cheminfor-
matics approach presented here was employed in the novel area
of systematic selection of small molecules for promoting
differentiation of stem cell to cardiomyocytes. It was observed
that administration of four novel-predicted compounds signifi-
cantly enhance expansion rate and expression of cardiac precursor
and cardiac markers in gene and protein level. This method is
generally applicable in cases where gene expression data of the
target tissue are available.
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RESULTS

The expression profile of undifferentiated human embryonic
stem cells was compared with the expression profile of adult
ventricular cardiac tissue using database GSE50704 in GEO (see
Supplementary Table S1 for the full list of rank-ordered
compounds with negative and positive connectivity). In order to
retrospectively validate the method, we firstly investigated
predicted compounds with strong negative and positive con-
nectivity and aimed to identify support for their supposed activity
in the scientific literature. Among the highly ranked compounds
showing strong positive connectivity (correlated gene expression
signatures), several compounds already have published evidence
of the effect to be determined experimentally, namely Meglumine
(rank 9 out of 6100), Troglitazone (rank 17) and a-Estradiol
(rank 20). Meglumine is capable of differentiating bone
marrow mesenchymal stem cells to cardiomyocytes,®® whereas
Troglitazone induces heart cell proliferation.?’ Estradiol demon-
strates cardioprotective effect against cardiac injury** and induces
proliferation, but not differentiation, of undifferentiated myoblast
cells. On the other hand Resveratrol (rank 2) and Pyrvinium (rank
29) show strong negative connectivity, and it has been established
before that Resveratrol-modified cardiac stem cells regenerate
infarcted myocardium.?® Pyrvinium, on the other hand, promotes
wound repair and post-myocardial infarct cardiac remodeling.?*
It also ameliorates myocardial contractile dysfunction in a mouse
model of myocardial infarction.® Overall significant literature
support for the claimed effects could hence be identified in the
first step of this study.

We next proceeded to select compounds for the prospective
validation of the algorithm. Among compounds with positive
connectivity Bethanechol (rank 2), Prilocaine (rank 4), Famotidine
(rank 12) and Sodium Phenylbutyrate (rank 18, Butyrate) have
been selected for prospective experimental validation owing to
their high rank and novelty in the given context. The effect of
treatment of these compounds on stem cell differentiation was
investigated as presented in the next section.

Enhancement of cardiomyocytes during CPC formation

To investigate the effect of Butyrate, Famotidine, Prilocaine and
Bethanechol on cardiogenesis from mouse embryonic stem cells
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(mESCs) embryonic bodies (EBs) were treated with each individual
compound from day 2 to 7 (see experimental procedures section
for details) and cardiomyocyte differentiation was assessed both
qualitatively and quantitatively (Supplementary Figures S1 and
Figure 2).

Qualitative assessment was performed by comparing morpho-
logical features of the beating cells to controls. It was found that
the treatment of EBs with all selected compounds, particularly
Famotidine, increased their expansion rate of plated or beating
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EBs, as well as the degree of contraction (Supplementary Figures
S1a and f; see also Supplementary Movies S1-S4 for details). As
these data are observational and subjective, therefore, the main
conclusion were based on quantitative assessment provide in the
section below.

We next performed quantitative characterization of cardiac
markers using quantitative reverse transcriptase PCR (RT-gPCR).
On day 7, the expression of Gata4*® as mesoderm cardiac marker
and Nkx2-5%7 and Mef2c*® as cardiac precursor markers, all of
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Figure 2. Cardiac differentiation efficiency during CPCs formation treated with predicted compounds. (a) Protocol of compound treatment of

mESCs during cardiac differentiation, (b and c) RT-gPCR analysis for precursor markers, (d) western blot analysis for Nkx2.5, (e and f) RT-qPCR
analysis for mature cardiomyocyte markers (ActcT and Myh6) and smooth muscle cells markers (Tagln), (g) percentage of cells expressing Myh6
protein identified by flow cytometry at day 15, (h) western blot analysis for Tnnt2. Relative expression of target genes was quantified and
normalized with Gapdh. The number of independent repeats was three for each experiment (n=3). Value bars are mean + S.E.M.

© 2016 Cell Death Differentiation Association

Cell Death Discovery (2016) 16007

w



Small molecules in differentiation of ESCs
Y KalantarMotamedi et al

=y

which are required for cardiac differentiation and develop-
ment, was examined. It was found that expression of Gata4
(Figures 2b and c) was increased 1.49-1.93 folds by all compounds
with the highest increase (of 1.93 folds) observed for Famotidine.
Unlike in case of Gata4, increased expression of Nkx2.5 at the RNA
level was only observed for Famotidine, where expression was
found to be significantly (3.5 folds) higher than for control. This
marker was increased at the protein level in the presence of both
Famotidine and Butyrate (Figure 2d). Significant Increase in
expression of Mef2c was also observed for Butyrate (1.96 folds)
and Famotidine (2.66 folds, Figures 2b and c).

On day 15 expression of Actcl and Myh6 as cardiomyocytes-
specific markers and Tagln as smooth muscle marker were
examined also by RT-qPCR. The specific expression of the Actcl
(a-actin) gene represents the start of differentiation of cardiac
cells®® and it is expressed in adult heart.>** Myh6 on the other hand
is expressed in healthy, but not failing, human heart and has a
major role in cardiac contractility.>' Tagln is expressed in the
embryonic heart® but its expression diminishes in adult heart.®
Treatment with Butyrate, Bethanechol, Prilocaine and Famotidine
significantly enhanced mRNA levels of ActcT (by 9.3, 5.8, 4.1 and
1.47 folds, respectively) and Myh6 (1.8, 2.3, 2.8 and 2.6 folds) on
day 15 versus their respective controls, while levels of Tagln
remained unchanged (Figures 2e and f). Immunostaining corrobo-
rated increased Myh6 expression after treatment with Famotidine
and Butyrate (Supplementary Figure S1g). Cells were furthermore
examined on day 15 for Myh6 by flow cytometry in order to
determine its expression at the protein level. Famotidine-treated
cells resulted in cardiomyocytes with 56% of cells testing
positive for the Myh6 protein, compared with 33% positive cells
when treated with DMSO (1.7 times increase in purity;
see Discussion section to put those numbers into context).
Cardiomyocytes treated with 200uM of Butyrate increased
the amount of Myh6 protein positive cells from 39 to 58%
(1.48 times increase in purity, Figure 2g). Moreover, the Tnnt2
protein level was assayed by western blot, with results being
consistent with a differentiation of stem cells to cardiomyocytes
(Figure 3h). We can hence overall conclude that Famotidine and
Butyrate significantly enhanced cardiac differentiation efficiency
versus DMSO (As famotidine was dissolved in DMSO, we
had separate DMSO treatment for comparison) and control,
respectively.

Effects of compound treatment on post-CPC formation

In this stage, EBs were cultured on the gelatin coated adherent
dishes in K-DMEM and 15% ES-FCS from day 7 to day 15. To
investigate the effect of selected compounds after cardiac
progenitor formation, these compounds were added to the
medium in this stage (Figure 3a) and cells were examined for
cardiac markers expression by RT-qPCR (Figure 3b). Myh6 was
upregulated significantly by Famotidine (2.6 folds, Figure 3c),
but such an effect was not observed for the remainder of the
compounds (Figure 3b). Actcl expression was stimulated
by Famotidine (1.47 folds), whereas Tagln (smooth muscle
marker) was overexpressed (1.7 and 1.8 folds) by Butyrate
and Bethanechol treatment, respectively. Western bloting
confirmed the expression of Tnnt2 as a mature cardiac
marker for all of the compounds, particularly Prilocaine and
Butyrate, at the protein level (Figure 3d). Hence, we can
conclude overall the compound addition to the medium post-
CPC formation (days 7 to 15) also enhances the differentiation to
cardiomyocytes.

Mode of action analysis of Famotidine in cardiac regeneration

We next investigated the potential mode-of-action of the best-
performing compound, Famotidine, in order to understand its
putative activity in more detail. Previously, it has been shown that
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Figure 3. Alteration of transcript levels of precursor and mature
markers post-CPCs formation. (a) Protocol for compound treatment
of mESCs post-CPCs formation on EBs for 7 days, (b and c) RT-qPCR
assessment of mature cardiac markers. Relative expression of target
genes were quantified and normalized with Gapdh. The number of
independent repeats was three for each experiment (n=3). Value
bars are mean +S.E.M., (d) western blot analysis for Tnnt2 marker.
Intracellular protein amounts were calculated relative to the Gapdh
content.

Famotidine reduced infarct size of cardiomyocytes in mice
after ischemia/reperfusion injury or permanent ischemia.®
These effects had been associated to the anti-histamine effects
of Famotidine rather than its role in promotion of cardiac
differentiation.3* On the basis of our analysis involving both
in silico target prediction and the utilization of gene expression
data about compound action (Figure 1) we would now suggest
that this effect might be associated to multiple proteins and genes
and pathways targeted by Famotidine involved in cellular
differentiation, in addition to antagonizing the Histamine H2
receptor. Target prediction suggested that Famotidine targets the
Multidrug and toxin extrusion protein 1, Complement Cis,
Thrombin and the Histamine H2 receptor as well as the
Urokinase-type plasminogen activator. Among these targets,
Multidrug and toxin extrusion protein 1 and Histamine H2

© 2016 Cell Death Differentiation Association



receptor are supported directly by ChEMBL with experimental
ICso values of 760 and 42 nM, respectively. Famotidine is predicted
to target Complement Cls protein, whose inhibition has
previously been suggested to have therapeutic value for
myocardial infarction.> On the other hand, the third predicted
target, thrombin, modulates phosphoinositide and calcium
metabolism of the heart, increases beating rate, diastolic calcium
and peak systolic calcium of spontaneously contracting cultured
ventricular myocytes and improves automaticity and impulse
initiation.>®

When considering the gene expression changes induced by
Famotidine, the GSEA algorithm was used to identify the most
enriched upregulated genes in common between the embryonic
stem cells versus heart (ESCvsHRT) signature and the set of the 50
most upregulated genes of Famotidine instance in CMap (instance
ID 5011, applied on MCF7). These genes were found to be GRPR,
RHBG, FSCN1, FGFR3, KIAA1609, WIPI2, ST8SIA3, GLPI1R, INGI,
SLC24A1, CHRNA3 and DNAJC16. Among those genes particularly
FGFR3 and GRPR are of interest here, as fibroblast growth factors
including FGFR3 regulate epicardial signaling and myocardial
growth and differentiation.3” GRPR on the other hand has a role in
smooth muscle contraction.®® On the other hand the most
enriched downregulated genes of the Famotidine instance, that
are also downregulated in the ESCvsHRT signature, are SIPATL3,
ROM1, HABP4, SLC25A23, SCRN3, CCL14, PLEKHO1, CTDSPL, SOS2,
ZNF639, FSTL3, ARHGEF9 and LRP6. The Famotidine instance
downregulated an essential Wnt co-receptor, LRP6, from the
‘Canonical Wnt signaling’ pathway which was also downregulated
in the ESCvsHRT. Modulating the Wnt signaling pathway is known
to have an important role in differentiation of stem cells to
cardiomyocytes.>® The compound also downregulates Notch2
from the ‘Notch Signaling Pathway’, which was upregulated in the
ESCvsHRT signature. Perturbation of the Notch Signaling Pathway
regulates cardiac differentiation during development in mammals
and also has an important role in recovery from adult myocardial
damage 390

To summarize, the positive effect of Famotidine in ischemia
seems to go far beyond its activity on the Histamine receptor
alone, and by combining predicted protein targets and differen-
tially expressed genes after compound application provides a far
more unified picture of the mode-of-action of Famotidine in this
context.

DISCUSSION

In this work, a general method for selecting small molecules for
directed stem cell differentiation has been presented. To this end,
large scale gene expression profiles of compound treatments
(1309 compounds in CMap) were utilized, which were then
matched with gene expression profiles of the particular target cell
line of interest, compared with the cell line of origin (here and
more generally in the area of stem cell differentiation, stem cells).
This approach has then experimentally been validated by
predicting compounds for promoting differentiation of stem cells
to cardiomyocytes. Four compounds (Famotidine, Bethanechol,
Prilocaine and Sodium Phenylbutyrate) were experimentally
validated in this study for their ability to stimulate gene and
protein levels of cardiac precursor and cardiac markers. Each of
the four compounds stimulated the markers in agreement with
the hypothesis. However, Famotidine and Butyrate had more
significant effect on the cardiac and cardiac progenitor markers
and hence had superior effect on the differentiated cardiomyo-
cytes. Famotidine and Butyrate increased the percentage of Myh6-
positive cells from 33% and 39%, respectively, to 56% and 58%,
respectively, compared with control groups (DMSO treatment, no
treatment). To put those numbers into context, a recently
discovered small molecule for cardiomyocyte differentiation,
Zebularine, increased the percentage of Myh7-protein-positive

© 2016 Cell Death Differentiation Association
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cells (also responsible for cardiac contractile function) from
27 to 35% (an 1.29-fold increase), so at considerably lower
levels.” Famotidine is predicted to act by inhibiting of
Complement C1s and thrombin at the protein level, and by
upregulating GRPR and FGFR3, as well as downregulating LRP6
and Notch2 on the gene level, which gives a much more unified
picture of compounds action both from the ligand-target
interaction level and the genetic level than previous studies
have found.

Overall, the computational approach proposed here shows that
gene expression data, in combination with in silico target
prediction, can be used for the selection of small molecules to
promote the targeted differentiation of embryonic stem cells to
cardiomyocytes, as well as suggesting possible mechanism of
actions of the small molecule. Given the general nature of the
approach it is expected that this method can be extended to the
selection of small molecules for promotion of stem cell
differentiation to any tissue of interest.

MATERIALS AND METHODS

Compound prediction approach

For identifying compounds that are anticorrelated with the heart
signature GSEA as implemented by the Broad Institute'” was employed
in this work. This method checks whether a query gene signature is
occurring at the extremes (top or bottom) of a rank-ordered list of genes,
or whether it shows closer to random distribution (ie., no correlation
between both spaces). An enrichment score was calculated by
descending the rank-ordered list of genes and incrementing a variable
when encountering a gene in the given query signature. The magnitude
of increment depends on the position of the gene in the list, which is
chosen corresponding to a weighted Kolmogorov-Smirnov statistic. The
enrichment score can hence range between —1 and 1, where —1 shows
strong negative connectivity, 1 identifies strong positive connectivity and
0 represents zero connectivity. In our particular case, the signature of
each compound from CMap was used to query rank-ordered list of genes
of a disease and both positive and negative connectivities were analyzed
subsequently.

The input of the GSEA algorithm is a query gene signature, a gene
expression profile (gct), a phenotype annotation file (cls), and a probeset to
gene symbol translation file (chip). A further parameter is the number of
top and bottom genes of the rank-ordered list of compound gene
expression profile to be selected, where in the current study this was
selected to be 50. In this list the ranking of genes was based on log2 ratio
of the treatment of compound to vehicle. Generally, how many genes to
select is based as much on intuition as on rational criteria, and in our
experience the best number of genes to be selected generally varied
between those numbers. This left us with two query signatures, namely
one of the most upregulated genes, and one of the most downregulated
genes. For each disease versus drug the two signatures were used to query
the disease profile, hence giving rise to two scores, the ‘up’ score and the
‘down’ score. The following formula was used to combine the two scores
into one score:

SCOreyp, — SCOredown
2

In this formula score,, and scoreqown are the scores calculated for
the compound given its most x up- and downregulated genes,
respectively. In the GSEA results a negative score means that the query
signature was found at the bottom of the list and a positive score means
that the query signature was found at the top of the list. The combined
score was used to sort the compounds and come up with a rank-
ordered list.

score =

Annotation of the disease relevance of genes and proteins via CTD
Although gene expression data are able to map compound and disease
spaces with the parameters chosen, we also employed computational tools
to hypothesize protein target-based bioactivity spectra for selected
compounds, and to evaluate the mode-of-action of those (and their
potential novelty), based on additional database information we inte-
grated. For this purpose, the Comparative Toxicogenomics Database
(CTD)'® has been used to identify genes that are associated with
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cardiovascular diseases, where disease-gene links were downloaded
separately as provided on the CTD website. The CTD database provides
an Inference score for each target, which indicates the level of relevance of
each target with cardiovascular diseases, based on text mining approaches
of a large set of scientific publications. The gene-protein links were
retrieved from ChEMBL*' to map gene identifiers to proteins implicated in
diseases.

In silico target prediction to support compound selection and
mode-of-action analysis

A target prediction algorithm as established before'® has been utilized to
predict protein targets of compounds in the CMap databases using the
Naive Bayes approach. This algorithm predicts a score for each protein
target included in the training set, which represents the probability of the
compound to bind to this target (without considering functional effects).
The extraction of compound-target pairs was identical to the benchmarking
data set query introduced in the previous work'® (which included targets
with binding affinity < 10 uM and confidence level of 9 or 10) except that
it was applied on ChEMBL*' v.17 and hence left us with a larger training
database of 385 126 compound-protein pairs, 1643 distinct proteins and
226 791 unique compounds. Compounds were standardized and ECFP4
fingerprints were generated using the JChem package of ChemAxon.*? The
standardization options were Aromatize, RemoveExplicitH, Clean 2D, Clean
3D, RemoveFragment and Neutralize. The Laplacian modified Naive Bayes
version of the algorithm provided in the previous publication'® was then
trained on the extracted.

The protein target predictions for all compounds to be analyzed (in this
case all compounds from CMap) was incorporated with the gene
expression-based results and the whole information is then displayed to
the user, enabling the selection of compounds based on connectivity
derived from gene expression profiles, predicted bioactivity spectra
(modes-of-action), as well as relevance of each target for the disease.
ChEMBL Therapeutic Flags of compounds have been used to check
whether the drug is approved.

Culture method and differentiation of MESCs to beating
cardiomyocyets

Cell culture chemicals were supplied by Life Technologies (Grand Island,
NY, USA) unless indicated otherwise. Mouse embryonic stem cells strain
RB20 from C57BL/6 strain was used as reported. Twenty cells cultured in
serum-free media, Dulbecco’s modified eagle medium F12 (DMEM F12)
and Neurobasal media with 0.5% BSA, 2mM glutamine, 0.1 mM
nonessential amino acids, 1% penicillin-streptomycin (all from Invitrogen,
Shanghai, China), 0.1 mM B-mercaptoethanol (Sigma-Aldrich, St. Louis, MO,
USA) and 1000 U/ml leukemia inhibitory factor (LIF; Chemicon, Temecula,
CA, USA), 1um PD0325901(Sigma-Aldrich) and 10um SB431542
(Sigma-Aldrich), 1% N2 and 2% B27 (3).

The media used for cardiac differentiation consisted of K-DMEM,
supplemented with 15% ES-FCS, 0.1 mM nonessential amino acids, 2 mM
L-glutamine, 0.1 mM beta-mercaptoethanol, 1% penicillin-streptomycin
and ascorbic acid. For cardiac differentiation, EBs were formed by adding
800 ESCs per hanging drop over two consecutive days (day 2). Following
collection of EBs, they were cultured in suspension for the next five days
(day 7). On the seventh day, the EBs were plated on gelatin coated 12-well
plates (Techno Plastic Products, Trasadingen, Switzerland) for further 6 to
8 days (day13-15).®

To obtain the optimal concentration of each predicated compound, the
concentration predicated based on pervious literature was taken as the bases
and lower and higher concentration was added during EB formation and the
concentrations which reduced the EB size were taken as toxic concentration
and the lower concentrations which had no toxic effect was selected for
further experiments. Therefore, the selected concentrations for Butyrate,
Famotidine, Prilocaine and Bethanechol were 50, 10, 15 and 20 uM,
respectively. 200 uM of Butyrate was also used where indicated in results.

Effect of the predicted compounds on cardiac precursor formation
and cardiac differentiation

To evaluate the effect of predicted compounds on cardiac precursor
formation, the compounds were added during the first 5 days of EB
formation (day 2-7), whereas for cardiac differentiation, the compounds
were added during plating (day 7-15). All the compounds were dissolved
in water, except for Famotidine, which was dissolved in dimethyl sulfoxide
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(DMSO). Therefore, equal amount of the DMSO was also added to the
control of this group. To evaluate the effect of these compounds on
cardiac precursor formation and cardiac differentiation, the cells were
evaluated microscopically for morphology, by RT-qPCR for gene expres-
sion, by western blot for protein expression and by flow cytometry for
efficiency of cardiac differentiation.

Quantitative reverse transcriptase PCR analysis

RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany) and
cDNA was made using Moloney murine leukemia virus reverse transcrip-
tase, 1 ug of each RNA sample, and random hexamer primers according to
the manufacturer’s protocol. Reverse transcription quantitative real-time
PCR (RT-qPCR) was implemented by gene specific primers and SYBR Green
(TaKaRa, Otsu, Japan). Applied Biosystems step one plus Real-Time PCR
system (Foster, CA, USA) was used for Real time PCR analyses. For each
reaction in a final volume of 10 ul, the PCR mixture contained 5 ul Rotor-
Gene SYBR Green PCR Master Mix, 3 pmole of each primer, and 25 ng of
cDNA. The relative mRNA concentrations were calculated using the
software provided by the manufacturer. In order to normalize the data,
Gapdh expression level was measured in the same sample. All
measurements were carried out in triplicates, and the data was assessed
and reported according to 222" method. Specific primer pairs were
designed by the Beacon designer (Version 7.2, Premier Biosoft
International, Palo Alto, CA, USA) and Perl-primer ordered through
metabion company (Martinsried, Germany).

Immunocytochemistry analysis

An indirect immunofluorescence light microscopy was applied to analyze
the cells as previously described.*® The primary antibodies were anti-
mouse antibodies against Myosin Heavy Chain (Myh6, 1:300, Abcam,
Cambridge, UK). The secondary antibody was, fluorescein isothiocyanate
(FITC)-goat anti-mouse IgG (1 : 50, Chemicon). Meanwhile, the nuclei were
counterstained with DAPI. The stained cells were analyzed with a
fluorescent microscope (Olympus, Tokyo, Japan) and images were
acquired with an Olympus DP70 camera (Olympus, Tokyo, Japan).

Western blot analysis

Cells were lysed with TRI reagent (Sigma-Aldrich) according to the
manufacturer’s protocol. Thirty ug of solubilized protein fraction of each
sample was subjected to SDS-PAGE electrophoresis and transferred to
Polyvinylidene fluoride (PVDF) membrane. The samples were blocked on
the membrane by adding 5% skim milk and the respective bands were
labeled with mouse anti Tnnt2 antibody (Abcam, ab8295, dilution:
1/5000), rabbit anti NKX2.5 antibody (Santa Cruz Biotechnology, Santa
Cruz, CA, USA, Sc14033, dilution: 1/2000) and mouse anti GAPDH
antibody (Santa Cruz Biotechnology, dilution: 1/5000). The secondary
antibodies were horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG (DAKO, Carpinteria, CA, USA) and HRP-conjugated goat anti-
rabbit IgG (Santa Cruz Biotechnology). HRP-conjugated IgG bound to
each protein band was visualized by an Amersham ECL Advance Western
Blotting Detection kit (GE Healthcare, Madison, WI, USA).

Flow cytometry analysis

In order to estimate the content of Myh6 in cardiac cells, cells were fixed
with 4% paraformaldehyde, and permeabilized by treatment with Triton
X-100 at a final concentration of 0.4% (V/V). Treated cells were incubated
with Myh6 antibody for 1h at 37 °C, and subsequently were labeled with
goat fluorescence isothiocyanate (FITC) anti-mouse as a secondary
antibody for 40 min at 37 °C. The fluorescence intensity of cells, which
represented Myh6 expression levels were analyzed by a Becton Dickinson
FACSCalibur flow cytometer (Becton Dickinson Biosciences, San Jose, CA,
USA). For each sample, 104 events were recorded in the forward light
scatter/side light scatter (FSC/SSC) dot plot. Both green fluorescence FITC
for Myh6 were detected in a fluorescence detector 1 (FL-1) with a
530/30 nm band pass filter. Data were analyzed by comparison of the
mouse IgG1 negative isotype control (final concentration, 1 :200).

Statistical analysis

SPSS (version 17, IBM SPSS Statistics, Chicago, IL, USA) was used to present
data as means+ SEM obtained from three independent treatments of the
replicated observations. One-way analysis of variance (ANOVA) was
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applied to identify the statistical differences between the three or more
treatments. Also independent t-test analysis was carried out to identify
statistical differences between the two treatments. The threshold of
P < 0.05 (*) was used to indicate levels of statistical significance.

ABBREVIATIONS

GEO, Gene Expression Omnibus; CMap, Connectivity Map; CTD, Compara-
tive Toxicogenomics Database; CPC, cardiac progenitor cells; mESCs,
mouse embryonic stem cells; EBs, embryonic bodies; RT-qPCR, Quantitative
reverse transcriptase PCR; ESCvsHRT, embryonic stem cells versus heart;
GSEA, Gene Set Enrichment Analysis; ESCs, embryonic stem cells; DMSO,
dimethyl sulfoxide; PVDF, polyvinylidene fluoride.
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