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When planning interactions with nearby objects, our brain uses visual information to estimate shape, material
composition, and surface structure before we come into contact with them. Here we analyse brain activations
elicited by different types of visual appearance, measuring fMRI responses to objects that are glossy, matte,
rough, or textured. In addition to activation in visual areas, we found that fMRI responses are evoked in the sec-
ondary somatosensory area (S2) when looking at glossy and rough surfaces. This activity could be reliably dis-
criminated on the basis of tactile-related visual properties (gloss, rough, and matte), but importantly, other
visual properties (i.e., coloured texture) did not substantially change fMRI activity. The activity could not be solely
due to tactile imagination, as asking explicitly to imagine such surface properties did not lead to the same results.
Thesefindings suggest that visual cues to an object's surface properties evoke activity in neural circuits associated
with tactile stimulation. This activation may reflect the a-priori probability of the physics of the interaction
(i.e., the expectation of upcoming friction) that can be used to plan finger placement and grasp force.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

When we look at objects, we are able to predict how they will feel
once we come into contact with them. For instance, shiny objects with
glossy surfaces, like silverware and plastic, are expected to feel smooth
and hard when pressed, and sliding our fingers over their surface may
generate stick–slip interactions. Textured objects, like a tree bark and
sandpaper, are expected to feel rough when pressed upon and can
lead to abrasion if stroked. Matte objects, like wood and stone, are ex-
pected to feel irregular and can generate skin vibration if caressed.
These expectations refine movement planning, e.g., slippery objects
necessitate a more precise and powerful grip.

While these issues have been appreciated at the conceptual and the-
oretical levels (Fleming, 2014; Xiao et al., 2013), work examining the
neural underpinnings of visual appearance has mainly concentrated
on responses from classically defined visual responsive cortical areas.
Human brain imaging work and electrophysiological recordings have
suggested the importance of ventral cortical areas in processing infor-
mation about surface textures and material categories (Cant et al.,
2009; Cant and Goodale, 2007; Cavina-Pratesi et al., 2010a, 2010b;
Goda et al., 2014; Hiramatsu et al., 2011). However, given the potential
. This is an open access article under
importance of visual cues in driving the nature of our interactions with
nearby objects, the role of somatosensory areas during visual surface
perception is still unclear. Previous studies have shown that the somato-
sensory cortex is important for tactile perception of texture and rough-
ness (Kaas et al., 2013; Kitada et al., 2005; Pruett et al., 2000; Roland
et al., 1998; Sathian et al., 2011; Simões-Franklin et al., 2011; Stilla
and Sathian, 2008). Herewe askwhether this region responds also to vi-
sually presented information about similar surface properties.

Several groups have identified areas in human visual cortex whose
activity relates to tactile and haptic stimuli. In one human fMRI study,
object-sensitive regions in occipitotemporal cortex (including the later-
al occipital region (LO) and posterior fusiform sulcus (pFs)) were iden-
tified to represent information about objectweightwhen lifting visually
presented objects. Moreover, after learning that object textures were
associated to object weight, this texture–weight association was also
represented in occipitotemporal areas (Gallivan et al., 2014). A second
fMRI study has similarly shown haptic object-selective activity in
occipitotemporal cortex (Amedi et al., 2001). Further studies have
found haptic texture-selective responses in the middle occipital cortex
and haptic shape- and location-selective responses in intraparietal
sulcus (IPS) (Sathian et al., 2011; Stilla and Sathian, 2008). These results
suggest that occipitotemporal areas, middle occipital cortex, and IPS
are actually not strictly visual, but bimodal as they are capable of
representing haptic information as well. Thus, it is possible that
crossmodal activations may exist for other primary sensory areas, i.e.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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visual texture-selective responses may also be found in somatosensory
cortex.

To test whether somatosensory areas respond to visually defined
textures, we measured human fMRI responses to visual images of
computer-generated objects that had perceptually different surface
characteristics. The stimuli were designed to evoke a visual impression
of surface gloss or roughness, while the control conditions were de-
signed to depict stimuli with similar image statistics that nevertheless
gave rise to a different impression of surface properties. All the stimuli
were novel objects to avoid issues of remembered sensations. We
used multivoxel pattern analysis (MVPA) to test for visual and somato-
sensory areas that contained neuronal responses that supported reliable
discrimination of different visual surface characteristics. Our rationale
was that if the brain has a system to generate expectations of tactile sen-
sations when looking at objects with distinctive surface properties,
changes in appearances that affect such expectations should elicit dif-
ferent activation responses in somatosensory cortex. Indeed, we found
this to be the case. In a control experiment, we further show that imag-
ining such surface properties is alone insufficient to generate similar so-
matosensory activations.

Materials and methods

Participants

Sixteen participants who had normal or adjusted-to-normal vision
were recruited for the experiments. One was the author H.-C. S. and
the remaining participants were naive to the tasks and purpose of the
study. All were screened for visual acuity and MRI safety before being
invited to participate. The age range was 18–39 years old, and 5 of the
16 participants were male. All participants gave written informed con-
sent before taking part in the experiment. The study was conducted ac-
cording to the protocol approved by the STEM Ethical Review
Committee of the University of Birmingham. After completing the ex-
periment, all participants (except the author) received monetary com-
pensation or credits.

Apparatus and stimuli

Stimuli
The study comprised three 3-D shaped objects generated by Blender

2.67a selected from a previous study (Sun et al., 2015) (Fig. 1A). Stimuli
were 12 deg. in diameter on average, and theywere presented on amid-
gray background.We created versions of the stimuli for each object that
made up the four conditions of the experiment: Glossy, Glossy Control,
Rough, and Rough Control (Fig. 1B). In the Glossy condition, objects
were rendered using a mixed shader with 90% diffuse and 10% glossy
components. In Glossy Control condition, the specular components ren-
dered on Glossy objects were rotated by 45 degs in the image plane,
which made the objects look matte since the important contextual in-
formation for gloss perception had been destroyed (Anderson and
Kim, 2009; Kim et al., 2011; Marlow et al., 2011). In the Rough condi-
tion, wave textures were applied to objects' 3-D geometry, resulting in
bumps on the surface. In the Rough Control condition, the same wave
textures were applied to the objects' surface colour, resulting in a
painted texture. In Glossy and Glossy Control conditions, there were
five levels of the emission strength from the light source: 1, 1.2, 1.4,
1.6, and 1.8 (Fig. 1C). In Rough and Rough Control conditions, there
were five levels of wave texture scale: 12, 17, 22, 27, and 32 (Fig. 1D).
The five levels of each object were presented in a random order to re-
duce adaptation of the fMRI response. A black fixation dot (dia =
0.5 deg) was shown during fixation blocks.

In the control experiment, 12 new objects were presented to partic-
ipants in familiarisation session before entering the scanner. The 12
objects were split in 4 groups that were rendered with a clear colour–
condition association (i.e. blue objects were Gloss, red objects were
Rough Control, etc). Then, participants were presented with only
the contours of the previously seen objects that were filled with homo-
geneous colour. Participants were asked to imagine the surface proper-
ties of the four conditions specified by the colour. The colour-coding of
Glossy/Glossy Control and Rough/Rough Control was counterbalanced
across participants. Participants were trained to associate the colour
cues with the four conditions and were able to make colour–condition
associations with 100% accuracy prior to entering the scanner (and
upon re-test after the scan). During the scan, therewerefive levels of lu-
minance scale for each object contour presented in a random order to
reduce any adaption effect in the fMRI response, as in the main
experiment.

Apparatus
The same apparatus were used as described in our previous paper

(Sun et al., 2015). Psychtoolbox (Brainard, 1997) was used for stimulus
presentation. A JVC DILA SX21 projector was used for projecting stimuli
on a translucent screen inside the bore of the magnet. Participants
viewed stimuli via a mirror fixed on the head coil with a viewing dis-
tance of 64 cm. Luminance outputs were linearised and equated for
the RGB channels separately with colorimeter measurements. A five-
button optic fibre button boxwas used to collect participants' responses
in the 1-back task.

MRI data acquisition
A 3-Tesla Philips scanner and an 8-channel phase-array head coil

were used to obtain all MRI images at the Birmingham University
Imaging Center (BUIC). T1-weighted high-resolution anatomical
scans (175 slices, TR 8.4 ms, TE 3.8 ms, flip angle 8 deg., voxel size:
1 mm3) were obtained for each participant. Functional whole brain
scans with echo-planar imaging (EPI) sequence (32 slices, TR
2000 ms, TE 35 ms, voxel size 2.5 × 2.5 × 3 mm, flip angle 80 deg.,
matrix size 96 × 94) were also obtained for each participant. The
EPI images were acquired in an ascending interleaved order for all
participants.

Design and procedure

Subjective rating task
Seven naive participants were recruited for the rating experiment.

Participants performed glossiness ratings on all Glossy and Glossy Con-
trol stimuli in one block and roughness rating on all the Rough and
Rough Control stimuli in another block. The order of the two blocks
was balanced across participants. Participants viewed stimuli presented
on a CRTmonitor with a viewing distance of 83 cm. Luminance outputs
were linearised and equated for theRGB channels separatelywith color-
imeter measurements. The diameter of the stimuli was 12 deg. Each
image was presented for 500 ms after which participants were given
unlimited time to rate the image along a scale of “very glossy” to “very
matte” for glossiness rating block, or along a scale of “very rough” to
“very smooth” in the roughness rating block. Participants were permit-
ted to place their rating bar in any position between the two ends to
indicate their rating and the rating value was calculated by computing
the distance between the bar and one end divided by the whole scale
length.

fMRI session
A block design was used. Each participant took part in 9 or 10 runs

with 368 s length of each run in a 1.5-h session. Each run started with
four dummy scans to prevent start-up magnetisation transients and
consisted of 16 experimental blocks each lasting 16 s. There were 4
block types (i.e., one for each condition), repeated four times in a
run. During each block, fifteen objects were presented once in a
pseudo-random order and one of them was shown twice (the
“event” to which participants had to respond). Stimuli were present-
ed for 500 ms with 500 ms interstimulus interval (ISI). Participants
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Fig. 1. (A) The three objects used to create the stimuli shown to participants. (B) The four experimental conditions: Glossy, Glossy Control, Rough, and Rough Control rendered on one
example object. Specular components were shown in Glossy condition (90% diffuse and 10% glossy components) while the highlight areas were rotated and moved in the Control
condition to break the impression of surface gloss. In the Rough condition, wave textures were applied on objects' 3-D geometry; in the Rough Control condition, the same wave
textures were applied to the reflectance of the surface to create the impression of a smooth surface with a painted texture. Glossiness rating and rough rating results are presented,
respectively, in (C) and (D) under five levels of the emission strength from the light source and five levels of wave texture scale. The bars reflect mean rating scores across 7
participants with ±1 SEM.
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were instructed to maintain fixation and perform a 1-back matching
task, whereby they pressed a button if the same image was presented
twice in a row. They were able to perform this task well (mean d′ =
2.07; SEM=0.10). Five 16 s fixation blocks were interposed after the
third, fifth, eighth, eleventh, and thirteenth stimulus blocks to mea-
sure fMRI signal baseline. In addition, 16 s fixation blocks were inter-
posed at the beginning and at the end of the scan, making a total of
seven fixation blocks during one experimental run. An illustration
of the scan procedure is provided in Fig. S1.

The same block design was used in the control experiment, except
that before the start of each block, a colour dot (the same colour as
the object contours present next) was presented for 4 s for cuing the
surface property that should be imagined. Participants were also
instructed to perform a 1-back matching task while imaging surface
property. They were able to perform this task as well (mean d′ =
2.48; SEM = 0.16) as in the main experiment.

Data analysis

Functional MRI data processing
The basic data processing procedures for both the main and control

experiments were the same as in our previous study (Sun et al., 2015).
We also computed global signal variances of blood oxygenation level
dependent (BOLD) signal as before and removed the scan runs, which

Image of Fig. 1
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exceeded 0.23% of global signal variances. Seventeen runs out of 153
runs across 16 participants in the main experiment and 2 runs of 60
runs across 6 participants in the control experiment were excluded
from further analysis based on this criterion.

ROI definition
Regions of interest (ROIs) were defined using separate localiser

scans. For early retinotopic visual cortex (areas V1, V2, V3, V3A, V4),
we used standard retinotopic mapping based on rotating wedge stimuli
and expanding/contracting concentric rings (Abdollahi et al., 2014;
DeYoe et al., 1996; Sereno et al., 1995). Area V3B/KO (Dupont et al.,
1997; Zeki et al., 2003) was defined retinotopically as the region of cor-
texwith a full hemifield representation located inferior to, and sharing a
foveal representation with, V3A (Tyler et al., 2005). This retinopically
defined area overlapped with the set of contiguous voxels that
responded significantly more (p b 10−4) to kinetic boundaries than
transparent motion of a field of black and white dots (Dupont et al.,
1997). Other groups have identified this region of cortex as area LO1
based on retinotopicmapping techniques (Larsson et al., 2010); howev-
er, individual variability in the claritywithwhich these regions could be
identified retinotopically led us to use the V3B/KO designation. The lat-
eral occipital complex (LOC) was defined as the set of voxels in lateral
occipitotemporal cortex that responded significantly (p b 10−4) more
strongly to intact than scrambled images of objects (Kourtzi and
Kanwisher, 2000). LOC subregions (LO, extending into the posterior
inferotemporal sulcus; posterior fusiform sulcus (pFs), posterior to
mid-fusiformgyrus)were defined based on the overlap of functional ac-
tivations and anatomical structures, consistent with previous studies
(Grill-Spector et al., 2000).

Somatosensory areas were defined by a somatosensory localiser
adapted from a previous study (Huang and Sereno, 2007). This separate
localiser session consisted of 20 blocks, 10 air-on blocks and 10 air-off
blocks showed alternately, each lasting 16 s. In the air-on blocks, air
puffs were delivered at the participants' ten fingertips through plastic
tubes (6 mm inner diameter) from below a board in cycles (1 s on 1 s
off). No air was delivered in air-off blocks. Somatosensory areas were
defined by contrasting activations in air-on blocks with air-off blocks.
Primary somatosensory area (S1) was defined as the more dorsal por-
tion of the activations around Brodmann area 1-3b and the secondary
somatosensory area (S2) was defined with as the more ventral portion
of the activations around the parietal opercular areas OP1–OP4. The co-
ordinates of Brodmann areas 1-3b andOP1were acquired from the SPM
Anatomy toolbox (Eickhoff et al., 2005, 2006, 2007a; Geyer et al., 1999,
2000). The centres of these areas were converted from MNI space in
SPM to Talairach space in BrainVoyager.We present detailed coordinate
information in Table 1. The mean S1 centre is consistent with the
centres of Brodmann area 1-3b (Geyer et al., 1999, 2000) and the
mean S2 centre is consistent with the centre of OP1 (Eickhoff et al.,
Table 1
Talairach coordinates of S1 and S2 defined by the somatosensory localiser compared with
coordinates of Brodmann area 1, 3b, and parietal operculum 1.

x y z

Left hemisphere S1 −45.75 ± 3.19 −23.37 ± 5.41 47.36 ± 6.14
S2 −50.55 ± 5.14 −18.31 ± 5.81 17.73 ± 4.49
BA1 −44.85 ± 10.89 −28.43 ± 8.76 51.61 ± 10.22
BA3b −43.16 ± 9.05 −23.05 ± 7.76 41.67 ± 9.94
OP1 −49.66 ± 7.20 −25.38 ± 3.69 17.77 ± 2.68

Right hemisphere S1 47.92 ± 4.69 −22.57 ± 6.84 45.68 ± 6.11
S2 49.90 ± 4.04 −19.29 ± 5.50 18.39 ± 3.59
BA1 49.5 ± 10.56 −27.33 ± 9.80 49.52 ± 10.98
BA3b 41.93 ± 13.7 −25.48 ± 10.63 42.80 ± 13.22
OP1 54.51 ± 7.32 −23.93 ± 4.24 17.63 ± 2.64

Mean ± SD of x, y, z coordinates of S1 and S2 were calculated across 16 participants. The
coordinates of BA1, 3b, and OP1 were obtained through the SPM Anatomy toolbox
(Eickhoff et al., 2005, 2006, 2007a; Geyer et al., 1999, 2000) and transformed to Talairach
space.
2006, 2007b). All the ROIs were defined by the independent localisers
shown in Fig. 2.

fMRI analysis
We used multivoxel pattern analysis (MVPA) to compute classifica-

tion accuracies for different experimental conditions. For voxel selec-
tion, all voxels in each visual area were arranged with t value larger
than 0 for the contrast of “all experiment conditions vs. fixation block”
voxels in GLM t-value maps. Voxels of somatosensory areas were de-
fined by significant t values for the contrast of “air-on vs. air-off” voxels
in GLM t-value maps. The top 250 voxels were selected for classifica-
tions across ROIs. If a participant had fewer than 250 voxels in one
ROI, we used the maximum number of voxels that had t values greater
than 0. After selecting the voxels, their time series was extracted and
converted to z-scores. Then, the voxel-by-voxel signal magnitudes for
a stimulus condition were obtained by averaging the signals over 8
time points (TRs) (=1 block) separately for each scanning run. Before
averaging, the time series was shifted 4 s to account for the hemody-
namic response delay. The global baseline differences of these response
patterns across the stimulus conditions and scanning runswere exclud-
ed by subtracting the mean of the patterns. These block-averaged sig-
nals were used as response pattern in an ROI for the classification
analysis. We used a linear support vector machine (SVM) to discrimi-
nate between activities evoked by the different conditions in each ROI.
In the training phase, 32 response patterns for each of the stimulus
conditions were used as a training dataset for those participants that
completed 9 runs and 36 response patterns were used for those who
completed 10 runs. Then, 4 response patterns for each condition were
classified by the trained classifier in the test phase. These training/test
sessions were repeated and validated by a leave-one-run-out cross-
validation procedure. The prediction accuracies were defined as the av-
erage of these cross-validation classifications. The mean accuracies
across participants were then tested against shuffled baseline with
Bonferroni corrected, one-tailed single-sample t-test, to check whether
they are significantly above chance level (0.5 for all classifications in this
paper as they are all binary classifications). Shuffled baselines were cal-
culated with permutation tests (1000 repetitions for each ROI of each
participant with randomly shuffling stimulus condition labels per test.
The one-tailed, upper 95th percentile boundaries of accuracy distribu-
tions were averaged across all ROIs).

Results

Wepresented participants with novel irregular objects (Fig. 1A) that
were rendered to depict different surface characteristics in the four dif-
ferent experimental conditions: Glossy, Glossy Control, Rough, Rough
Control (Fig. 1B). To ensure that participants experienced different im-
pressions of surface gloss or roughness in the different conditions, we
first performed a psychophysical experiment asking participants to
rate either the glossiness (Fig. 1C) or the roughness (Fig. 1D) of the pre-
sented objects. We found that the control versions of the stimuli were
effective in reducing the appearance of gloss/roughness (two-tailed
Wilcoxon signed-rank test between Gloss and Gloss Control:
Z = −2.2, p b .05; between Rough and Rough Control: Z = −2.4,
p b .05). Moreover, to ensure that—despite different impression of
surface properties—Glossy and Rough objects had similar image statis-
tics of pixelwise luminance, contrast, histogram skew, and power spec-
tra, we quantified image statistics across conditions, finding that the
control versions of the stimuli were well matched to their counterparts
(Fig. S2).

To test for brain areas that might respond differentially to surface
characteristics depicted in the different conditions, we used a block-
design protocol to measure fMRI responses in independently localised
regions of interest in retinotopic visual cortex (V1, V2, V3, V4, V3A), ob-
ject-related areas (LOC), an area linked with the processing of gloss
(V3B/KO), and somatosensory cortex (S1, S2). To analyse the data, we
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used multivoxel pattern analysis (MVPA) to discriminate fMRI re-
sponses evoked by the different conditions. We found that we could
reliably decode differences between Glossy vs. Rough stimuli in most
of the regions of interest we had localised (Fig. 3A, white bars above
the permuted chance baseline). Contrasting the Glossy Control and
Rough Control conditions allowed reliable predictions to bemade across
the visual cortex, although performance in somatosensory cortex was
not reliably above chance (Fig. 3A, black bars). We ran a 2 (G vs. R and
GC vs. RC) × 10 (ROIs) repeated-measures (r.m.) ANOVA to compare
the difference between the two contrasts. We found a significant ROI
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used MVPA to contrast Glossy vs. Rough conditions as before, as well as
the Glossy condition and the Rough condition against Matte conditions
(corresponding to the combined Glossy Control and Rough Control con-
ditions). We could reliably decode differences between Rough vs.Matte
and Rough vs. Glossy stimuli in most of the areas we had localised (Fig.
3B, black bars and white bars above the permuted chance baseline).
Glossy vs.Matte also showed a similar pattern in visual areas; however,
performance in somatosensory cortex was not reliably above chance
(Fig. 3B, white bars). To compare the difference between the three con-
trasts, we ran a 3 (G vs. R, G vs.M and R vs.M) × 10 (ROIs) r.m. ANOVA.
We found a significant difference between the three contrasts (F2,30 =
45.9, p b .001), a significant ROI effect (F9,135= 70.3, p b .001), and a sig-
nificant interaction between the two factors (F18,270 = 9.0, p b .001).
Tukey's HSD post-hoc tests (p b .05) revealed that performance in dis-
criminating Glossy vs. Rough conditions was higher than in Glossy vs.
Matte and in Rough vs. Matte for all the visual areas, while for somato-
sensory areas, Glossy vs. Rough was only higher than Glossy vs. Matte
but not higher than Rough vs. Matte. In sum, the pattern of prediction
accuracies differed in somatosensory areas from that in visual cortex.
First, the performance in discriminating Glossy vs. Matte conditions
was at chance. Second, the discrimination of Rough vs.Matte conditions
was reliable and not significantly different from discriminating Glossy
vs. Rough conditions. These results indicate that this somatosensory
area processes visual surface information at the mesoscale level rather
than microscale level (Ho et al., 2008), as Rough vs. Matte and Glossy
vs. Rough are different in the former while Glossy vs. Matte is different
in the latter.

These data suggest that differential activation of area S2 can be driv-
en by visually presented information. However, we should also consider
an alternative possibility that the route to activity in S2 might be some-
what indirect. In particular, it is possible that viewing the stimuli simply
caused the participants to imagine the surface of the objects, with this
tactile imagery responsible for the fMRI responses we recorded. We
therefore conducted an additional experiment in which we instructed
participants to imagine objects with different surface construction, to
assess fMRI responses in our regions of interest. Prior to conducting
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Fig. 4. Classification performance of MVPA in the control experiment for the same contrasts as i
(one-tailed, 95% boundaries of accuracy distributions were 53.80% for G vs. R, 53.83% for GC vs
significant above-chance accuracies (one-tailed Bonferroni corrected single-sample t-test, p b .
the scan, participants were trained (to 100% accuracy) to associate im-
ages with one of the four surface characteristics (Gloss, Matte, Rough,
or Textured). In particular, participants viewed the contours of the ob-
jects that were presented in the main experiment. These shapes were
filled with a homogenous colour that was paired with the surface prop-
erty that participants should imagine.

We found that decoding performance of differences in the visual
appearance of the object was possible across visual regions of interest
(Fig. 4)—this was expected as both the colour and shape of the visually
presented objects differed across conditions. By contrast, performance
in somatosensory areas dropped to chance (Fig. 4), indicating that imag-
ining the different surface properties per se did not support reliable
decoding of fMRI responses. In addition, to compare the difference
between the two contrasts in Fig. 4A and the three contrasts in Fig. 4B,
we ran a 2 (G vs. R and GC vs. RC) × 10 (ROIs) r.m. ANOVA and a 3 (G
vs. R, G vs. M and R vs. M) × 10 (ROIs) r.m. ANOVA, respectively. We
only found a significant ROI effect in the 2 (G vs. R and GC vs. RC) × 10
(ROIs) ANOVA (F9,45 = 44.2, p b .001) and in the 3 (G vs. R, G vs. M
and R vs. M) × 10 (ROIs) ANOVA (F9,45 = 26.3, p b .001). Importantly,
we did not observe significant differences across contrasts and interac-
tions in both cases (p= .216 and p= .052). Themarginal interaction ef-
fect of the 3 × 10 ANOVA might be due to different performance
between visual areas and somatosensory areas across the three con-
trasts. That is, visual areas had better performance for Gloss vs. Rough
than for Gloss vs.Matte in general while somatosensory areas had near-
ly chance performance for the two contrasts. Together these results sug-
gest that imagery per se is rather unlikely to underlie the responses we
measured in area S2. Rather, it seems that viewing objectswith different
surface properties causes activity in somatosensory cortexwith little ef-
fort on behalf of the participants.

Discussion

We tested how surface properties of viewed objects evoke activity in
different parts of the cerebral cortex. We found that visually responsive
areas of the brain discriminated between different classes of objects, as
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might be expected. Surprisingly, we found that these same images lead
to differential responses in somatosensory cortex: rough and smooth
surfaces lead to different patterns of activation in areas that were local-
ised based on their processing of tactile stimuli. These findings suggest
that surface properties retrieved from visually presented stimuli acti-
vate a visual–somatosensory crossmodal network. We speculate that
this network may provide a way to decide whether haptic exploration
should take place (Klatzky et al., 1993) and to predict the outcome of
our interactions with objects (i.e. predict the friction and weight of the
object) so as to facilitate action planning (e.g. determine the required
force and precision when picking up nearby objects, (Buckingham
et al., 2009).

The differential activations of somatosensory cortex for rough and
smooth surfaces shown here is unlikely to be due to confounding cues
such as differences in imagery, memory, and other non-tactile visual
characteristics. Notably, we showed that rough and smooth surfaces
were no longer discriminable by somatosensory cortex if observers
were asked to imagine, rather than view, the visual properties (Fig. 4).
Visual inputs are therefore necessary to elicit the somatosensory activa-
tions seen here and this processing is assumed to be automatic and
bottom-up. However, it is still not clear whether the imagery of touch-
ing different surfaces (e.g. rough vs. glossy) can activate different pat-
terns in S2 or in motor cortex as motor imagery is more involving in
action plan andmay recruit relevant areas. In addition, the observed ef-
fect in somatosensory cortex cannot be associated with remembered
sensations as the stimuli we used were novel. Further, the effect cannot
be attributed to differences in non-tactile characteristics (e.g. object
colour and image features) as althoughwe used different object colours
for our four conditions in the control experiment, they did not lead to
differential activation patterns in somatosensory cortex. Even when
the patterns on the objects were very different (the two control condi-
tions in the main experiment), no difference in somatosensory activa-
tion was found. Thus, the activity in somatosensory areas is likely to
reflect the specific tactile information (e.g., related to roughness) re-
trieved from visual cues.

Interestingly, the activation patterns in the somatosensory areas S1
and S2 differed in some respects. Somatosensory responses about visual
roughness were particularly pronounced in area S2, where we found
significant differences between fMRI responses to Glossy vs. Rough
andGlossy Control vs. Rough Control conditions but therewas no signif-
icant difference between the two contrasts in area S1. In addition, we
could reliably decode differences between Glossy vs. Rough stimuli in
S2 but not in S1. The differences in response between S1 and S2
are consistent with previous studies that have shown the selective
activation of S2 with tactile stimulation (Sathian et al., 2011; Stilla and
Sathian, 2008) and greater activation with rougher surfaces in S2
(Pruett et al., 2000; Simões-Franklin et al., 2011).

Our data demonstrate that the representation of surface properties
in S2 is not based only on information from one sensory modality, and
that its activation does not require tactile input. This finding challenges
the view that visual and tactile surface information is processed largely
independently as previously inferred by observing the qualitatively
different encoding, processing, and representing of texture information
in the two modalities (Bergmann Tiest and Kappers, 2007; Eck et al.,
2013b; Guest and Spence, 2003; Sathian et al., 2011; Stilla and
Sathian, 2008; Whitaker et al., 2008). Instead, our results support the
notion of multisensory processing of surface texture and roughness.
This implies that surface texture information is represented both in
the visual and tactile systems and, in line with evidence from human
psychophysics (Baumgartner et al., 2013; Jones and O'Neil, 1985;
Lederman and Abbott, 1981; Picard, 2006), to some extent the informa-
tion can be transferred between the two modalities. Indeed, a recent
study showed that content-specific information (e.g. category proper-
ties) is retrieved by somatosensory cortex from familiar visual objects
that observers had plenty of haptic experience with (Smith and
Goodale, 2015). Here we demonstrate that object familiarity is not
required; somatosensory cortex responds to visual surface information
even if it is novel and cannot be categorised. This suggests that somato-
sensory cortex may receive information from a visual processing
stage that is earlier than that responsible for object organisation and
categorisation in higher visual areas such as inferiotemporal cortex.
Such amechanismwould allow observers to interact with novel objects
or with objects that are difficult to identify or categorise (e.g. partially
occluded objects or objects under weak illumination).

Previous visual–tactile crossmodal studies did not identify bi-
sensory texture-selective regions in somatosensory cortex (Amedi
et al., 2001; Eck et al., 2013a; Sathian et al., 2011; Stilla and Sathian,
2008). Instead, bi-sensory texture-selective areas were found in the
middle occipital cortex, left lingual gyrus, left ventral premotor cortex,
and left inferior frontal gyrus (Sathian et al., 2011; Stilla and Sathian,
2008). In one human fMRI study, activity in somatosensory cortex was
found when stimuli were presented bimodally (vision and haptic), but
not when presented unimodally (Eck et al., 2013a). Here we show
that somatosensory cortex (specifically S2) can be activated by visual
information alone. It is possible that the subtle differences in activation
patterns that are captured by the MVPA approach used here could not
be captured by previous work that used conventional general liner
models or percent signal change analyses (Amedi et al., 2001; Sathian
et al., 2011; Stilla and Sathian, 2008). It is still not clear whether visual
texture information is represented in the sameway as haptic texture in-
formation in S2. Future studies can explore this issue by adding tactile
counterparts of glossy and rough objects for comparison (e.g. examine
whether the response to glossy objects vs. rough objects by viewing
and by touching involve in the samevoxels or not in S2). The visually in-
duced somatosensory activation foundhere is compatiblewith an antic-
ipatory system that extracts surface properties from visual information,
perhaps in preparation for a possible interaction with it. Such an antic-
ipatory systemmight be crucial for providing information about surface
andmaterial properties that determine friction and dynamic properties
(i.e., deformability), which in turn could be considered in planning an
action (Di Luca and Ernst, 2014). For example, people expect metal ob-
jects to beheavier, stiffer, and smoother thanwoodenobjects and there-
fore would use more force to contact and grip them (Bergmann Tiest
and Kappers, 2014; Buckingham et al., 2009). This assumption can be
further examined by testing whether the response in S2 for different
visual materials can be modulated by simultaneous tactile inputs (e.g.
congruent vs. incongruent tactile inputs). One may argue that no areas
related to action planning (e.g. parietal cortex, premotor cortex) were
found in the current study; however, we did not ask participants to
carry out an action plan, so the absence of these activations is actually
expected. We reason that action performance requires two phases:
collecting information to form an action plan and subsequently
performing the plan. We interpret the S2 activation as belonging to
the computations involved in the first phase—collecting relevant tactile
information to prepare the action plan in an automatic way. Moreover,
previous studies showed that the anticipation of a sensory input acti-
vated similar networks as during real sensory stimulation. These net-
works included S1 (Porro et al., 2002, 2003) and S2 (Carlsson et al.,
2000; Porro et al., 2004). These findings suggest that the activation
of S2 by visual material cues might implicate the same network
that is responsible for tactile perception of surface mesostructure
and material.

The mechanism underlying the processing of visual material inputs
by S2 might be similar to that activated with observed touching, being
touched, or observing other people using tools—interactions that have
been proposed to involve the mirror system (Blakemore et al., 2005;
Järveläinen et al., 2004; Keysers et al., 2004; Kuehn et al., 2013;
Nakano et al., 2012). However, a recent study suggests that the activa-
tion related to touch observation found in somatosensory cortex
might actually be in posterior parietal cortex (Chan and Baker, 2015),
and the locations of S1 and S2 we defined (Fig. 2) are different from su-
perior parietal and inferior parietal regions they defined. Therefore, it is
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possible that the activation related to visual surface information and the
activation related to touch observation involve distinct but closely locat-
ed regions in somatosensory cortex and posterior parietal cortex, re-
spectively. In our experiment, it is unlikely that participants retrieved
tactile information from memory since the objects were all unfamiliar.
Rather, we speculate that during their lifetime, humans are exposed to
crossmodal associations, i.e., a smooth tactile sensation with shiny ob-
jects and high-frequency spatiotemporal stimulation with rough ones.
This repeated perceptual stimulation is stored as a sensory association
between the tactile sensation and the view of objects' surface—i.e. a cou-
pling prior (Ernst, 2006). This previous work, and the findings we pres-
ent here, are consistent with the view that not only higher-order
association cortex but also early sensory areas which were previously
presumed to be unisensory can be modified by multisensory signals
(Ghazanfar and Schroeder, 2006; Merabet et al., 2007; Schroeder and
Foxe, 2005). Such associations can be reciprocal: for instance, tactile
stimulation has been shown to modify activity within the visual cortex
of blindfolded participants (Merabet et al., 2007). These findings are
also consistent with recent monkey studies which showed that visual
areas respond to tactile stimulations alone and S2 (around the upper
bank of the lateral sulcus) also responds to visual stimulations alone
(Guipponi et al., 2015; Hihara et al., 2015).

In addition to somatosensory cortex, we also found that fMRI re-
sponses in certain visual areas supported discrimination between differ-
ent classes of objects including Glossy vs. Rough, Glossy vs. Matte, and
Rough vs. Matte (see Fig. 3). This result is consistent with previous
human and monkey neurophysiology evidence about the involvement
of early visual areas, ventral visual areas (Georgieva et al., 2008;
Köteles et al., 2008; Kovács et al., 2003; Peuskens et al., 2004), and dor-
sal visual areas (Nelissen et al., 2009) in visual material and texture ex-
traction (Goda et al., 2014; Hiramatsu et al., 2011; Okazawa et al., 2012;
Sun et al., 2015; Wada et al., 2014). Note that the differential responses
in the three contrasts might also be due to the differences in low-level
image features—a factor that we cannot rule out here. Interestingly,
classification performance for discriminating Glossy vs. Rough condi-
tions was higher than that for discriminating between Glossy vs. Matte
and Rough vs. Matte conditions across all the visual areas, probably be-
cause visual differences (from both low-level features and global com-
ponents) within a class increased after combining the two control
conditions (Matte) so that classification performance decreased accord-
ingly. Moreover, earlier areas V1–V3 showed better classification per-
formance for discriminating between Glossy vs. Matte than Rough vs.
Matte conditions, consistent with the evidence for basic image statistics
that may act as important cues to surface gloss (Motoyoshi et al., 2007;
Okazawa et al., 2012; Wada et al., 2014).

In summary, we found that somatosensory cortex, and in particular
area S2, is responsive to the surface characteristics of roughness and
glossiness conveyed by visual information. While visual areas respond
to both surface properties and low-level image features, we found that
area S2 primarily responds to visual surface properties that imply differ-
ent tactile sensations. This area may constitute part of a circuit that pre-
dicts the outcome of our interactions with nearby objects to facilitate
action planning.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.12.054.
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