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ABSTRACT 

 

Objective 

Changes in the white matter of dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD) have 

been reported using diffusion weighted MRI, though few longitudinal studies have been done.  

Methods 

We performed diffusion weighted MRI twice, a year apart on 23 AD, 14 DLB, and 32 healthy control 

subjects. Mean diffusivity (MD) and fractional anistropy (FA) were calculated.  

Results 

In AD, there were widespread regions where the longitudinal MD increase was greater than in 

controls, and small areas in the parietal and temporal lobes where it was greater in AD than DLB.  In 

AD, decrease in brain volume correlated with increased MD. There were no significant differences in 

progression between DLB and controls. 

Conclusions 

In AD the white matter continues to degenerate during the disease process, whereas in DLB, 

changes in the white matter structure are a relatively early feature. Different mechanisms are likely 

to underpin changes in diffusivity. 
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OBJECTIVE 

Dementia with Lewy bodies (DLB) is a common form of neurodegenerative dementia in older 

people, second to Alzheimer’s disease (AD). Studies of DLB have found relatively less overall brain 

atrophy than AD, particularly in the temporal lobes.[1] A number of studies have investigated the 

structural integrity of the white matter in DLB using MR diffusion tensor imaging (DTI) and have 

found mixed results, but generally, DLB subjects have DTI changes in parieto-occipital regions, whilst 

AD changes are more widespread, and have been reported to particularly involve the medial 

temporal lobe and limbic pathways.[1, 2]  

In a previous study, we found widespread reductions of fractional anisotropy (FA) in AD, with DLB 

changes more restricted to parieto-occipital regions, along with generally increased mean diffusivity 

(MD) in both groups.[3] In this study, we report the longitudinal change in MD and FA measured 

over 1 year in these subjects. 

 

METHODS 

Subjects 

Seventy-one individuals aged over 60 (36 subjects with probable AD[4] and 35 with probable DLB[5]) 

were recruited from a community-dwelling population of patients referred to local old age 

psychiatry, geriatric medicine, or neurology services. Thirty-five control subjects were recruited from 

relatives and friends of subjects with dementia or volunteered via local advertisements. All subjects 

underwent clinical and neuropsychological evaluations with diagnostic procedures as previously 

described.[3] MR scanning was done on all subjects at baseline and was repeated after 1 year on 

those subjects who consented for repeat scanning. The research was approved by the local ethics 
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committee. All subjects or, where appropriate, their nearest relative, provided written informed 

consent. 

Of the 36 AD subjects, 23 were included after 11 were unable to participate in the follow-up 

assessment, one AD was excluded due to excessive motion on the repeat DT images, and DTI data 

were not available on another. Of the 35 DLB subjects, 14 were included after 12 declined to 

participate due to ill health, and 9 subjects had died. Of the 35 HC subjects, 32 were included in the 

present analyses after 2 declined to participate, and DTI data were not available on one control.  

Assessment of global cognitive measures in all subjects (those with AD or DLB and controls) involved 

use of the Cambridge Cognitive Examination (CAMCOG), which incorporates the Mini-Mental State 

Examination (MMSE).[6] Verbal episodic memory and visual episodic memory were assessed with 

the Hopkins Verbal Learning Test (HVLT) and Brief Visual Memory Task–Revised (BVMT), 

respectively, and a composite z-score of episodic memory (verbal and visual) relative to control 

group performance was derived to incorporate all aspects of the memory task, as described 

previously.[3] 

Verbal fluency was assessed with the Delis Kaplan letter fluency task (FAS). Motor parkinsonism was 

assessed with the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III).[7] 

 

Imaging 

Subjects underwent MRI scanning on a 3T MRI system (Intera Achieva scanner, Philips Medical 

Systems, Eindhoven, Netherlands) with an 8-channel receiver head coil within 2 months of the 

baseline cognitive study assessment, and at 1 year after the initial scan. 

DTI images were acquired using a Pulsed Gradient Spin Echo (PGSE) sequence and multi-slice single 

shot EPI readout, with 24 slices. TE=71 ms and TR=2524 ms with 2 mm in-plane resolution, 6 mm 
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slice thickness and matrix size of 128 x 128.  Diffusion weighting was in 16 directions with a b value 

of 1000 s.mm-2 and a single measurement at b=0 s.mm-2. 

A T1 weighted volumetric sequence (3D MPRAGE, sagittal acquisition, 1 mm isotropic resolution and 

matrix size of 240  x 240  x 180; TR=9.6ms; TE=4.6ms; flip angle=8°; SENSE factor=2) was also 

acquired.  Additionally, we acquired quantitative images using a fast quantitative T1 measurement 

based on a custom inversion recovery prepared EPI sequence (axial slices, 2 mm isotropic resolution, 

matrix 128 × 128 × 72, TR = 15 s, TE = 24 ms, inversion time TIR = 0.25–2.5 s in 12 uniform steps); and 

a fast quantitative multi-echo T2 measurement based on a Gradient and Spin Echo Imaging 

sequence (2 mm isotropic resolution, matrix 128 × 128 × 72, TR = 4.7 s, 8 spin echoes at 20 ms 

spacing, EPI factor 5). 

 

Image processing 

Data were processed with the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The DTI images 

were processed to correct for subject motion and eddy current distortion, and fractional anisotropy 

(FA) and mean diffusivity (MD) calculated. The baseline and 1 year FA images were spatially 

registered together, by calculating the transform from base to 1 year, and vice versa, and resampling 

both images to the space halfway between them. The average of the baseline  and 1 year FA maps 

was then calculated, along with the difference of the two MD and FA maps. We then used the TBSS 

package in FSL to align the average FA maps for each subject to the standard template, and to create 

a mean FA skeleton representing the centres of all tracts common to the cohort. Each subject's 

difference FA and MD data were then projected onto the mean FA skeleton. Voxelwise statistics on 

the skeleton were then performed on the difference images to look for longitudinal increases or 

decreases in FA and MD between groups. This was done as an ANOVA, without covariates, and also 

with the addition of age, sex, and WMH score to the model. We used the TFCE (threshold-free 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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cluster enhancement)[8] to find regions of significant difference between groups correcting for 

multiple comparisons. We also calculated the mean (and SD) of change in FA and MD within the 

entire skeleton for each group. Reported clusters are all p<0.05 corrected for multiple comparisons. 

In addition, we used the FSL SIENA package to determine longitudinal brain atrophy from the 3D T1 

weighted images, as described in our previous publication.[9] 

In order to visualise white matter hyperintensities, an image with contrast resembling a FLAIR (fluid 

attenuated inversion recovery) sequence was calculated from the quantitative T1 and T2 maps [10] 

and the standard image contrast for inversion recovery. [11] The resulting images (see 

supplementary figure e1 for examples) were reviewed by two experienced raters (RB, SJC) who rated 

the white matter hyperintensities according to the Fazekas scale. [12] We took the deep WMH score 

as representative of vascular disease and included it in the analysis of the DTI data. 

STATISTICS 

We used SPSS (version 22, IBM, New York, USA) for analysis of non imaging data. Group comparisons 

were performed with ANOVA or Chi square. Comparison of mean FA and MD controlling for 

covariates was done with the general linear model, with fixed factors of group and sex, and 

covariates of age and deep WMH rating. Correlations performed with Pearson correlation.  

 

RESULTS 

Table 1 shows the subject demographics of the study participants with repeat DTI data. AD and DLB 

were well matched for overall cognitive impairment, though as expected,  AD subjects performed 

worst on baseline episodic memory.  The DLB subjects showed significant progression of motor 

features as assessed by increased UPDRS (p=0.045).  There were no significant differences between 
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groups in WMH rating score. WMH score was significantly correlated (p<0.001) with both mean FA 

and MD in the whole white matter at baseline, controlling for group and age. 

Since a number of subjects had dropped out since our original baseline DTI study [3], we repeated 

analysis of the baseline FA and MD, but including only the subjects in the present report. The results 

from subjects with followup data were similar to those in the whole group, with FA decreased, and 

MD increased, in both AD and DLB (suppl. Figures e2 & e3). 

We found regions throughout the white matter where MD increased longitudinally in AD relative to 

controls [figure 1]. There were also small regions in the left parietal and temporal lobe where the 

MD increases in AD were greater than DLB. No regions of significant change in MD were found in 

DLB or controls, or in FA in any group. Addition of covariates of age, sex and WMH rating did not 

qualitatively change these results. The mean increase in MD in the whole skeleton was significantly 

different between groups, (control 0.0044 SD 0.009 x10−3 mm2 s-1 ; AD 0.0139 SD 0.016 x10−3 mm2 s-1 

; DLB 0.0056 SD 0.019 x10−3 mm2 s-1) F2,66=3.2, p=0.047, with post hoc AD > control (Tukey p=0.045). 

The group difference was still significant after including age, sex and WMH in the model (F2,63=3.3, 

p=0.038). Neither age, sex, nor baseline WMH rating significantly predicted change in MD (p>0.1). 

Overall change in mean FA in the whole skeleton was not significantly different (F2,66=1.2, 

p=0.3)between groups (Control -0.0005 SD 0.005; AD -0.0026 SD 0.0049; DLB -0.0009 SD 0.00589). 

Change in mean FA was still not significant between groups (p=0.087) after the addition of age, sex 

and WMH rating to the model .  

We investigated the correlation between change in whole skeleton FA & MD and the percentage 

change in brain volume over the same period [9]. There was a significant correlation between brain 

atrophy and MD change both in the whole group (r=0.49; p<0.001 ) and the AD (r=0.536; p=0.010) 

and control (r=0.678; p<0.001) but not DLB (r=0.07; p=0.8) groups. Change in FA did not significantly 

correlate with longitudinal brain atrophy in the whole group (r=0.23; p=0.058), but was significant in 

the control (r=0.39;p=0.026) but not AD (r=0.05;p=0.8) or DLB (r=-0.08; p=0.8). 
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Within each group, we investigated the correlation between change in mean MD and FA, and change 

in cognitive measures (CAMCOG, MMSE, FAS, episodic memory) and UPDRS. Apart from decrease in 

CAMCOG, which correlated with decrease in FA in the AD group (r=0.47,p=0.023) there were no 

significant correlations. 

 

 

CONCLUSIONS 

 

We found increase of mean diffusivity over 1 year in the AD group to be greater than that in the 

control group over a wide range of brain areas. The increase in MD in AD was also greater than that 

in DLB in parietal and temporal regions. However, there was no evidence of longitudinal change in 

MD or FA in DLB relative to controls. This suggests that the widespread pattern of increased MD and 

reduced FA in AD that we saw at baseline is part of an ongoing degenerative process, whilst the 

alterations seen in DLB may have been an early marker of the disease, with less progression. 

However, we had only 1 year of followup, and relatively small alteration in cognitive score over the 

year, so it is possible that further change in MD and FA could occur as both diseases progress. 

Further study to investigate DTI from the earliest disease point would help clarify the disease 

courses. 

We are aware of only a few  studies investigating longitudinal changes in DTI in dementia. One study 

[13] investigated a mixed group of dementia (including 8 AD) and found regional changes in MD 

correlating with declining language function. That study used a VBM approach with smoothed MD 

images, which may have increased the influence of brain atrophy (via partial volume of CSF) on the 

MD values. A separate study used a region of interest approach to look at changes in MD and FA in 

mild cognitive impairment (MCI) and AD compared to controls. They found longitudinal increases in 
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MD in the Alzheimer’s and MCI group in the cingulum. Only the control group showed change in FA. 

However, a study using tractography of the uncinate fasciculus (UNC), the inferior longitudinal 

fasciculus (ILF) and the inferior occipitofrontal fasciculus (IOFF) in AD found only longitudinally 

increased FA in the UNC of AD.[14]In the AD group, we found changes in MD, but not FA. This is in 

keeping with other previous studies [15-17] which have found greater sensitivity of MD to detect 

differences in AD. Possible reasons for this include the relatively large voxel size, since MD is more 

uniform across the brain than FA, and hence less affected by registration errors. Also, whilst loss of 

white matter fibres will invariably increase MD, the effect on FA will depend on the underlying 

arrangement of the fibres. [15, 18] We saw a relationship between change in FA and atrophy in only 

the control group. This may be due to vascular disease being the primary pathology in control 

subjects, and vascular damage to the white matter leading directly to both altered brain volume, and 

also change in diffusion parameters. In the dementia groups, there will be  greater influence of other 

pathologies (eg amyloid) on brain volume through grey matter damage, which may have less direct 

influence on white matter diffusion parameters. In this study we only investigated changes to the 

white matter major tracts. Future work should consider diffusion changes in the cortical and 

subcortical grey matter. 

 We found very limited evidence of association between cognitive decline and change in diffusion 

parameters. This is in keeping with our previous finding in this group that whole brain atrophy rate 

did not correlate with decline in cognitive score [9]. Possible reasons for this include the relatively 

short period (1 year) between assessments, as well as retest variability in cognitive scores. 

Presence of CSF in voxels can have an influence on MD due to the high diffusivity and proton density 

of water, and it is possible that the correlation between MD and atrophy that we see is caused by 

increased CSF in the voxel. However, previous work [19]  found that the TBSS method was relatively 

insensitive to partial volume effects, since the voxels in the white matter skeleton tend to be away 

from the edges of the brain. Cell shrinkage or loss in the WM will contribute to overall brain atrophy, 
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and there is evidence that change in WM in AD is at least partly independent of GM changes, and 

that it is an important part of the AD pathogenesis.[2] The rate of brain atrophy in DLB is lower than 

AD [1] which also suggests that widespread brain degeneration is less marked in DLB, with changes 

to specific neurotransmitter systems (such as cholinergic or dopaminergic) being more profound. 

The relationship between change in brain volume and increased white matter diffusivity in AD would 

also be consistent with white matter changes in AD being largely secondary to grey matter or 

neuronal loss, so reflecting Wallerian degeneration. In contrast, the lack of such an association in 

DLB is consistent with synaptic dysfunction rather than cell loss as a key feature of the disorder, 

possibly caused by presynaptic accumulation of oligimeric alpha-synuclein.[20]  

 

In conclusion we found that whereas at baseline MD was increased in both AD and DLB, there was a 

continued increase in MD over time only in the AD group, with the DLB showing no change in MD. 

This may be a result of early changes in the DLB group, and studies of people at risk of, or in the very 

early stages of DLB may help clarify the timescale of the disease process. 
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Table Captions 

Table 1 Demographic characteristics of the subjects. 

 

FIGURE CAPTIONS 

Figure 1 Group differences in MD. 

Significant voxels (p < 0.05) in the white matter skeleton corrected for multiple comparisons where 

increase in MD in AD > control (red-yellow) and AD > DLB (blue-pink). The white matter skeleton is 

shown in green. Images are presented in radiological convention (left of image is right of brain) 

 

Supplementary figure e-1 Images with FLAIR type contrast calculated from quantitative T1 and T2 

maps. Left show image rated as WMH = 0 and right WMH = 3. 

 

Supplementary figure e-2 Comparison of FA at baseline in the subjects included in the longitudinal 

analysis.  

Showing p < 0.05 (corrected for multiple comparisons with threshold free cluster enhancement) 

where FA in control > AD and control > DLB. There were no regions where FA was significantly 

decreased in controls relative to dementia 

 

Supplementary figure e-3 Comparison of MD at baseline in the subjects included in the longitudinal 

analysis.  
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Showing p < 0.05 (corrected for multiple comparisons with threshold free cluster enhancement) 

where MD in AD > control and DLB > controls. There were no regions where MD was significantly 

increased in controls relative to dementia . 

 


