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Abstract

Einstein’s equations were derived for a free massless spin-2 field us-
ing universal coupling in the 1950-70s by various authors; total stress-
energy including gravity’s served as a source for linear free field equa-
tions. A massive variant was likewise derived in the late 1960s by
Freund, Maheshwari and Schonberg, and thought to be unique. How
broad is universal coupling? In the last decade four 1-parameter fam-
ilies of massive spin-2 theories (contravariant, covariant, tetrad, and
cotetrad of almost any density weights) have been derived using uni-
versal coupling. The (co)tetrad derivations included 2 of the 3 pure
spin-2 theories due to de Rham, Gabadadze, and Tolley; those two the-
ories first appeared in the 2-parameter Ogievetsky-Polubarinov family
(1965), which developed the symmetric square root of the metric as
a nonlinear group realization. One of the two theories was identified
as pure spin-2 by Maheshwari in 1971-2, thus evading the Boulware-
Deser-Tyutin-Fradkin ghost by the time it was announced. Unlike the
previous 4 families, this paper permits nonlinear field redefinitions to
build the effective metric. By not insisting in advance on knowing
the observable significance of the graviton potential to all orders, one
finds that an arbitrary graviton mass term can be derived using uni-
versal coupling. The arbitrariness of a universally coupled mass/self-
interaction term contrasts sharply with the uniqueness of the Einstein
kinetic term. One might have hoped to use universal coupling as a
tie-breaking criterion for choosing among theories that are equally sat-
isfactory on more crucial grounds (such as lacking ghosts and having a
smooth massless limit). But the ubiquity of universal coupling implies
that the criterion doesn’t favor any particular theories among those
with the Einstein kinetic term.
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1 Prelude: Discoveries and Rediscoveries

The project of deriving a relativistic gravitational theory using consider-

ations such as an analogy to Maxwellian electromagnetism, the universal
coupling of the gravitational field to a combined gravity-matter energy-
momentum complex, and the requirement that the gravitational field equa-

tions alone (without the matter equations) entail energy-momentum con-
servation was a part of Einstein’s search for an adequate theory of gravity

in 1913-15 [1–4]. This history was subsequently downplayed by Einstein,
who thought that his strategy of principles had brought him success and

needed to justify his persistent unified field theory quest [4–6]. The physical
ideas above later came to be associated with the (allegedly non-Einsteinian)

field-theoretic approach to gravitation more commonly associated with par-
ticle physics, where it was brought to successful completion in the 1950s-60s

[5, 7–11]. Objections to such derivations [12] have been addressed [13–15].
Until the 2000s it was believed that there was a unique massive gener-

alization of General Relativity satisfying universal coupling [16, 17]. This

theory has a ghost spin-0 with the same mass as the spin 2, generating ex-
pectations of instability. More recently two 1-parameter families of massive

theories were derived by the author [13], being tied to covariant or con-
travariant tensors of various density weights. The ratio of spin-0 mass to

spin-2 mass is determined by the index position and density weight. In these
theories the spin-0 mass is no larger than the spin-2 mass, so the ghost is

always present.
Subsequent work derived another 2-parameter family of universally cou-

pled massive gravities using a tetrad or cotetrad with arbitrary density
weight [18]. The spin-0 ghost mass ranged from 0 to ∞ including both
endpoints. The four infinitely heavy spin-0 ghost cases were proposed in

tetrad form by Zumino [18, 19]. These theories are a small part of the
1965 Ogievetsky-Polubarinov 2-parameter family of massive spin-2 gravities

[20, 21]1 presumed at the time (before recognition of the Boulware-Deser
ghost) to include pure spin 2 theories simply by perturbatively having infi-

nite spin-0 mass, as well as spin 2-spin 0 theories. That paper exhibited a
mild preference for the infinite spin-0 mass theories.

Two of these theories were recently reinvented in a tensor-based formal-
ism and were shown to avoid the Boulware-Deser nonlinear reappearance of

a ghost avoided linearly via the Fierz-Pauli mass term with infinite spin-0
mass [22, 23]. Thus in effect two of the de Rham-Gabadadze-Tolley-Hassan-

1The latter paper, though brief, presents the field equations without a typographical

error present in the former.
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Rosen ghost-free theories (out of the 3 at fixed graviton mass, apart from
mixtures) were shown to satisfy universal coupling [18], though the relation

to nonlinear pure spin-2 was not pointed out.
It turns out that the exact pure spin-2 character of one of these theories,

the one using
√

gµν
√−g

2
ηναδα

µ =
√−g

√
gµνηναδα

µ , (1)

was identified by Amar Maheshwari in 1971-2 (submitted April 1971, pub-
lished March 1972, according to the paper) [24]. Maheshwari imposes a con-

dition np = −1 relating the power n of the densitized inverse metric g̃µν—
any real value (except perhaps 0) using the binomial series expansion!—and

the (negative) density weight p. (Density weight is often defined oppositely
in Russian literature.) Proximately this condition presumably comes from
equations 115 and 119 of Ogievetsky and Polubarinov ([20]); ultimately I

find its motivation unclear, however. Whatever its motivation, it didn’t
prevent Maheshwari from finding one of the pure spin-2 theories much dis-

cussed lately; in fact it helped, somewhat by chance perhaps. Maheshwari
knew his pure spin-2 theory as the Ogievetsky-Polubarinov theory p = −2

(density weight 2 by western reckoning) n = 1
2 (taking the square root of

the resulting quantity). He shows it to be exactly spin-2 by showing that

the exact nonlinear field equations imply an algebraic condition of vanishing
trace of the graviton potential. This argument, one notes, makes use of nei-

ther the Stueckelberg mechanism, nor a tetrad, nor Hamiltonian methods
with an ADM split, unlike much of the new literature. The theory fits the
Fierz-Pauli form not merely at lowest order, but indeed to all orders. It thus

gave over 40 years ago a nonlinear completion of Fierz-Pauli gravity at least
as far as avoiding the Boulware-Deser(-Tyutin-Fradkin) ghost is concerned2,

something that was widely sought a few years ago.
The history of the Boulware-Deser(-Tyutin-Fradkin) ghost is also some-

what interesting. It was diagnosed in papers received in May and June
1972 [17, 25]. In fact Tyutin and Fradkin made much of the Boulware-

Deser ghost claim a bit earlier (the Russian version is dated March 1972
with submission in July 1971 [26]) in relation to the Ogievetsky-Polubarinov

theories. Perhaps one should speak of the Boulware-Deser-Tyutin-Fradkin
ghost because the latter two authors only ascribe a nonlinear ghost to the
Ogievetsky-Polubarinov theories—which is in fact true and was previously

unrecognized for most of the linearly spin-2 cases in those theories, but not
true for (at least) one of them [24]. The avoidance of the Boulware-Deser-

Tyutin-Fradkin ghost was already achieved by Maheshwari by the time that
its generic existence was supposedly shown. It is difficult to show that any-

one knew of Maheshwari’s result besides Maheshwari, however: the Springer

2I thank Andrew Tolley for discussing how the theory fares with the Vainshtein mech-

anism.
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web site for the paper shows exactly one citation from the 1980s, by Ma-
heshwari himself, while Web of Science adds only a mention in a published

bibliography in General Relativity and Gravitation from 1978.
This case of lost knowledge is an example of Hasok Chang’s thesis that

the history of science has neglected resources for the progress of contempo-
rary science [27]. According to Deser, Izumi, Ong, and Waldron, the

recent revival is due to the (partial) resolution of an earlier, fa-

tal, flaw: mGR models generically propagate a sixth, ghost-like,
mode in contrast with the five physical degrees of freedom (DoF)
of their linearized, Fierz-Pauli (FP) counterparts. This termi-

nated interest in bimetric and fmGR models for four decades.
[28, footnotes suppressed]

While there were exceptions, the general thrust of the passage is clearly cor-

rect, sociologically speaking, about the effects of the belief in the genericity
of the Boulware-Deser-Tyutin-Fradkin ghost at least for more than three

decades. That ghost-free counterexamples exist is a deservedly celebrated
result in the last 5 years. But recalling that it was already shown by Mahesh-
wari in 1971-2 that the ghost was not generic even within the Ogievetsky-

Polubarinov family, one is amazed in contemplating the difference between
the actual history of massive gravity and a more rational counterfactual

history (c.f. [29]) that required only paying attention to published results.
One has a striking example of “undiscovered public knowledge” [30]. With

the original gesture toward nonperturbative effects also made by Vainshtein
in 1972 [31], there was no unresolved significant barrier excluding hope for

pure spin-2 theories—that is, nothing to block further research for decades.
The recent historical narrative in literature on massive spin-2 gravity has

given much prominence to the Boulware-Deser(-Tyutin-Fradkin) ghost—a
theoretical problem allegedly showing that massive gravity is impossible—
not just the van Dam-Veltman-Zakharov discontinuity (an empirical prob-

lem allegedly showing that massive gravity is not in fact correct). Recogni-
tion of Maheshwari’s work would have implied that the van Dam-Veltman-

Zakharov discontinuity should have been seen as the real issue because the
Boulware-Deser-Tyutin-Fradkin ghost problem was resolved before it was

diagnosed. Massive gravity wasn’t known to be “inconsistent,” but only
empirically falsified (or so it seemed). Thus the new knowledge needed was

how generally the Vainshtein mechanism worked, a result that gradually
appeared during the 2000s. Does this case suggest a methodological reori-

entation to take literature searches more seriously, or even for departments
to take the history of physics seriously in an institutionalized way as a spe-
cialty (as occurs at the University of Minnesota, and is not unknown in

mathematics), rather than a hobby?
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2 Introduction

The bulk of the paper is devoted to a novel and very general derivation

of universal coupling and its applications to examples of interest, including
the third (novel) dRGT-Hassan-Rosen theory and the entire Ogievetsky-

Polubarinov family. The basic idea is to avoid as long and as far as possible
specifying the observable content of the gravitational potential γµν—that is,

the precise details of its relation to the flat background metric ηµν and the
effective curved metric gµν seen by matter. It turns out that the derivation

works without making that specification of γµν, that is, giving the exact
function of γµν and ηµν that determines the effective curved metric gµν .

One can assume as an approximation a linear redefinition along the lines of
gµν = ηµν +

√
32πGγµν and its densitized, contravariant, and contravariant

densitized analogs [7, 18], but now allowing for unspecified nonlinear terms

as well. By not insisting in advance on knowing the observable significance
of the graviton potential exactly to all orders, one finds that an arbitrary

graviton mass term (including any algebraic self-interaction term) can be
derived using universal coupling (subject to mild invertibility assumptions).

One can always work backwards, and indeed do so easily, choosing an arbi-
trary nonlinear mass term and showing that it satisfies universal coupling for

the right choice of graviton potential. The physical meaning of the graviton
potential is specified implicitly in building the effective curved metric gµν

out of the initial flat metric ηµν and graviton potential. Working forwards
from a specific nonlinear field redefinition to a universally coupled mass/self
interaction term would be much more difficult, but is not required. Working

backwards by specifying a (universally coupled) mass/self interaction term,
by contrast, is effortless. The phrase “mass/self-interaction” term is meant

to imply the freedom of adding analogs of a φ4 interaction or the like in
addition to the quadratic mass term. The fact that one can work backwards

and have everything work is quite surprising, and depends crucially on the
off-shell flexibility of the stress-energy tensor employed here, as embodied

in the quantity Aρσ
µν(η, γ) used below.

Retaining flexibility of field definition till the end permits an enormous

generalization of the theories that fit within the scope of universal coupling
thus conceived. In particular, now the third dRGT-Hassan-Rosen theory
also falls within the scope of universal coupling. The other two, which al-

ready fit the universal coupling scheme in the tetrad formalism [18], now
fit within a metric-based formalism. Perhaps more importantly, an arbi-

trary mixture of the three also is a universally coupled theory. Likewise the
entire 2-parameter family of Ogievetsky-Polubarinov mass terms (including

the first two dRGT-Hassan-Rosen theories) is now seen to satisfy universal
coupling—or an arbitrary mixture of them, for that matter. This paper,

like their work [20], uses a metric-based rather than tetrad-based formal-
ism, in contrast to ([18]). The one-parameter family of theories (at fixed

5



spin-2 graviton mass) of Babak and Grishchuk are also included [32, 33], as
is Visser’s theory [34]; these have ghosts. The third dRGT-Hassan-Rosen

theory, the Babak-Grishchuk theories and Visser’s theory all violate the pat-
tern of

√−g + trace of a metric-like quantity + 0th order term
√−η that

held for earlier examples [13, 16, 18, 20, 35] and that one might have thought
was obligatory. It is also striking that Ogievetsky and Polubarinov, by in-

venting nonlinear group realizations via the binomial series expansion, in
effect turned covariance vs. contravariance from two isolated opposites into

a continuous spectrum from contravariance (n = 1) to covariance (n = −1),
missing only the 0 case. It is possible to speculate that a limiting procedure

involving natural logarithms might fill that hole, n = 0. For the scalar case
the analogous hole in the spectrum of density weights has been filled [35].
But such techniques are not needed here in any case.

It turns out, in fact, that any algebraic mass/self-interaction term falls
within the scope of universal coupling (subject perhaps to some mild invert-

ibility requirements). Whereas universal coupling leads uniquely to the Ein-
stein tensor for the kinetic term (and/or higher-derivative terms built solely

out of gµν), the algebraic terms are completely unrestricted, apart perhaps
from some mild invertibility assumptions. Consequently if one hoped that

universal coupling could help to adjudicate mass/self-interaction terms into
categories of being more plausible or less plausible as a tie-breaker, that hope

seems to be disappointed. It is perhaps possible to regard some instances of
the derivation as simpler and/or more natural than others—perhaps via a
principled restriction on terms proportional to the field equations in the def-

inition of the stress-energy tensor; such considerations would seem to be the
only way that universal coupling discriminates among mass/self-interaction

terms.
One now realizes that good behavior as an effective theory ultimately

counts for more than does the feature of universal coupling. Most of this
paper could have been written 40 years ago, before one thought in terms of

effective field theory. Hence in a sense one can use the results here to ascer-
tain how people should have thought about massive gravity during the era

when hardly anyone did so because of the supposed Boulware-Deser-Tyutin-
Fradkin ghost (which Maheshwari had avoided in one case in advance). If
good effective field theoretic behavior conflicted with universal coupling, too

bad for universal coupling. Insofar as good effective field theoretic behavior
leaves some choices unsettled, one might have hoped that universal coupling

could be a further criterion for theory choice. But that turns out not to
be true either—unless some principled restriction narrowing down the free-

doms of adding Euler-Lagrange derivatives to the stress-energy tensor and
making field redefinitions can be devised. Universal coupling is a nice idea,

but turns out to be generic at least among theories with the Einstein kinetic
term (an assumption no longer so taken for granted [36]).
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3 Derivation of Einstein’s Theory as Massless Spin-

2

The derivation of Einstein’s equations as the field equations of a mass-

less spin-2 theory is facilitated if one uses the metric stress-energy tensor
[7, 11, 13, 37, 38], usually attributed to Rosenfeld [39, 40]. Hilbert proposed

defining stress-energy in terms of the variation of the action with respect
to a metric; Rosenfeld adapted that derivation as a trick even in flat space-
time by momentarily relaxing flatness in taking the variational derivative

and then restoring flatness afterward. Such a trick is related by identities
to the canonical energy-momentum ‘tensor,’ with (for fields transforming

nontrivially under infinitesimal coordinate transformations, i.e., fields that
are not scalars or pseudo-scalars) correction terms with identically vanishing

divergence (‘curls’) and terms proportional to the equations of motion. This
fact answers some of Padmanabhan’s objections [12, 18]; one also notes the

doubtfulness that the Hilbert action is the best regarding boundary terms,
and the doubtfulness that the boundary terms matter if the formalism makes

use of functional derivatives.
The metric stress-energy tensor off-shell is rather sensitive to metric-

dependent field redefinitions. Thus the electromagnetic stress-energy tensor

using Rosenfeld’s recipe is different from the usual one from Aµ if one raises
the index (Aµ), densitizes to weight 1 (Aµ =

√−ηAµ) or some other weight,

or both. How the action changes when one varies the metric ηµν depends on
whether Aµ or something else is held constant in the process. Neither the

canonical tensor nor the Belinfante-symmetrized tensor notices such field
redefinitions. Thus there is a combination of the metric stress-energy tensor

and terms proportional to the field equations that is insensitive to metric-
dependent field redefinitions. However, this entity (identically equal to the

Belinfante tensor) has second derivatives of the potentials, which is dis-
appointing. Hence two virtues, insensitivity to field redefinitions and the
absence of second derivatives, compete for stress-energy tensors. For elec-

tromagnetism one could argue that Aµ is the right choice for primitive field
and hence Aµ is a wrong choice; thus invariance under field redefinitions

might be discounted. The apparatus of differential forms highlights those
cases where covariant derivatives reduce to partial derivatives. If one is tak-

ing a curl, a (possibly twisted) 1-form (covector or axial covector) is much
more convenient than anything else that one can build with the metric’s help.

If one is taking a divergence, a (possibly axial) weight-1 tangent vector den-
sity is best. One can take the dual of a tangent vector density of weight

1 into a differential form, thus avoiding contravariant indices and densities.
But if one needs to take curls and divergences, or if one needs gradients,
such a preferred choice will not exist. Gravity is naturally described with a

symmetric tensor (perhaps with density weight) [41], so derivative coupling
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to the metric is inevitable given the admission of tensors with respect to
general coordinates. Since the One True Field Definition seems not to exist

for gravity, one might like a stress-energy tensor that is insensitive to field
redefinitions. But one might not want to have second derivatives. With

a forced choice between competing values, it seems prudent to be flexible
about the notion of metric stress-energy tensor, permitting unspecified terms

that vanish using the field equations. Such flexibility will be displayed in
the quantity Aµν

αβ(γ, η) below. One also thinks of topological field theories,

for which the metric stress-energy tensor is identically 0 off-shell [42], as
examples motivating not dogmatizing too much in favor of the pure metric

stress-energy tensor.
Many previous derivations of spin-2 gravities (massless or massive) found

the need to treat the covariant and contravariant cases separately [7, 13, 18]

(though the use of a near-continuum of covariance-contravariance by non-
linear group realizations has avoided that need previously [20]). There are

differences of detail—occasional minus signs, as well as an asymmetry due to
the fact that an invariant action comes from a weight 1 rather than weight

0 Lagrangian density. The payoff of such near-repetition was getting twice
as many massive gravity theories. However, this paper’s admission of a non-

linear definition of the effective curved metric gµν (or inverse metric gµν , or
weight 1 metric density gµν , or weight −1 metric density gµν, etc.) obviates

using both the contravariant and covariant derivations. Either one will cover
all cases. I choose to use the contravariant case, partly to facilitate making
closer contact with the classic (and recently neglected) work of Ogievetsky

and Polubarinov [20], which expressed a 2-parameter family of mass terms
in terms of contravariant variables.

For the massless theories, one assumes an initial infinitesimal invariance
(up to a boundary term) of the free gravitational action. For the later

derivation of massive theories, the gauge freedom will be broken by a natural
mass term algebraic in the fields, but the derivative terms will retain the

gauge invariance. This derivation follows ([13, 38]) and so will be brief.
The gravitational potential is taken to be a contravariant symmetric tensor

density field γ̃µν of density weight l, for l 6= 1
2 . It will be convenient to

use not the inverse flat metric itself, but its weight l densitized relative
η̃µν = ηµν√−η l, where l 6= 1

2 . For the massless theories, one assumes an

initial invariance (up to a boundary term) of the free (linear in some field)
gravitational action Sf under the infinitesimal gauge transformation γ̃µν →
γ̃µν + δγ̃µν, where

δγ̃µν = ∂µξ̃ν + ∂ν ξ̃µ − lηµν∂αξ̃α (2)

for l 6= 1
2 , ξ̃ν being an arbitrary vector density field of weight l. One can

write equivalently

δγ̃µν = η̃µα∂αξν + η̃να∂αξµ − lη̃µν∂αξα, (3)
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which looks more like a Lie derivative of a flat metric (inverted and densi-
tized) using its own covariant derivative. For any Sf invariant in this sense,

a certain linear combination the free field equations is identically divergence-
less:

∂µ

(

δSf

δγ̃µν
− l

2
ηµνη

σα δSf

δγ̃σα

)

= 0. (4)

This is the generalized Bianchi identity for the massless free field theory.

Local conservation of energy-momentum, which holds with the use of
the Euler-Lagrange equations for gravity γ̃µν and matter u, can be written

as

∂ν

(

δS

δη̃µν
− l

2
η̃αβη̃µν

δS

δη̃αβ

)

= 0. (5)

It holds as a consequence of the field equations for gravity γ and matter u.
Here u represents an arbitrary collection of dynamical tensor (density) fields

of arbitrary rank, index position, and weight; other geometric objects such
as connections, projective connections, etc. are also permissible. It turns
out for Einstein’s theory that the matter field equations are not necessary

to ensure conservation, but for the moment we do not assume Einstein’s
theory, and it will not hold for massive theories. For Einstein’s equations

these conservation laws remain true, but the conserved quantities have some
peculiar properties due to the emergence of an additional gauge symmetry

[43–46]. This is the bimetric version of the coordinate dependence of pseu-
dotensors. A reasonable interpretation, which works at least as well for

pseudotensors in a single-metric formulation, is that there are more distinct
conserved energy-momenta than expected, because there are more symme-

tries than expected [47] and Noether’s first theorem associates a conserved
energy-momentum current with each translation symmetry.

Given the discussion above of the flexibility of metric energy-momentum

tensors, it is useful to allow some gravitational field equation terms into
the stress-energy tensor. One could also allow matter field terms, but that

seems unhelpful for present purposes. The fact that realistic matter fields
tend either to be of the Yang-Mills variety (hence not needing matter field

equations to remove second derivatives for the non-densitized covector case)
or to involve spinor fields (thus necessitating a refined discussion) further

suggests omitting matter field terms.
The universal coupling postulate is imposed in the form:

δS

δγ̃µν
=

δSf

δγ̃µν
+ λ

(

δS

δη̃µν
− Aρσ

µν(η, γ)
δS

δγ̃ρσ

)

, (6)

where λ = −
√

32πG. The sign of the coefficient of the stress-energy term is
chosen in light of the contravariant index position. Conceivably one could

generalize the left side to permit some dependence on the graviton potential
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to multiply δS
δγ̃µν ; no one worries whether Gµν = 0 or Gµν = 0 or G

µ
ν = 0 are

really Einstein’s field equations. Even if that generality is a good idea, it

merely adds a new term that can be absorbed into Aρσ
µν(η, γ) and does not

require any further accommodation.

Previously in arriving at GR or a 1-parameter family of massive theo-
ries, a linear field redefinition was made to express the action in bimetric

variables [7, 11, 13]; instead of γ̃µν and η̃µν one obtained g̃µν and η̃µν from
g̃µν = η̃µν + λγ̃µν. (Different choices of weight l imply different handling of

the trace of the gravitational potential.) Tetrad definitions have also used
linear field redefinitions [18, 48]. Much of innovation in this paper comes

from relaxing that linear field redefinition by admitting unspecified nonlin-
ear terms. The old expression survives as the first-order approximation of
the general expression that is given by a series:

g̃µν = η̃µν + λγ̃µν + O(λγ)2 + . . . . (7)

Between the flexibility with the trace using the density weight and the new
flexibility with unspecified nonlinear terms, this family of bimetric changes

of variables is a completely general series expansion. Typically it will not
be explicitly invertible in closed form. But it will be assumed tacitly that

an inverse exists. (If one thought that a mass-interaction term such as sin2

was a good idea, such a person could perhaps argue that invertibility would

be needed only for weak fields.) Equating coefficients of the variations gives

δS

δη̃µν
|γ̃ =

δS

δη̃µν
|g̃ +

δS

δg̃ρσ

∂g̃ρσ

∂η̃µν
(8)

and

δS

δγ̃µν
=

δS

δg̃ρσ

∂g̃ρσ

∂γ̃µν
. (9)

Substituting this change of variables into the universal coupling postulate

causes two terms to appear involving δS
δg̃ρσ :

[

(

δ(µ
α δ

ν)
β + λAαβ

µν

) ∂g̃ρσ

∂γ̃µν
− λ

∂g̃ρσ

∂η̃µν

]

δS

δg̃ρσ
=

δSf

δγ̃µν
+ λ

δS

δη̃µν
|g̃. (10)

For the old linear bimetric field redefinitions, the terms involving δS
δg̃ρσ can-

celled out (with Aαβ
µν = 0). With the new nonlinear field redefinition, those

terms still cancel out to 0th order in λγ in their coefficients (as long as Aαβ
µν

also vanishes to 0th order). The higher order terms due to the nonlinearity

of the field redefinition typically do not cancel, because ∂g̃ρσ

∂η̃µν 6= ∂g̃ρσ

∂γ̃µν . But

such terms can be cancelled by a judicious choice of Aαβ
µν . Let us choose it

accordingly and achieve

(

δ(µ
α δ

ν)
β + λAαβ

µν

) ∂g̃ρσ

∂γ̃µν
− λ

∂g̃ρσ

∂η̃µν
= 0. (11)
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Universal coupling then takes the form

δSf

δγ̃µν
= −λ

δS

δη̃µν
|g̃, (12)

just as in the old derivation with a linear field redefinition.

The free field generalized Bianchi identity and the universal coupling
postulate together imply that

∂ν

(

δS

δη̃µν
|g̃ − l

2
η̃αβη̃µν

δS

δη̃αβ
|g̃

)

= 0 (13)

as an identity (off-shell). That is equivalent to

∂ν
δS

δηµν
|g̃ = 0 (14)

identically. In words, whatever dependence the full interacting action has

on the flat background metric after the effective curved metric has been in-
troduced, it contributes to the metric stress-energy tensor only a symmetric

entity with identically vanishing divergence. The quantity δS
δηµν

|g̃ thus has
the form

δS

δηµν

|g̃ =
1

2
∂ρ∂σ

(

M[µρ][σν] + M[νρ][σµ]
)

+ B
√−ηηµν (15)

[49, pp. 89, 429] [7, 50], where Mµρσν is a tensor density of weight 1 and
B is a constant. This result follows from the converse of Poincaré’s lemma

in Minkowski spacetime. Thus the action consists of an arbitrary part that
does not depend on the flat metric at all,

S1[g̃
µν, u],

and a piece S2 made of constants, flat metric Riemann tensor terms (to give
curls in the stress-energy tensor), and boundary terms:

S2 =
1

2

∫

d4xRµνρσ(η)Mµνρσ +

∫

d4xαµ,µ +2B

∫

d4x
√−η. (16)

S2 contains all the ineliminable dependence on the background metric, and
makes no contribution to the field equations. Taking the simplest choice

of S1 gives the Hilbert action for Einstein’s equations, along with a cosmo-
logical constant, though one could admit higher derivatives from powers of

gµν’s Riemann tensor. The choice from the allowed values of l makes no
difference in the massless case. Neither does the nonlinearity of the field

redefinition. Thus one arrives at Einstein’s equations uniquely within the
realm of second-order partial differential equations. If one wants to admit

higher powers and/or covariant derivatives of the Riemann tensor for the
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curved metric, they are available. That feature is due to the feature, in-
spired by Kraichnan [7] (in contrast to some other derivations [5, 11, 20])

of maintaining great generality of field definitions and avoiding gratuitous
explicitness. Kraichnan’s derivation was admired by Bryce DeWitt ([51] [5,

p. xiv] and personal communication 15+ years ago).
If one thinks that the use of this term 1

2

∫

d4xRµνρσ(η)Mµνρσ(ηµν, gµν, u)

is too clever to be invented without knowing Einstein’s theory in advance and
thus cheating [12], one could simply add to the metric stress-energy tensor

a curl term 1
2∂ρ∂σ

(

M[µρ][σν] + M[νρ][σµ]
)

+ B
√−ηηµν by hand, as has been

noted [13]. The 4-divergence αµ,µ resolves worries [12] about getting terms

not analytic in the coupling constant λ. (It is unclear that the Hilbert action
is best in any event, given its badly behaved conservation laws [52].) If one
finds it disturbing to momentarily relax flatness of ηµν to take derivatives and

then restore flatness, one can use the Rosen-Sorkin Lagrange multiplier trick,
which makes the flatness of the flat metric a consequence of the variational

principle [53, 54].
One might wonder whether this style of derivation of General Relativity

from conservation laws bears any close resemblance to Noether’s theorems.
In fact the derivation is in effect an adaptation to the Rosenfeld (variation

of flat metric) stress-energy tensor a converse mentioned already by Emmy
Noether and related to Felix Klein’s work [55]. As Brading and Brown

explain, in Einstein’s theory “. . . the Noether current can be expressed as
consisting of a term which vanishes on-shell. . . and a term whose divergence
vanishes identically.” [56] Such conservation laws, justly or not, have been

called “improper.” But Noether herself included a converse:

If [action] I admits of the displacement group, then the energy
relationships become improper if and only if I is invariant with

respect to an infinite group containing the displacement group
as subgroup. [footnote suppressed] [57, emphasis added]

Given this link to Noether’s theorem and the Belinfante-Rosenfeld relation
between canonical and metrical stress-energy, one could envisage a parallel

derivation of Einstein’s theory without the flat metric tensor, albeit much
less convenient. It is not coincidental that universal coupling derivations for

massive scalar gravity using the canonical tensor have led only to a single
theory [58], because one needs to use the freedom to add a curl to the

canonical tensor to accommodate second derivatives except in one case [35].

4 Derivation for Contravariant Tensor Density Po-

tential: Massive Case

In the classic paper that did so much to end work on massive gravity for
decades, Boulware and Deser showed appreciation for the principle of univer-

12



sal coupling in choosing among mass terms (after more crucial distinctions
such as ghost vs. no ghost had been settled):

It is of interest, both for its own sake and to illustrate the physical
requirements we impose on finite-range models, to consider one

version of a “ghost” theory in detail. The most appealing model
is the one which carries over from general relativity the property

that the source of the linearized field is the full stress tensor of
the field itself.24 [17]

(The footnote refers to the Freund-Maheshwari-Schonberg paper [16] and
discusses that theory’s ghost.) Boulware and Deser, like Freund, Maheshwari

and Schonberg, thought that universal coupling gave a unique answer and
that the principle was appealing, appealing enough that the theory satisfying

it would be better than theories not satisfying it, other things being equal.
Boulware and Deser thought that the resulting ghost theory was bad, unlike

Freund, Maheshwari and Schonberg at the time. It has been shown in recent
years that the result isn’t unique [13] and that it doesn’t lead purely to ghost
theories at linear order [18] (or, as it turns out, even nonlinearly). Here I

show that universal coupling doesn’t rule out anything if one makes enough
use of field redefinitions. Consequently all ghost-free theories that were not

included before are included now (as well as all ghost or tachyon theories).
For the massive generalization of this contravariant derivation, the choice

of density weight l makes a difference. So will the nonlinearities. While it
is easy enough to run the derivation forward for linear field redefinitions

[13], that looks typically difficult at best with a nonlinear field redefini-
tion. Fortunately, one can always work backwards, showing that basically

any graviton mass/(algebraic) self-interaction term is universally coupled
for some (typically nonlinear) field redefinition! If one does not insist on
knowing in advance exactly to all orders how the graviton potential relates

to experience, then one is rewarded with a super-abundant harvest of new
universally coupled massive gravities. A field (re)definition is a conventional

choice: there is no fact of the matter about whether gravity is really

gµν − ηµν√
32πG

or
ηµν√−η − gµν

√
32πG

or the like, though some choices are more convenient or simpler than others,

or are so for particular purposes (not necessarily the same choice for every
purpose—witness the utility of gµν for wave equations [59] and gµν for a

Hamiltonian treatment with simple primary constraints). Thus nothing so
important as whether a theory satisfies universal coupling should depend on

there being a True choice. One can admit them all. In building the massive
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theories using kinetic terms from the massless theories, I do not explore the
interesting question of generalized kinetic terms [36].

To find the massive theories, one assumes a free theory with action Sf

(quadratic in the gradient of some field variables) consisting of a kinetic

part Sf0, which plays exactly the role that Sf played in the massless case,
and a mass term Sfm quadratic in those same unknown field variables. One

seeks the full self-interaction gravitational theory’s action S by assuming
that it also splits into two parts S0 and Sms. Sf0 leads to S0 exactly as Sf

led to S above, while the new free graviton mass term Sf0 leads to Sms.
A key difference is that the erstwhile free field Bianchi identity applies to

the massless piece, whereas the mass terms have no such restriction. This
difference explains why the kinetic term is unique (assuming at most second
derivatives in the field equations), whereas the mass term is arbitrary.

Requiring Sf0 to change only by a boundary term under the infinitesimal
variation

δγ̃µν = ∂µξ̃ν + ∂ν ξ̃µ − lηµν∂αξ̃α (17)

for l 6= 1
2 implies the identity

∂µ

(

δSf0

δγ̃µν
− l

2
ηµνη

σα δSf0

δγ̃σα

)

= 0. (18)

Again we postulate universal coupling, make an unspecified nonlinear field

redefinition, and arrive at

δSf

δγ̃µν
= −λ

δS

δη̃µν
|g̃. (19)

Making use of the split of both the free and interacting actions into
massless and mass parts, one gets two universal coupling conditions. The

massless part satisfies Bianchi identities and so depends on the flat metric
ηµν only via terms that do not affect the field equations; the effective curved

metric density has swallowed much of the original dependence on the flat
geometry. Thus one gets an action for Einstein’s equations (perhaps with
cosmological constant or higher derivatives) for the massless piece. The free

and interacting mass terms are related by the condition

δSfm

δγ̃µν
= −λ

δSms

δη̃µν
|g̃. (20)

Sfm is quadratic in the gravitational potential:

δSfm

δγ̃µν
= −m2√−ηγ̃αβ(η̃αµη̃βν + bη̃αβη̃µν).

m is the mass of the spin-2 graviton. For those theories that have a spin-0

graviton linearly as well, b accommodates the spin-0 mass, which need not
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be the same as m. The case value of b that gives the Pauli-Fierz pure spin-2
free mass term depends on the density weight l.

When one had a linear field redefinition into bimetric variables [13], it

was straightforward to work forward, changing
δSfm

δγ̃µν into bimetric variables,

and arrive at affine dependence on g̃µν in the mass term apart from an
algebraic weight 1 expression built purely in the metric (a formal cosmolog-

ical constant term), as in the n = ±1 Ogievetsky-Polubarinov theories and
the Freund-Maheshwari-Schonberg theory (the first massive gravity theory

derived by universal coupling):

Sms =
m2

16πG

∫

d4x(
√−g[2l − 1]−√−η[2l − 3] − 1

2

√−η g̃µν η̃µν)

for l 6= 1
2 . A similar expression for a different family of theories was derived

using covariant fields with density weight −l:

Sms =
m2

16πG

∫

d4x(
√−g[1 − 2l] +

√−η[2l + 1] − 1

2

√−η g̃µν η̃
µν)

for l 6= 1
2 . Similar results appeared with a (co)tetrad density derivation [18].

For the covariant tetrad density cases with weight −w one found

Sms =
m2

8πG

∫

d4x(
√−g[1 − 4w] +

√−η[4w + 3]−√−η g̃A
µ η̃µ

A)

for w 6= 1
4 . For the contravariant tetrad density cases of weight w one found

Sms =
m2

8πG

∫

d4x(
√−g[4w − 1] +

√−η[5 − 4w]−√−η g̃µ
Aη̃A

µ )

for w 6= 1
4 . A weight−w cotetrad implies a weight−l = −2w metric; a weight

w tetrad implies a weight l = 2w contravariant metric. Avoiding tachyons

imposes restrictions in each case [13, 18, 20]. The (co)tetrad theories permit
the spin-0 graviton to be heavier than the spin-2, even infinitely heavy, thus

getting rid of the ghost at least to linear order; these are Zumino’s theories
[19]. Of those 4 theories, 2 of them are exactly ghost-free, while the other two
suffer from the Boulware-Deser-Tyutin-Fradkin ghost nonlinearly. Zumino

seems to have assumed that getting rid of the ghost to lowest order kept it
away permanently.

Because it seems impossible to think of other linear geometric objects
to represent space-time geometry and gravity, one might have conjectured

that only these four families of theories were universally coupled. But the
unspecified nonlinear field redefinition simultaneously effects two changes:

it renders working forward typically difficult or impossible instead of easy,
and it makes working backward always easy instead of typically difficult or

impossible. To work forward is to specify completely a nonlinear bimetric
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field redefinition and infer the interacting mass term Sms and hence the
whole theory. To work backward is to specify Sms and infer the bimetric

field redefinition. The mass term is not in danger of already needing to know
the answer in advance. Because every answer Sms is permissible, working

backwards is not cheating.
Returning to the new derivation, one has

−m2√−ηγ̃αβ(η̃αµη̃βν + bη̃αβη̃µν) =
δSfm

δγ̃µν
= −λ

δSms

δη̃µν
|g̃. (21)

One can now read the equation backwards: instead of assuming that one

knows precisely the empirical meaning of the left side (using some specific
nonlinear field redefinition) and inferring the universally coupled mass term
on the right side, one can read it as defining γ̃µν in terms of g̃µν and η̃µν.

This expression gives the inverse of the nonlinear bimetric field redefinition.
Because so far the nonlinear field redefinition has been specified only to

linear order, this equation cannot fail to hold for any reasonable mass term
Sms; indeed Sms ought to be just Sfm to that order. One is asking the

question, “what should one mean by the gravitational potential in order
to arrive at mass/self-interaction term Sms via universal coupling?” One

would have expected that typically no answer to this question would exist.
But in fact generically there is an answer.

5 Bianchi Identity for Full Theory and Vanishing

Divergence Conditions

If one wants to eliminate spin-1 and one spin-0 excitations, one desires a
vanishing coordinate divergence (or covariant divergence with respect to

ηµν) [20, 24]. If one takes the g-covariant divergence of the gravitational
field equations δS

δg̃µν = 0 or the like, then one seems to be stuck with curved

g-Christoffel symbols. Even in the best case for taking a divergence, using
gµν as the field variable and getting Euler-Lagrange equations with density
weight 1 and contravariant character δS

δgµν
= 0, one still has one Christoffel

symbol term remaining. It might be tempting to think that such a covariant
divergence cannot be written as a coordinate or flat covariant divergence,

but in fact it can. Neglecting matter in this section for simplicity of exposi-
tion, one has a gravitational action that is a scalar. Expanding out the Lie

derivatives of the metrics and remembering that it is a contravariant vector
that describes a small coordinate transformation, one gets the generalized

Bianchi identity

gαν∇µ
δS

δgµν

+ ηαν∂µ
δS

δηµν

|g = 0. (22)

In this way one relates a g-covariant divergence of the derivative of the mass

term with respect to gµν , to the η-covariant divergence of the derivative of
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the mass term with respect to ηµν . Off-shell one can use this identity ei-
ther for the whole action or for just the mass term. For the whole action,

the gravitational field equations δS
δgµν

= 0 annihilate the first term, so the
second term gives an on-shell vanishing divergence, which provides the de-

sired conditions eliminating spin-1 and a spin-0. If matter were present, one
would need to use its Euler-Lagrange equations as well. In any case, with

everything on-shell one gets

ηαν∂µ
∂Lms

∂ηµν
|g = 0; (23)

the |g is now added as a reminder of the use of bimetric variables, so that the
curved metric rather than the graviton potential is the other independent

variable. For theories in the form
√−g piece +

√−η piece + trace of
metric-like entity, only the term involving trace of the metric-like entity will

contribute in this divergence. Much like Proca’s massive electromagnetism,
one gets a Lorentz-like condition on the potential as a consequence.

6 Universal Coupling of Ogievetsky-Polubarinov

Mass Terms

With the derivation of any arbitrary mass term from universal coupling now

complete, it isn’t strictly necessary to consider any specific cases. Some
definite examples might be helpful, however, to reduce the level of abstrac-

tion. First, consider the Ogievetsky-Polubarinov theories [20, 21]. To fit the
formalism, such theories must be adapted from Cartesian coordinates with

imaginary time to formal general covariance with a flat metric tensor ηµν or
some densitized and perhaps inverted relative thereof. Thus polished, the

theories are, apart from the familiar Einstein terms,

Lms =
m2

32πGn

[

(4l− 2)
√−g − 1

n
(g̃µν η̃να)nδα

µ

√−η + (2 − 4l + 4/n)
√−η

]

.

(24)
I use l for western density weight, so l = −p. Taking the derivative one gets

λ
δSms

δη̃µν
|g̃ =

m2

λn

[√−ηη̃µα(g̃αβη̃βν)
n +

√−ηη̃µν

4l − 2

(

−1

n
(g̃ρση̃σα)nδα

ρ + 2 − 4l +
4

n

)]

.

This expression vanishes to zeroth order (as desired). It can be expanded
to linear order in weight l fields: g̃µν = η̃µν + λγ̃µν + . . . . The resulting

expansion agrees (to linear order, and up to a sign as expected) with
δSfm

δγ̃µν =

−m2√−ηγ̃αβ(η̃αµη̃βν + bη̃αβη̃µν) when one sets

b = − 1

n(4l − 2)
.
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Note that it was never necessary to write down explicitly Aαβ
µν (η, γ),

∂g̃ρσ

∂γ̃µν , or ∂g̃ρσ

∂η̃µν . One could attempt to do so after the fact. In this case simply

altering the trace to isolate the gravitational potential does much of the job:

λnγ̃φχ = −η̃φχ + η̃νχ(g̃φβη̃βν)
n,

which of course matches [20, equation 113], with arbitrary real coordinates

in place of Cartesian coordinates and imaginary time. The monomial in a
power of the effective curved metric (inverted and weighted) g̃φβ makes this
specific expression easy to solve:

g̃µν = (δµ
α + λnγ̃µβη̃βα)

1

n η̃να,

for which one can make a binomial series expansion if desired [20, equation
119b].

But inverting the relationship between the potential and the metrics to
express g̃µν in terms of η̃µν and γ̃µν is something that typically can only be
done perturbatively. One probably wouldn’t bother to try even in some cases

where exact solution is possible. Even if one tried and succeeded, one would
be working hard to achieve something that isn’t clearly all that interesting

(unless one believes that some relations of the gravitational potential to
the metrics are fundamentally more correct—not merely more convenient—

than others). Thus a great deal of uninteresting labor is avoided and the full
collection of every mass term such that there exists some definition of the

gravitational potential leading to it is found—and that collection includes
pretty much every mass term.

7 Pure Spin-2 Sum of dRGT-Hassan-Rosen Mass

Terms from Ogievetsky-Polubarinov Family

In the derivation above I have taken advantage of the option of using the
same density weight l for the field variables as appears in the theory at
which I wanted to arrive. Previously the medium (the density weight of

the field) and the message (the resulting universally coupled field) have
been closely linked [13, 18]. That link no longer is required, which is good

because not every massive gravity theory of interest has a preferred density
weight or even a preference between covariant and contravariant indices.

Here is an example built around two old mass terms [19, 20]. In recent years
three pure spin-2 massive gravities have been found, avoiding the Boulware-

Deser-Tyutin-Fradkin ghost. These theories admit linear combinations, thus
giving a two-parameter family given fixed graviton mass. Two of the three

component theories fall within the Ogievetsky-Polubarinov family, but the
techniques used by those authors do not permit adding two theories to give
another in their family. They were, of course, aware that even more general
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massive gravities were possible than they achieved using an expression linear
in an arbitrary nonzero real powers of an arbitrarily densitized contravariant

tensor [20, p. 193]. It seems of interest, therefore, to study an arbitrarily
weighted average of the two theories that were entertained by Ogievetsky

and Polubarinov and that are now known to have pure spin-2. As noted
above, Maheshwari showed the pure spin-2 character of one of them long

ago [24], even before the Tyutin-Fradkin-Boulware-Deser announcement of
a nonlinear ghost, but his paper did not receive any attention. The two

theories in question are the n = 1
2 , p = −2 theory built around the square

root of the weight 2 contravariant metric density (Maheshwari’s pure spin-2)

and the n = −1
2 , p = 0 theory built around the square root rµν of the (weight

0) covariant metric. Above I used l for density weight in the usual western
sense, so l = −p. These theories are built around fields with different index

placement (contravariant and covariant) and different density weight, so one
would likely not consider them if one held to a One True Field Definition.

One has

Lms =
x

x + y

m2

16πG

[

6
√−g − 2(

√−g
2
gµνηνα/

√−η
2
)

1

2 δα
µ

√−η + 2
√−η

]

− y

x + y

m2

16πG

[

−2
√−g + 2(

√−g
0
gµνη

να√−η
0
)

1

2 δµ
α

√−η − 6
√−η

]

=

m2

(x + y)16πG

[

(6x + 2y)
√−g − 2x(gµνηνα)

1

2 δα
µ

√−g − 2y(gµνη
να)

1

2 δµ
α

√−η

+(2x + 6y)
√−η

]

.(25)

In calling this a weighted average, I do not mean to imply that x and y must
be non-negative. This expression adds quantities naturally expressed using

different weights and different valencies (covariant vs. contravariant), so it
provides a good occasion to notice that the choice of field variables (chosen

as contravariant in this paper, but of almost any weight) is no longer tied to
the resulting mass term. Making another more or less arbitrary choice for
definiteness in this section, I use non-densitized (l = 0) fields.

Finding the contribution of the full mass term to the on-shell remnants
of the stress-energy tensor gives

λ
δSms

δηµν
|g =

2m2

λ(x + y)

[

x
√−gηµα(gαβηβν)

1

2

−y(gµαηαβ)
1

2 ηβν

√−η + y(gαβηβρ)
1

2 δα
ρ

√−ηηµν − (x + 3y)
√−ηηµν

]

. (26)

Expanding this expression to first order in contravariant weight-0 fields gives

m2√−η(γµν − γηµν) + O(λγ)2, (27)

which shows the appropriate Pauli-Fierz ghost-free mass term to linear or-

der. Equating this expression (up to a sign) with
δSfm

δγµν works and yields

b = −1.
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If one undertakes to invert the relationship to express gµν in terms of ηµν

and the gravitational potential γµν, then one obtains a cubic matrix equa-

tion (cubic, linear, and constant terms) in the square root of gµν . It might
possibly yield to exact treatment, unlike more general problems. Working

perturbatively instead, one already expects gµν = ηµν + λγµν + . . . , but
what does one fill in for the “. . . ”? There seems to be little to do other than

allow terms of the forms γµαγν
α, γµνγ, and γ2ηµν with arbitrary coefficients.

Clearly this process will get less appealing at every order. This is the generic

situation, whether or not this particular case admits an exact solution as a
cubic equation. It is much better to avoid such considerations and arrive

directly at the conclusion that there exists some definition of γµν such that
the resulting theory is universally coupled.

8 Third (Non-trace) dRGT-Hassan-Rosen Pure Spin-

2 Mass Term

The previous section used the sum of two theories of the formal cosmo-
logical constant + trace variety. What if one considers theories involving a

quadratic expression in some bimetric variables—whether chosen carefully to
be ghost-free (such as the third, novel dRGT-Hassan-Rosen theory) or cho-
sen on more formal grounds of simplicity? Because universal coupling always

works, it works for these sorts of theories also. For a mass term built out of
the novel (non-Ogievetsky-Polubarinov-Zumino) pure spin-2 mass term,

Lms =
m2

32πG
[6
√−g +

√−ggµνηµν −
√−g([gµνηνα]

1

2 δα
µ )2 + 6

√−η]

one (of course) satisfies the universal coupling condition for some as-yet
unknown choice of the gravitational potential. For consistency with the
derivation above (rather than redoing it with covariant fields) one can choose

contravariant fields, and let them have weight 0 for simplicity, and explore
the process of inverting the expression γµν = f(gµν, ηµν). One gets

−λ
δSms

δηµν
|g = −λ

m2

32πG
[−√−ggαβηαµηνβ − 3

√−ηηµν

+
√−g(

√

gσρηρεδ
ε
σ)

√

gφχηχµηνφ]. (28)

The equation of this expression to

δSfm

δγµν
= −m2√−η(γµν − γηµν)

allows one to infer the relation of the γµν to the flat and curved metrics.
That relation starts as gµν = ηµν +λγµν + . . . , but the terms “. . . ” have yet

to be ascertained. Considered as an exact equation, it is a quadratic matrix
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equation (quadratic and constant terms) in the square root of
√−ggµν, but

the quadratic term involves a matrix times its trace less the square of the

matrix, and so is not trivial to solve. Perturbative treatment might be
required. It should be straightforward to do this exercise using an arbitrary

sum of the three ghost-free pure spin-2 mass terms, with even less hope of
exact solution. Thus one would never infer that these theories are universally

coupled if one used only the traditional “forward” derivations instead of this
paper’s “backward” approach.

9 Babak-Grishchuk Theories and Visser’s Theory

A few theories motivated by naive mathematical simplicity, taking the mass
term as the square of a perturbation of a familiar metric-related quantity,

have been considered. These theories also violate the
√−g+ trace pattern.

Thus these theories seemed not to be universally coupled even after 4 one-

parameter families of universally coupled theories were known. Worse, these
theories also have ghosts. But one might wonder if naive (quadratic) mathe-

matical simplicity has any benefits, benefits that might generalize in some in-
teresting way? The Babak-Grishchuk theories are built using gµν =

√−ggµν

using an expression quadratic in the (de-densitized) deviation of this quan-
tity from

√−ηηµν [32, equation 15]. To avoid the proliferation of symbols
needed only briefly, one can simply write the mass term in bimetric variables:

Lms = −√−η
k1

2

[

gρσησβgβαηαρ/
√−η

2 − 2gρσηρσ/
√−η + 4

]

−√−η
k2

2

[

(gρσηρσ/
√−η)2 − 8gρσηρσ/

√−η + 16
]

. (29)

Although these theories have ghosts, it is surprisingly difficult to catch them
doing anything spooky, at least classically [32]. But reality is not classical, so

the expected quantum catastrophe makes them unappealing. In any case,
the task at hand is merely to illustrate how these theories fit within the

realm of universal coupling. It is convenient to use weight l = 1 fields, so
g̃µν = gµν. One finds that

λ
δSms

δη̃µν
|g̃ = λ

ηµν

2
√−η

Lms −
λ
√−η

2
[−2k1η̃µσg̃σρη̃ραg̃αβη̃βν

−2k2g̃
ρση̃ρση̃µαg̃αβη̃βν + (2k1 + 8k2)η̃µρg̃

ρση̃σν]. (30)

Expanding to linear order using g̃µν = η̃µν + λγ̃µν + . . . , one sees that

the term λ
ηµν

2
√
−η

Lms does not contribute to lowest order and that the second

term becomes
√−η32πG(k1γ̃µν+k2γη̃µν). Equating this expression to −δSfm

δγ̃µν

gives k1 = m2

32πG and k2 = bm2

32πG .
If one attempts to invert the relation to ascertain how g̃µν is built from

η̃µν and that gravitational potential that yields universal coupling, one sees
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a quadratic matrix equation (quadratic, linear and constant terms) with two
pieces in the quadratic term, somewhat worse than the third dRGT theory.

Once again it is best to avoid such inversion.
One could give a similar treatment to Visser’s theory [34]. Altering the

sign and normalization of the mass term by a factor of − 1
32πG in equations

5 and 6, one finds that this theory also fits the universal coupling pattern.

Using weight 0 fields gµν = ηµν + λγµν + . . . , one finds b = −1
2 .

10 How the Genericity of Universal Coupling Af-

fects Theory Choice

Universal coupling by itself is consistent with ghosts, tachyons, and what-

ever other bad behavior a massive graviton theory might display, so it is
not a panacea. But universal coupling arguably makes a theory better than
any cousins that are not universally coupled but also have the same ghost

presence or absence, and that fit the data equally well [16, 17]. (Such mat-
ters that now take one into the realm of effective field theory). Can one

use universal coupling as a tie-breaker? If the more crucial matters of han-
dling the traditional worries about a ghost and/or vDVZ discontinuity have

been addressed, one might prefer any remaining candidates that are uni-
versally coupled—assuming that some theories are not! It appeared that

only one theory, the Freund-Maheshwari-Schonberg theory, was universal
coupled [16, 17] until recently— putting universally coupled theories purely

into the ghost category (too bad for universal coupling). More recent work
generalized universal coupling to more ghost theories [13] using the metric
(or its inverse) with nearly any density weight, giving a ghost of tunable

mass lighter than the spin-2 [13]. Still more recent work using a tetrad (or
its inverse) with nearly any density weight permitted theories heavier ghosts

and theories linearizing in the Fierz-Pauli ghost-free way [18]; these are part
of the Ogievetsky-Polubarinov family [19, 20]. As was shown recently [22, 23]

(and in part long ago [24] without attracting attention), two of those the-
ories are nonlinearly ghost-free, as is a third new theory, or any mixture of

the 3. Should one conclude that only two theories out of this 2-parameter
family (at fixed spin-2 graviton mass) of ghost-free theories are universally

coupled? That would make universal coupling quite predictive, and corre-
spondingly fragile. But as shown above, universal coupling, far from having
a unique result, in fact applies to any mass term, good or bad—ghost-free,

ghost-filled, tachyonic, etc., given the flexibility in defining stress-energy
and making field redefinitions employed above. If universal coupling makes

a theory a little bit special, it turns out that all theories are a little bit
special.
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11 Appendix: Spinors

It is expected that future work will explicitly include spinor fields. Spinors

have occasionally appeared in discussions of universal coupling derivations
of Einstein’s equations [38, 48, 60], though less often than such fundamen-

tal entities should. Often the discussion reproduces the Weyl-Cartan claim
[61, 62] that coupling of spinors to the curved space-times implied by Gen-

eral Relativity requires the introduction of an orthonormal tetrad. This
claim was proven false by construction in the mid-1960s by Ogievetsky-

Polubarinov the invention of nonlinear group realizations [20, 63–66]. Very
roughly, one can take a tetrad, impose the very common symmetric gauge

condition [41], and—this is the key step that is usually missed—then no-
tice that one has a tetrad-free spinor formalism that makes perfectly good
sense in its own right and even (at least in its bosonic sector) lacks the

topological restrictions implied by a tetrad. Doubtless sometimes is conve-
nient to represent the gravitational potential using an orthonormal tetrad,

especially (but not only) if spinors are present, in order to avoid technically
demanding nonlinearities [64, p. 234], as the predecessor paper did [18].

Including spinors along the lines of nonlinear (because metric-dependent)
group realizations will require graviton-dependent field redefinitions of the

spinor built around the square root of the flat metric ηµν . That is because
the square root of ηµν—roughly a symmetrized flat tetrad locally in ad-

missible coordinates—would be rendered symmetric by one boost-rotation
(fixing of the local Lorentz freedom), whereas the curved tetrad would be
rendered symmetric by a different boost-rotation in general. Thus a spinor

built around the flat metric square root needs to be boosted and rotated in
order to be built around the curved metric square root. There will also be

non-tensorial spinor-related parts of δS
δηµν

and δS
δgµν

, so one cannot assume
tensor properties as usual from the notation, a point that was not made

clear in ([38]).
There has appeared a fairly detailed technical and historical discussion of

the issue of spinors in coordinates to subsume them as far as possible within
classical nonlinear geometric objects (components relative to a coordinate

system and a transformation rule [66–71]. Most strikingly, it turns out that
the coordinate atlas has subtleties if the nonlinear realizations use an indef-
inite signature matrix such as diag(−1, 1, 1, 1), as one would want to do for

space-time. This is an interpretation of one of the jobs of Bilyalov’s pivoting
matrix T . (The issues involving the square root of the metric in graviton

mass terms are analogous [72].) To that story I can now add that a symmet-
ric gauge condition (the first step toward spinors in coordinates via nonlinear

group realizations) was imposed at lowest order already by Bronstein in 1936
[73] and that a fair amount of the apparatus of spinors as nonlinear group

realizations appeared in Bryce (Seligman) DeWitt’s dissertation [51, p. 66].
Thus the already known footnote 7 of ([74]) reflects a more substantial ear-
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lier treatment. DeWitt seems not to have heartily embraced the conceptual
innovation of nonlinear group realizations as Ogievetsky and Polubarinov

later would [20, 63]. Nonetheless one can now suggest his dissertation as
perhaps the first serious step toward nonlinear group realizations.
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[74] Bryce Seligman DeWitt and Cécile Morette DeWitt. The quantum

theory of interacting gravitational and spinor fields. Physical Review,
87:116–122, 1952.

30


