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In silico functional dissection 
of saturation mutagenesis: 
Interpreting the relationship 
between phenotypes and changes 
in protein stability, interactions  
and activity
Douglas E. V. Pires1,2,*, Jing Chen1,†, Tom L. Blundell1 & David B. Ascher1,*

Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional 
interpretation of mutation data has lagged behind generation of data from modern high-throughput 
techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial 
task. We present here an integrated knowledge-driven computational workflow designed to evaluate 
the effects of experimental and disease missense mutations on protein structure and interactions. We 
exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that 
the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of 
mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in 
VHL using our workflow provides valuable insights into the effects of mutations, and their links to the 
risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate 
that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse 
a given system to provide a powerful approach for predicting structural and functional effects of 
thousands of mutations in order to reveal molecular mechanisms leading to a phenotype. 

Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a 
protein. Their effects can range from modifying transcription, translation, processing and splicing, localization, 
changing stability of the protein, altering its dynamics or interactions with other proteins, nucleic acids and lig-
ands, including small molecules and metal ions. The advent of high-throughput techniques including sequencing 
and saturation mutagenesis has provided large amounts of phenotypic data linked to mutations. However, one of 
the hurdles has been understanding and quantifying the effects of a particular mutation, and how they translate 
into a given phenotype. One approach to overcome this is to use robust, accurate and scalable computational 
methods to understand and correlate structural effects of mutations with disease.

Over the past twenty years, multiple in silico approaches to predict how mutations affect protein stability have 
been developed based on various evolutionary and physicochemical hypotheses. These include methods that 
seek to understand the effects of amino acid substitutions from the protein sequence alone, and those that exploit 
the extensive structural information now available for many proteins. The sequence-based approaches include, 
amongst others, the well established and widely used methods SIFT1 and PolyPhen2. Our lab developed one of the 
pioneering structure-based approaches, SDM3, 4, which uses environment-specific substitution tables of protein 
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families to derive a statistical potential energy function. Subsequently, in silico methods based on a variety of 
evolutionary and physical chemical hypotheses have been proposed for predicting the effects of mutations on 
protein stability3,5–10. More recently, we have used machine learning and graph-based signatures to represent the 
three-dimensional environment of the wild-type residue and have developed mCSM-Stability, which quantita-
tively predicts the change upon mutation in the Gibbs free energy (Δ Δ G) of folding11. By combining these two 
different approaches we were able to develop an optimized consensus method, DUET, which takes advantage of 
their relative strengths12.

To date, significantly less attention has been focused on understanding the effects of mutations on the recogni-
tion of binding partners, including proteins, nucleic acids and other ligands. These properties are much more dif-
ficult to predict from the amino acid sequence alone. Several methods have been recently proposed in an attempt 
to understand how mutations on protein interfaces affect binding affinity9,13–16, although there is still significant 
room for improvement17. In order to bridge this gap, we have developed methods based on graph signatures to 
predict accurately changes upon mutation in protein-protein (mCSM-PPI) and protein-nucleic acid (mCSM-NA) 
affinities11, and more recently efforts to predict the changes in protein-ligand affinity (mCSM-Lig)18.

Recent advances in experimental approaches have integrated saturation mutagenesis coupled to a biological 
assay output as a tool to facilitate the high-resolution, functional dissection of mutations19,20. However, under-
standing the functional consequence of these mutations, and how they are linked to the experimental phenotype, 
remains a very complex and challenging task. The effects of mutations can be complex and multifactorial. Here we 
present a knowledge-driven computational workflow that can be easily implemented in a pipeline to analyze the 
structural and functional effects of mutations (Fig. 1). This approach is contingent upon a good understanding of 
the protein (both structure and function) and the system being mutated, as highlighted at the top of Fig. 1. The 
workflow then uses structural methods to explore the molecular mechanisms of mutations and their links to the 
biological effects experimentally observed.

The lariat debranching enzyme DBR1
Findlay and colleagues reported in Nature a CRISPR/Cas9 cleavage system coupled with multiplex 
homology-directed repair to perform saturation editing of a conserved 25 amino acid region of the RNA lar-
iat debranching enzyme DBR1, an essential gene. They coupled this to a growth-based assay to evaluate the 
phenotypic effects of over 170 distinct missense mutations. The authors noted a weak correlation between the 
sequence-based predictor CADD21 and PolyPhen-222 with the phenotypic output. This region is quite highly 
conserved, leading to PolyPhen and CADD predicting most mutations as damaging19. We therefore applied our 

Figure 1. A proposed computational mutation analysis workflow. The figure depicts the proposed 
methodology workflow which can be divided in the four main steps: data collection and structural analysis, 
in silico (quantitative) prediction of effects of mutations, filtering mutations by their predicted effect, building 
regression and classification models to link prediction with observed phenotype.
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workflow in an attempt to analyse the molecular mechanism underlying the phenotypic effects of these mutations 
(Figure S1).

Figure S2 shows the growth response distribution (average log2-enrichment score between replicates) of the 
172 missense mutations reported by Findlay and colleagues19 and considered in this analysis, ranging from res-
idues 84 to 108 of human DBR1. There is a bimodal distribution of the phenotypic effects of the mutations, 
with a distinct division of the experimental data into two different (and balanced) groups: a) minimum or no 
reduced growth (on the right) and b) highly reduced growth (on the left). Mutations were classified in one of the 
two groups accordingly, using an average log-enrichment score threshold of −3. Due to the essential nature of 
DBR1, and the design of the experiments, the change of growth could be directly related to the point mutations 
in DBR119.

The workflow described here to study the effects of mutations relies upon the availability of high quality exper-
imental or predicted protein structures. The DBR1 family is highly conserved and redundant, with human DBR1 
previously shown to rescue yeast mutants23. As no experimental structure of DBR1 was available, high-confidence 
homology models were built of residues 2-349 of the apo- and RNA-bound protein. This region of DBR1 adopts 
an MPE fold24. The crystal structures of the homologue DCR1 (PDB codes: 4PEF, 4PEH and 4PEI24) were used to 
identify the location of the catalytic manganese (Fig. 2A) and the RNA binding site.

Manganese Coordinating Residues. DBR1 is a phosphodiesterase with a catalytic manganese coordi-
nated by Asp9, Asn84, His174 and His226 (Fig. 2A). It would be expected that mutations affecting one of these 
residues would disrupt manganese binding, and hence activity, leading to reduced growth. Among the mutations 
analyzed, 19 (11%) were of Asn84. As predicted these were all associated with very low log-enrichment scores and 
hence greatly reduced growth (p < 0.001 by two-tailed Z-test). Analysis by mCSM-metal confirmed all mutations 
of Asn84, but no others, were deleterious to manganese binding. As these mutations could be explained from the 
expected altered catalytic activity, they were therefore removed from the structural analyses below.

Predicted Highly Destabilizing Mutations. Using the apo model of DBR1, as well as that bound to an 
RNA substrate analogue, the change in stability caused by the missense mutations was quantitatively predicted 
by mCSM-Stability, SDM and DUET. Amongst the mutations, 27 (17% of the non-catalytic mutations) were 
predicted to be highly destabilizing (Δ Δ G <  − 2 Kcal/mol) by mCSM-Stability, for example see Fig. 2B. These 
were associated with reduced growth (p =  0.037 by two-tailed Z-test), with 70% having average log-enrichment 
scores lower than − 3.

Mutations Predicted to Reduce PPI Affinity. Since the protein interacting partners of DBR1 have not 
yet been characterized, mCSM-PPI11 could not be used to assess the effects of the mutations upon their interac-
tions. In addition, the residues mutated were either buried or located in the RNA-binding region. Furthermore, 
analysis with Crescendo did not support a role of these residues in mediating a protein-protein interaction25.

Mutations Predicted to Greatly Reduce RNA Affinity. We used the model of DBR1 in complex with 
an RNA substrate analogue and mCSM-NA to predict the effect of the mutations upon RNA binding affinity. 
mCSM-NA predicted 25 mutations (16% of the non-catalytic mutations) to be highly destabilizing to RNA 
binding (Δ Δ G <  − 2 Kcal/mol). These mutations presented a clear reduction in cell growth (p =  0.011 by the 
two-tailed Z-test), with 76% having a log-enrichment score below − 3. This effect is exemplified by the interac-
tions that some of the wild-type residues make in the RNA binding pocket (Fig. 2C). There was some overlap with 
the previous group of mutations, as 13 of these mutations (44%) were also predicted to be highly destabilizing 
by mCSM-Stability. By integrating these two predicted effects we were able to train a binary classifier based on 

Figure 2. Noncovalent interaction networks in DBR1. (A) shows depicts interactions between Manganese 
ion and the DRB1-RNA complex. The ion is coordinated by a series of interactions within the protein as well 
as with the RNA molecule. Mutations on these residues would, therefore, disrupt manganese binding, affecting 
catalytic activity directly. (B,C) depicts noncovalent interaction network of mutated residues in the DRB1-RNA 
complex. Mutated residues are depicted in green and the RNA fragment in blue. Hydrogen bonds are depicted 
as red dotted lines, hydrophobic interactions in green and ring-ring interactions in grey. Panel B shows residue 
Trp99 performing a series of hydrophobic and ring interactions. Mutation from tryptophan to glycine would 
destabilize the protein given the loss of interactions leading to a loss of entropy when folding. Panel C shows 
residue His85, whose mutations are predicted to also affect RNA binding affinity. His85 makes a series of inter 
and intramolecular ring interactions that would be lost by a mutation to serine.
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Random Forest that classified correctly the phenotype of all but one mutation, suggesting that a combination of 
the two predictive outputs can be used to explain phenotypic results.

Mutations Predicted to Have Mild Effects on Stability or RNA Binding. We were, however, inter-
ested in exploring further those 112 missense mutations that were not predicted to have a large effect either 
on stability or RNA binding. Neither changes in protein stability nor RNA affinity, taken separately, correlated 
strongly enough with the phenotypic results to explain their mechanism (ρ  =  0.22 for mCSM-Stability and 
ρ  =  0.48 for mCSM-NA).

In theory mutations could destabilize the protein, alter RNA binding or a combination of the two. Therefore 
the predicted changes in stability and RNA binding affinity from mCSM were used to train a binary classifica-
tion model to predict whether a given mutation resulted in reduced growth. This achieved an AUC =  0.82, with 
accuracy of 78% (combined using the Random Forest algorithm26, evaluated by leave-one-out cross validation), 
as shown in the ROC curve on Fig. 3, left graph. Also by combining the predictions from DUET, mCSM-Stability 
and mCSM-NA, using a simple linear Regression Model Tree27, we observed a correlation with the average phe-
notypic results (ρ  =  0.56. Fig. 3, center graph).

This suggests that the phenotypic results of approximately 80% of the DBR1 mutations that cannot be 
explained by large changes in stability, RNA affinity or metal binding, can be explained by changes in RNA bind-
ing affinity and protein stability together. This is consistent with the idea that missense mutations can have a 
multitude of effects on a protein function.

Categorical Analysis of All DBR1 Experimental Mutations. No clear correlation between the 
experimental measurement and stability changes alone was initially observed on the full data set (ρ  <  0.1 for 
mCSM-Stability and DUET and ρ  =  0.14 for SDM). A weak correlation of ρ  =  0.35 was observed between the 
predicted effects on RNA affinity by mCSM-NA and the experimentally measured reduced growth, higher than 
observed by the authors using CADD (ρ  =  0.30).

Ideally we wished to generate a model that could explain the phenotypic effects of most of the mutations 
characterized by Findlay and colleagues19. We had observed with the mild mutations that taking into consider-
ation effects on both stability and RNA affinity could explain a majority of phenotypic effects. Therefore, using 
mCSM-NA and stability predictions and by flagging the metal coordinating residues, we trained a binary classi-
fier using the Random Forest algorithm26. We were able to achieve an accuracy of 78% with an AUC =  0.85 (eval-
uated by leave-one-out cross validation), significantly higher than the performance achieved by the authors using 
PolyPhen-2 (AUC =  0.667, over a reduced set of 160 missense mutations), as depicted on Fig. 3, left graph. This 
suggested that the phenotypic effects of over three quarters of the mutations could be explained by alterations in 
protein stability and/or RNA binding affinity and predicted using mCSM-Stability, SDM, DUET and mCSM-NA.

Regression Analysis of All DBR1 Experimental Mutations. Using a Regression Model Tree27, we com-
bined the predictions from SDM, mCSM-Stability and mCSM-NA together with the flag for catalytic residues in a 
consensus score, generating linear models that can describe different partitions of the data, better associating pat-
terns between the in silico analysis with the phenotypic outcome. A correlation of ρ  =  0.64 on 10-fold cross valida-
tion and ρ  =  0.65 on leave-one-out cross validation was obtained (Fig. 3, right graph). This could be extrapolated 
to predict the expected phenotypic effects of mutations to the rest of the model- allowing rapid identification of 

Figure 3. Performance analysis on classification and regression models of the phenotypic effects of DBR1 
mutations. The left-hand graph shows the ROC curves for the binary classifiers trained with stability (DUET, 
SDM and mCSM-Stability) and RNA binding affinity change (mCSM-NA) predictions. Three curves are shown 
with the performance for the developed classifier on the complete set of mutations, the set of mild mutations 
and the performance of PolyPhen-2 on a selected set of mutations. The area under the curve values (AUC) for 
each classifier are also shown. The remaining graphs show regression results for those mutations not predicted 
to have large effects on stability or RNA binding (center graph) and for the final model including all mutations 
(right graph). Fitted log(enrichment) scores using DUET, SDM, mCSM-Stability and mCSM-NA are combined 
using linear equations compared to the average phenotypic results obtained by Gregory et al. (2014). For each 
data set the Pearson’s correlation coefficient (ρ ) is shown in the bottom-right part of each graph and at the top-
left after 10% outlier removal. Outliers are depicted in red.
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regions of potential interest (Fig. 4). This highlights, as expected, that key residues involved in manganese coor-
dination and RNA binding are likely to have the greatest effects on cell growth.

Interestingly, the outlier mutations tended to have very low log-enrichment scores (Fig. S3). While it is typical 
for extreme effects to be poorly fitted by machine-learning methods, it is also possible that the observed reduced 
growth of these mutations could be due to other effects that we have not considered here, for example changes in 
levels of transcription or translation. A complete prediction performance comparison before and after 10% outlier 
removal is available on Table S1 of Supplementary Material.

The yeast transcription factor Gal4
Kitzman and colleagues20 presented in Nature Methods a programmed allelic series saturation mutagenesis of 
residues 2–64 of the yeast transcription factor Gal4, essential for the metabolism of galactose and melibiose. This 
was coupled to a reporter assay, which allowed them to link the effects of 1083 missense mutations to changes in 
cell growth in the presence of a selectable marker. A histogram of the effects of the mutations in growth response 
distribution (log2-enrichment) is shown in Figure S4, with those mutations presenting a log-enrichment score of 
lower than − 3 classified as leading to reduced growth. In an attempt to analyse the molecular mechanism under-
lying the phenotypic effects of these mutations we applied our workflow (Figure S5). The X-ray crystal structure 
of Gal4 from Saccharomyces cerevisiae in complex with DNA has been solved (PDB ID: 3COQ28), and was used 
for this analysis.

Zinc coordinating residues. Gal4 DNA recognition and transcriptional activation were known to be medi-
ated by a Zn2Cys6 binuclear cluster29–33, and this was confirmed by the experimental structures of Gal4 and its 
molecular interactions with DNA28,34,35. The pair of Zn2+ ions help maintain the fold of the DNA-binding residues 
and are coordinated by six conserved cysteine residues within the protomer (Fig. 5A). Approximately 90% of 
mutations (98/110) identified as affecting metal coordination were experimentally observed to lead to reduced 
growth, with average log-enrichment scores lower than − 3. This was consistent with mCSM-metal predictions 
that the majority of mutations at any of these positions would lead to loss of zinc binding and disrupted function 
of Gal4, and were strongly correlated with reduced growth (p <  0.001 by two-tailed Z-test).

Predicted Highly Destabilising Mutations. Using the available crystal structure of the Gal4-DNA com-
plex28, the stability change upon mutation was predicted using mCSM-Stability, SDM and DUET. Mutations pre-
dicted by mCSM-Stability to be highly destabilizing (Δ Δ G <  − 2 Kcal/mol) were highly associated with reduced 
growth (p =  0.003 by two-tailed Z-test), with almost 70% of mutations (46/67) presenting average log-enrichment 
scores lower than − 3 (for an example see Fig. 5B). This proportion increased to 85% for mutations (28/33) pre-
dicted to have an even greater effect (Δ Δ G <  − 2.5 Kcal/mol).

Mutations Predicted to Greatly Reduce PPI Affinity. Gal4 function is dependent upon binding DNA 
as a homodimer29,30,34,35. The crystal structure of Gal4 in complex with DNA revealed the dimerisation interface 
consisted of an intertwined helical bundle28. Mutations that would disrupt homodimer formation were therefore 
predicted would be associated with reduced growth (Fig. 5C). 61% of mutations (19/31) predicted by mCSM-PPI 
to greatly reduce protein-protein affinity (Δ Δ G <  − 2.0 Kcal/mol) presented a log-enrichment score lower than 
− 3. This proportion increased to 77% (7/9) for the most debilitating mutations (Δ Δ G <  − 2.5 Kcal/mol) that 
were associated with reduced growth.

Mutations Predicted to Greatly Reduce DNA Binding Affinity. Gal4 is a transcriptional activator that 
recognises a consensus 17-base-pair sequence29–33, with similar sequences located upstream of Gal4-regulated 
genes. Decreasing the binding affinity to this sequence, for instance by interfering with the interactions estab-
lished by the wild type (Fig. 5D), would reduce expression of the selectable resistance marker and lead to reduced 
growth. Mutations predicted by mCSM-NA to greatly disrupt DNA binding (Δ Δ G <  − 2.0 Kcal/mol) were 

Figure 4. Heatmap of the average predicted changes upon mutation on DBR1. The figure shows the average 
prediction per residue (considering all 19 potential mutations at each position) in stability (left), RNA affinity 
(middle) and enrichment score (right). Residues were coloured in a scale from blue to red indicating the average 
effect from stabilizing to destabilizing as predicted by mCSM-Stability, mCSM-NA or the degree of reduced cell 
growth as predicted by the final regression model.
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strongly associated with reduced growth (p =  0.004 by two-tailed Z-test), with 74% of mutations (26/35) present-
ing a log-enrichment score lower than − 3.

Regression and Classification Analysis of All Gal4 Experimental Mutations. None of the individ-
ual predictions from each method correlated well with the experimental data (mCSM-Stability ρ  =  0.21; SDM 
ρ  =  0.20; DUET ρ  =  0.26; mCSM-PPI ρ  =  0.21; mCSM-NA ρ  =  0.11). This reflects the observation that the muta-
tions exert a range of effects on Gal4, from destabilising the protein, to disrupting its interactions with DNA or 
within the homodimer.

Using a Random Forest to train a binary classifier using predictions from mCSM-Stability, SDM, DUET, 
mCSM-PPI and mCSM-NA we were able to correctly classify 81% of the mutations (AUC =  0.86).

A correlation of ρ  =  0.69 was obtained on 10-fold cross validation, by linearly combining these predictions 
using a Regression Model Tree. A regression plot of the obtained model is shown in Fig. 6. A heatmap analysis of 
the effects of the mutations on protein stability and DNA affinity (Fig. 7) shows the predicted variability of effects 
on protein stability and DNA affinity on the structures and how they are together complementary to the experi-
mental phenotype. As observed with DBR1, the outlier mutations tended to have very low log-enrichment scores 
(Figure S6 of Supplementary material).

Mutations on von Hippel-Lindau disease and risk of renal carcinoma
von Hippel-Lindau (VHL) disease is an inherited condition caused by mutations on the VHL gene which are 
associated with propensity for tumours, including clear cell renal cell carcinoma (ccRCC). In a recent work, 
Gossage and colleagues36 assembled a database of 121 missense mutations on VHL linked with experimental 
and clinical data, including associations with ccRCC. This was used to develop a pipeline, Symphony, to study 
mutations in this protein and predict risk of ccRCC by integrating different methods. From the original data set, 
62 mutations were categorized as high risk and the remaining 59 as low risk of ccRCC and were used as training 

Figure 5. Noncovalent interaction networks in Gal4. (A) depicts interactions between a pair of Zn2+ ions 
coordinated by six conserved cysteine residues in the Gal4-DNA complex. Mutations on these residues would, 
therefore, disrupt zinc binding, affecting Gal4 function. (B,C) depicts noncovalent interaction network of 
mutated residues in the Gal4-DNA complex. Mutated residues are depicted in green. Hydrogen bonds are 
depicted as red dotted lines, hydrophobic interactions in green and ring-ring interactions in grey. (Panel B)  
shows residue Tyr40 performing a side-chain to main-chain hydrogen bond and ring interactions. The 
mutation Y40A is predicted to be highly destabilizing, given the removal of a large portion of the side chain 
and consequent loss of interactions. (Panel C) shows residue Val57, whose mutations are predicted to also 
affect protein-protein affinity. Val57 establishes a network of hydrophobic and ring interactions that would 
be lost by the introduction of larger or hydrophilic residues, destabilizing the homodimer. (Panel D) shows 
residue R15, whose mutations are predicted to also affect RNA binding affinity. Arg15 directly interacts with 
the DNA molecule through a weak polar interaction and hydrogen bond. Mutations to aspartic and glutamic 
acids, through the introduction of an opposite charge, are predicted to destabilize the region and reducing DNA 
affinity.
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set. An additional set of 173 mutations was used as test set. We have applied our new pipeline to these mutations 
in order to assess its performance in correlating mutation effects with clinical outcomes (Figure S7).

Mutations predicted to greatly affect protein stability and protein-protein affinity. The avail-
able structure of VHL in complex with Elongin B, Elongin C and a HIF-1α  peptide (PDB ID: 1LM8) was used 
in this study. 77% of mutations (17/22) predicted as highly destabilizing by DUET (Δ Δ G <  − 2.0 Kcal/mol) 
were associated with high risk of ccRCC, a proportion consistent with mCSM-Stability (76%–16/21) and SDM  
(76%–32/42). All mutations (3/3) predicted to disrupt the protein-protein complex were classified as high-risk 
(examples depicted in Fig. 8A,B). This is consistent with the idea that risk of ccRCC is directly related to the 
impact of the mutation on VHL structure and function.

Predicting risk of ccRCC for all mutations on VHL. A Random Forest binary classifier was trained using 
stability and protein-protein affinity change predictions from mCSM-Stability, SDM, DUET and mCSM-PPI. 
ccRCC risk was predicted with 98% sensitivity and 93% specificity, which is consistent with the results described 
by Gossage et al.36. Only one mutation associated with ccRCC was predicted low risk, while most mutation asso-
ciated with other tumours (pheochromocytoma) and polycythemia were predicted as low-risk for ccRCC, also 
consistent with what was obtained by Symphony.

Figure 6. Performance analysis on regression on Gal4 mutations. The graph shows regression results on 
10-fold cross validation for the predictive model trained on the complete set of mutations (1083) on Gal4. 
Fitted log(enrichment) scores using DUET, SDM, mCSM-Stability, mCSM-PPI and mCSM-NA are combined 
using linear equations compared to the average phenotypic results obtained by Kitzman et al. (2015). Pearson’s 
correlation coefficient (ρ ) is shown in the bottom-right part of each graph and at the top-left after 10% outlier 
removal. Outliers are depicted in red.

Figure 7. Heatmap of the average predicted and experimental changes upon mutation on Gal4. The 
figure shows the average prediction per residue in stability (left), DNA affinity (middle) and experimental 
measurement of enrichment score (right). Residues were coloured in a scale from blue to red indicating the 
average effect from stabilizing to destabilizing as predicted by mCSM-Stability, mCSM-NA or the degree of 
reduced cell growth as described experimentally. It is interesting to notice the predicted variability of effects 
on protein stability and DNA affinity on the structures and how they are together complementary to the 
experimental phenotype.
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Discussion and Conclusion
Elucidating the molecular mechanisms linking a mutation’s impact with phenotype is very often non-trivial, and 
functional interpretation of mutation data has consequently lagged behind generation of the data from modern 
high-throughput techniques. We have presented here a workflow to analyze systematically the structural and 
functional effects of mutations computationally for three different systems where multiple mutations and phe-
notypic outcomes have been described. We show that our workflow can predict the relative changes mediated by 
alterations in protein stability and interactions, so providing the opportunity to understand in greater detail the 
effects of mutations and how they relate to the phenotypes we observe. Together they illustrate how understand-
ing the effects of mutations on protein stability and interactions with other proteins, nucleic acids and metal ions 
is important for unravelling the link between mutations and phenotypes. The addition of mCSM-Lig will also 
enable the effect of mutations on protein-small molecule interactions to be taken into consideration.

Our analysis of the recent saturation mutagenesis results of DBR1 and Gal4 demonstrated a correct classifica-
tion of over 80% of the mutations. No single computational tool correlated strongly with the phenotypic results 
of all the mutations from either saturation mutagenesis experiment, which is probably not surprising considering 
the multitude of effects a mutation may have on a protein’s function. By taking into account these multiple effects, 
however, a unified model could be generated that performed better than the individual predictions (Table S1). 
The Spearman correlations were also consistent, and are available in Table S2. To understand the link between 
mutations in DBR1 and changes in cell growth we needed to consider how the mutations affected protein stability, 
metal coordination and RNA binding affinity, while the effect of mutations on dimerization of Gal4 also needed to 
be taken into account in order to explain the phenotypic results. This highlights the importance of understanding 
the system being studied prior to analysis in order to be able to assess the full range of effects a mutation may have.

The outliers from these predictors were mainly associated with extreme values for reduced cell growth. It is 
therefore worth noting that the remaining mutations may need to be explained by additional factors, for exam-
ple through changes in transcription and translation. It is important to consider that a mixture of effects could 
give rise to observed phenotypic outcomes. This has been important in our analyses of disease causing muta-
tions17,37–40, where understanding these effects has been extremely useful for guiding treatment strategies.

For example, our recent analysis of the mutations in the protein homogentisate 1,2-dioxygenase that cause 
the development of the Mendelian disease alkaptonuria revealed that mutations resulted in either instability of 
the protomer, disruption of the homo-hexameric structure, or direct modification of catalytic site residues39, 40. 
This understanding is allowing us to explore whether they may alter a patient’s response to treatments, and opens 
up avenues of designing specific treatments. Combining predictors into a single model can also be a valuable 
clinical tool, allowing the rapid analysis of novel mutations. For example, by combining multiple predictions, 
a classifier (Symphony) was able to identify mutations in VHL associated with renal cell carcinoma with high 
levels of sensitivity and specificity36. Application of the current workflow achieved similar accuracy with fewer 
predictors, allowing rapid classification of the relative effects of a mutation on VHL’s structure and function, and 
its relationship to the risk of developing ccRCC. This showed that changes in protein stability and protein-protein 
interactions were important in order to predict the clinical phenotypes.

Dissecting the effects of mutations is a complicated task, but we present here a computational pipeline capable 
of explaining experimental data and which provides a promising avenue for understanding the role of mutations 
in evolution, the emergence and progression of diseases and as a corner stone for guiding current and the next 
generation of treatments.

Methods
Homology modelling of DBR1. Models of apo DBR1 and DBR1 in complex with RNA, comprising res-
idues 2-349, were generated using Modeller41 and MacroModel (Schrodinger, New York, NY) using the X-ray 

Figure 8. Noncovalent interaction networks in VHL. Mutated residues are depicted in green. Proximal 
hydrophobic interactions are depicted in small dots, ring-ring interactions in grey and donor-pi interactions 
in blue. (Panel A) shows residue Phe136 performing a dense network of hydrophobic and ring interactions. 
Mutation to serine is predicted to be highly destabilizing, given the removal of a large portion of the side chain 
and consequent loss of interactions. Panel B shows residue Trp88, whose mutations are predicted to also affect 
protein-protein affinity. Trp88 establishes a network of ring interactions, as well as donor-pi interactions within 
its chain and with the HIF-1α  peptide. Mutations to arginine or serine would disrupt these strong interactions, 
destabilize the region as well as the protein-protein interface, reducing affinity.
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crystal structures of apo DCR1 (PDB code: 4PEF24) and in complex with a substrate analogue, synthetic RNA that 
mimics the RNA lariat branchpoint (PDB codes: 4PEH and 4PEI24) from Entamoeba histolytica (35% sequence 
identity with human DBR1). The models were then minimized using the MMF94s forcefield in Sybyl-X 2.1.1 
(Certara L.P., St Louis, MO), with the final structure having more than 95% of residues in the allowed region of 
a Ramachandran plot. Following previous approaches42–44, a manganese ion was manually added to the active 
site after comparison with the manganese-bound DCR1 structures indicated the conformation of residues in the 
manganese-binding motif were identical in the two proteins. The root mean square deviation (RMSD) between 
the models and the templates was 0.21–0.22 Å. The quality of the models was confirmed with Verify3D45 (data not 
shown). Model structures were examined using Pymol.

Predicting the structural effects of mutations. The effects of the mutations on the stability of DBR1 
and Gal4 were analyzed by mCSM-Stability11, SDM4 and DUET12 using both the apo and ligand-bound mod-
els. The predicted changes in stability of DBR1 were also predicted by I-Mutant26, PoPMuSiC 28, Foldx15 and 
AutoMute246, however as they did not show an improved correlation over mCSM or DUET (Table S3) they were 
not used further in the analysis and we have not presented them here. As part of the SDM predictive method, 
all the mutants were modeled using Andante47; however, these were not needed for the mCSM and DUET pre-
dictions. The effects of the mutations on manganese coordination by DBR1 and zinc binding by Gal4 were also 
assessed by mCSM-metal, which is still under development for other metal classes. The effects of the mutations on 
the affinity of DBR1 for RNA and Gal4 for DNA were analyzed by mCSM-NA11 using the model of the complexes. 
The effects of the mutations on the affinity of the Gal4 homodimer and the VHL-Elongin B/C-HIF-1α  complex 
were predicted by mCSM-PPI11. All the predictions for DBR1 are shown in Table S4.

Machine learning methods. For classification tasks we used the Random Forest algorithm26,48 to train 
predictive models. This is an ensemble-learning method where multiple decisions trees are induced over a ran-
dom subset of features and decide the output via majority voting. It is considered one of the best and more robust 
classification algorithms capable of dealing with large data sets. For regression tasks we used Regression Model 
Trees, specifically the M5P algorithm27. The model creates a decision tree that divides the data in subgroups based 
on the input attributes. A linear regression model is then created within each subgroup. The algorithms used are 
implemented and available through the Weka toolkit49. For both classification and regression experiments, mod-
els were evaluated under 10-fold cross validation and also leave-one-out cross validation for DBR1.

Evaluation metrics for predictive models. Classification models were evaluated based on the Area 
under ROC curve (AUC). Values for AUC range from 0 to 1. A perfect binary classifier would give an AUC of 
1, while a random classifier would render an AUC of 0.5. The correctly classified instances (accuracy =  tp+ tn/
(tp+ tn+ fp+ fn)) as well as sensitivity (tp/(tp+ fn)) and specificity (tn/(tn+ fp)) were also used when applicable. 
Regression models were evaluated based on the Pearson’s correlation coefficient. Correlation values range from 
− 1 to 1. A value of 1 denotes perfect positive correlation, − 1 a perfect negative correlation, while random vari-
ables are expected to give a correlation close to 0. As a standard procedure in machine learning, Pearson corre-
lation coefficients are evaluated on the complete data set and after 10% outlier removal in order to assess the fit 
of the model to the majority of data points, minimising possible large effects from a small proportion of the data 
(i.e., giving an estimate of performance in 90% of the data).
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