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This paper presents an experimental and theoretical investigation of high Reynolds num-
ber, low density reacting wakes near a hydrodynamic Hopf bifurcation. This configuration
is applicable to the wake flows that are commonly used to stabilize flames in high velocity
flows. First, an experimental study is conducted to measure the limit cycle oscillation
of this reacting bluff body wake. The experiment is repeated while independently vary-
ing the bluff body lip velocity and the density ratio across the flame. In all cases, the
wake exhibits a sinuous oscillation. Linear stability analysis is performed on the mea-
sured time-averaged velocity and density fields. In the first stage of this analysis, a local,
spatio-temporal stability analysis is performed on the measured, time averaged veloc-
ity and density fields. The stability analysis results are compared to the experimental
measurement, and demonstrate that the local stability analysis correctly captures the
influence of the lip velocity and density ratio parameters on the sinuous mode. In the
second stage of this analysis, the linear direct and adjoint global modes are estimated
by combining the local results. The sensitivity of the eigenvalue to changes in intrinsic
feedback mechanisms is found by combining the direct and adjoint global modes. This is
referred to as the eigenvalue sensitivity throughout the paper for reasons of brevity. The
predicted global mode frequency is consistently within 10 % of the measured value, and
the linear global mode shape closely resembles the measured nonlinear oscillations. The
adjoint global mode reveals that the oscillation is strongly sensitive to open loop forcing
in the shear layers. The eigenvalue sensitivity identifies a wavemaker in the recirculation
zone of the wake. A parametric study shows that these regions change little when the
density ratio and lip velocity change. In the third stage of the analysis, the stability anal-
ysis is repeated for the varicose hydrodynamic mode. Although not physically observed in
this unforced flow, the varicose mode can lock into longitudinal acoustic waves and cause
thermoacoustic oscillations to occur. This paper shows that the local stability analysis
successfully predicts the global hydrodynamic stability characteristics of this flow and
shows that experimental data can be post-processed with this method in order to identify
the wavemaker regions and the regions that are most sensitive to external forcing, for
example from acoustic waves.
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1. Introduction

1.1. Motivation

The bluff body combustor is prevalent in industrial and aerospace applications, and serves
as a canonical burner for many fundamental combustor studies. Fluid dynamics plays
an integral role in the operability of bluff body combustors. For example, the turbulent
and coherent structures that stem from hydrodynamic instabilities govern important
combustor phenomena such as mixing, entrainment, blowout (Shanbhogue et al. 2009),
and combustion instability (O’Connor & Lieuwen 2011; Smith & Zukoski 1985; Poinsot
et al. 1987; Soteriou & Ghoniem 1994). Bluff body combustors are especially prone to
combustion instability, which plagues the combustion communities of both the energy
and aerospace industries (Zinn & Lieuwen 2005).

Combustion instability is the resonant coupling between the acoustics of the combustor
and the unsteady heat release of combustion. This is typically an unwanted phenomenon,
which can cause severe damage to hardware, problems with excessive heat transfer, and
even blowout of the flame from the combustor. The challenges associated with under-
standing and predicting combustion instabilities lie in the flame response to the acoustic
field. One of the most complicated flame response mechanisms is the velocity coupled
flame response, where the flame responds dynamically not only to the acoustic velocity,
but also to the vortically induced velocity field excited by the acoustics (Lieuwen 2012).
This vortically induced, or hydrodynamic, velocity field holds critical importance for the
flame response but is typically computationally expensive to predict, especially over the
broad operability map of the combustor. Local stability analysis applied around a mean
flow, which could, for instance, be obtained inexpensively from a RANS solver, offers an
inexpensive alternative to traditional computational approaches. With this in mind, this
study explores the capability of local stability analysis, applied around a mean flow, to
quantify the hydrodynamic stability of bluff body combustors, and to identify the regions
of the flow in which hydrodynamic oscillations are expected to couple most strongly with
acoustic oscillations.

1.2. Background

The high Reynolds number, uniform density wake behind a bluff body generally exhibits
the globally unstable, sinuous Von Karman vortex street. This wake instability can be
influenced by suction/blowing (Fransson et al. 2004), trailing splitter plates (Cardell
1993), wake heating (Roshko 1954; Zdravkovich 1997; Yu & Monkewitz 1990; Soteriou
& Ghoniem 1994), and numerous other modifications. Strykowski & Sreenivasan (1990)
showed that the oscillations of this global mode can be suppressed by adding a small
control cylinder downstream and to one side of the wake. Hill (1992) and Giannetti &
Luchini (2007) identified this region by calculating the direct and adjoint global modes
of the steady but unstable flow behind a cylinder at Re ∼ 50. They overlapped these
to obtain the sensitivity of the eigenvalue to changes in intrinsic feedback mechanisms,
referred to throughout the paper as the ’eigenvalue sensitivity’ for reasons of brevity. The
eigenvalue sensitivity reveals the region of the flow in which changes to the stability op-
erator, e.g. by passive feedback, cause the biggest eigenvalue drift. This region is known
as the wavemaker region of the flow, in that oscillations are generated in this region and
the rest of the flow merely responds to these oscillations. This analysis was subsequently
refined by Luchini et al. (2009) and Marquet et al. (2008) in order to include the influ-
ence that the control cylinder has on the base flow. These techniques predict the region
in which the control cylinder most stabilizes the flow and identifies the corresponding
stabilization mechanism.
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In this paper, we examine a confined bluff body wake flow. Lateral confinement can
have substantial influences on absolute stability of the wake (Juniper & Candel 2003).
This becomes significant when the confinement ratio, h, defined as the width of the
outer flow divided by the half-width of the inner flow, is below 4. Confined high density
wakes are particularly absolutely unstable and this effect is strongest when h = 1 (figure
16 of Juniper (2006)). Rees & Juniper (2010) show that confinement is destabilizing in
viscous planar wakes but that the destabilizing influence of confinement starts to diminish
below Re = 1000. In this study we consider the effect of the confining walls because the
confinement ratio is h = 0.3 and the Reynolds number is well above Re = 1000 (ranging
from Re = 10, 000 to Re = 27, 000 over the conditions tested).

Bluff body flame stabilization is used often in aerospace and duct heating applications.
In the reacting wake of a bluff body stabilized flame, combustion causes a spatially
non-uniform mean density field with a lower density in the wake. A variety of prior
studies has noted fundamental differences in the dynamic character of the flame and
flow field at different levels of preheat, and consequently different flame density ratios
(Erickson et al. 2006; Kiel et al. 2006; Cross et al. 2010; Emerson et al. 2012). The
first systematic demonstration showing the effects of flame density ratio in combusting
flows was presented by Erickson et al. (2006). Their results show that sinuous vortex
shedding is suppressed at high flame density ratios, but that a large sinuous flow feature
gradually grows in prominence as the density ratio across the flame is decreased below
values of approximately 2-3. Compared to a uniform density wake, non-uniform density
alters the stability of the flow through the action of baroclinic torque (Meliga et al.

2008; Lesshafft & Huerre 2007). Using simple models, Yu & Monkewitz (1990) express
the density non-uniformity as a density ratio. They demonstrate the effect of the density
ratio parameter, showing that dense wakes are more absolutely unstable than low density
wakes. Wakes with sufficiently low density relative to the outer flow are globally stable,
and only convectively unstable. In this paper we do not rely on the model results in Yu
& Monkewitz (1990), which utilize piece-wise linear velocity/density profiles. Instead, we
calculate the absolute growth rate of experimentally measured time-averaged velocity and
density profiles. The velocity fields are measured with particle image velocimetry (PIV),
and the density fields are estimated from the Mie scattering images acquired for the PIV
measurement. For the moderate density ratios in this study, we find that the flows have
a region of absolute instability, even though they are low density wakes. For these wakes,
the sinuous mode is hydrodynamically more globally unstable than the varicose mode,
so the sinuous mode dominates when there is no external forcing.
Combustors utilizing reacting bluff body wakes typically have a stream-wise dimen-

sion that is longer than their cross-stream dimensions, so the lowest frequency acoustic
mode is longitudinal. A longitudinal acoustic wave forces the bluff body wake in a vari-
cose manner. Although the bluff body wake is more hydrodynamically unstable to sinuous
motions, it is also convectively unstable to varicose motions. It amplifies these and causes
heat release oscillations in time with the acoustic oscillations. If these heat release oscil-
lations are sufficiently in phase with the pressure oscillations then these thermoacoustic
oscillations become self-sustained. Experiments show that the varicose mode seems to be
especially troublesome for thermoacoustic oscillations (Emerson et al. 2013). The local
analysis used in this study can find the direct and adjoint global modes for the varicose
motion in the same way as they can for the sinuous motion, even when the flow is not
globally unstable. This is difficult with global analyses, which are strongly influenced by
the downstream boundary condition when the flow is not globally unstable (Garnaud
et al. 2013).

The above studies demonstrate that low density ratio, reacting bluff body wakes os-
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cillate sinuously in the absence of acoustic forcing or thermoacoustic oscillations. Exper-
imental studies on low Reynolds number, uniform-density wakes show that these oscil-
lations are driven by a wavemaker region just behind the bluff body. The goal of this
paper is to answer three questions. The first question is whether or not local stability
analysis is an appropriate tool for studying the hydrodynamics of high Re, low density
wakes. The second question is whether we can use direct/adjoint techniques to identify
the wavemaker region of our experimentally measured reacting bluff body wake in the
sinuous and the varicose regimes. The third question is what influence, if any, do the lip
velocity and density ratio have on the wavemaker and the region of high receptivity to
velocity forcing.

2. Local Hydrodynamic Stability Analysis

The goals outlined at the end of section 1 are accomplished by performing a local stabil-
ity analysis around an experimentally-derived time-averaged base flow at high Reynolds
number. It is important to note that this analysis is local-only, and that the global modes
presented in this paper are estimated by combining the local results. The procedure for
combining the local results is outlined later in this section. The use of a base flow that
is time-averaged, rather than a steady solution to the Navier–Stokes equations, will be
discussed in section 5.

A local stability analysis has two advantages over a 2D global stability analysis. Firstly,
the streamwise domain of the experimental data is shorter than the length of the direct
global mode. It is significantly shorter than that in figure 19 of Giannetti & Luchini
(2007), which shows the influence of the downstream boundary. This presents a challenge
for a 2D global stability analysis because the boundaries lie in regions in which the
direct and adjoint global modes have significant amplitude. This means that boundary
conditions at the upstream and downstream ends of the domain need to be carefully
chosen. This is a challenge that faces the global analysis approach, although it is not
an insurmountable problem. On the other hand, in a local analysis, slices of the flow at
each streamwise location are considered independently, which means that no streamwise
boundary conditions need to be imposed. The removal of upstream and downstream
boundary conditions is a convenience of the local analysis compared to a global scheme.
Secondly, 2D global stability analysis is much more computationally expensive than a
local analysis. For these reasons, we use a local stability analysis, as in Juniper & Pier
(2015), to reconstruct the direct and adjoint global modes.

In a local analysis, the wavelength of the perturbations is assumed to be much shorter
than the length scale over which the base flow varies (the WKBJ approximation). This
approximation is valid for flows that are nearly parallel, but it also works surprisingly
well for flows that are significantly non-parallel (Pier 2008). The motivations for using the
WKBJ approximation parallel those for using a local analysis, discussed in the previous
paragraph. The justificaiton for using this approach is that it is robust for weakly non-
parallel flows like those considered in this analysis. Additionally, as opposed to a fully
global approach, this approach also precludes acoustic feedback, which is a benefit for
isolating hydrodynamic instabilities.

The governing equations are Navier–Stokes equations, linearized around a parallel base
flow that is symmetric about the flow centreline. Equations 2.1, 2.2, and 2.3 show the
governing equations, where x and y are the streamwise and transverse directions, and
U0 and ρ0 are the base axial velocity and density. Also, u, v, and p are the transeverse
dependence of the linear perturbations to the axial velocity, transverse velocity, and
pressure, which take the general form p(y)e−iωteikx (for the pressure, for example).
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= 0 (2.1)
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1

Re
(−k2u(y)+
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+

1

Re
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d2v

dy2
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The base flow includes the spatially-varying base density field. This approach captures
instabilities generated by the Kelvin-Helmholtz mechanism, which is influenced by the
base-density nonuniformity, although it does not capture the Darrieus-Landau instability,
the inclusion of which is left to future work. The boundary conditions are no slip and
impermeability at the confining wall, and sinuous or varicose modes at the flow centreline.
A Fourier/Laplace decomposition is performed in time and in the x-direction such that
the governing equations reduce to an eigenvalue problem that is only satisfied for certain
eigenvalue pairs of the streamwise wavenumber, k, and the angular frequency, ω (Huerre
& Monkewitz 1990, 2000). The stages of the local analysis are described in detail in
Juniper et al. (2011), and are summarised next.

Stage 1 of the local analysis is to evaluate the absolute growth rate, ω0, as a function of
downstream distance, x. The absolute growth rate is the growth rate of waves with zero
group velocity at that streamwise location. These waves satisfy dω/dk = 0. Stage 2 of
the local analysis is to evaluate the linear global mode frequency, ωg, and the wave maker
location. Stage 3 of the local analysis is to force the flow at ωg and to evaluate the spatial
growth rates of the downstream-travelling wave, k+, and the upstream-travelling wave,
k−. These can then be combined to form the direct global mode and the adjoint global
mode (Juniper & Pier 2015; Juniper et al. 2011). In this analysis, we do not develop
non-parallelism, and we do not solve an equation for the slowly-varying amplitude.

Stages 1-3 of the analysis proceed as follows. In stage 1, the local stability analysis is
performed with the software package InstaFlow, described in Juniper (2012) and Juniper
et al. (2011). At each streamwise location, the time-averaged streamwise velocity, U(y),
and time-averaged density, ρ(y), are projected onto Gauss-Lobatto-spaced points in the
cross stream, y, direction. The Gauss-Lobatto grid consists of 60 grid points spanning half
of the channel from the centerline to the wall. A grid independence study showed that
this grid provided better than 0.12 % error in the Eigenvalue. The governing equations
and boundary conditions are expressed in matrix form using Chebyshev differentiation
matrices. At each slice, this generates a matrix eigenvalue problem for ω in terms of
k. Saddle points of ω(k) are found and their Briggs–Bers validity is checked. These
saddle points are then tracked as the streamwise location changes. For these flows, there
is usually only one valid saddle point for sinuous oscillations and another valid saddle
point for varicose oscillations. In stage 2, the linear global mode frequency is calculated
by fitting a 7th order Padé polynomial to ω0(x) and finding the saddle position in the
complex (X,ω0)-plane (Juniper & Pier 2015), denoted (xg, ωg). The dependence of xg

and wg on the polynomial order is shown in Figure 1. In stage 3 of the analysis, each
of the local analyses (at each axial position) is repeated, this time solving for k when
ω = ωg. For a given value of ω, there are two valid solutions to k, which are the k+ and
k− spatial branches. These k+ and k− branches are conveniently identified at xg, where
they are singular. The k+ branch is the more spatially amplified branch when moving in
the downstream direction, and is numerically tracked while walking downstream from xg,



6 Benjamin Emerson, Tim Lieuwen, Matthew P. Juniper

1 3 5 7
0.2

0.22

0.24

0.26

0.28

Polynomial Order

ω
g,
r
D
/
(2
π
u
li
p
)

(a)

1 3 5 7
0.15

0.2

0.25

Polynomial Order

ω
g,
iD

/u
li
p

(b)

1 3 5 7
1

1.1

1.2

1.3

1.4

Polynomial Order

x
g,
r
/D

(c)

Figure 1. Dependence of ωg and xg on the Padé polynomial order, showing a) real part of ωg

nondimensionalized as the Strouhal number, b) imaginary part of ωg, and c) xg,r, shown for a
representative case (ρu/ρb = 1.7, Ulip = 30 m/s)

while the k− branch is the more spatially amplified branch when moving in the upstream
direction and is numerically tracked while walking upstream of xg. At each stage, the
Eigenfunctions are normalized to have u2 + v2 + p2 = 1

3. Design of Experiments

The goal of the experiments is to obtain estimates of base flows for stability analysis,
and to measure the corresponding global mode frequencies and mode shapes. The facility
and its instrumentation are described in detail in the next subsection. Its test section
is a nominally two-dimensional bluff body combustor with premixed inflow; therefore,
the base flow is a planar wake with spatially varying density, confined within a channel.
Three different streams are premixed upstream of the test section: room temperature
natural gas, room temperature air, and a vitiated stream. The vitiated stream consists
of hot combustion products from a natural gas pre-burner. Independent control of these
three streams provides significant flexibility of the flame density ratio and the bluff body
lip velocity in the test section. This is significant, because the flame density ratio controls
the global mode growthrate, ωg,i, and the lip velocity governs the global mode frequency,
ωg,r, in the linear analysis. The test matrix, discussed in section 3.3, is constructed to
vary these parameters.

3.1. Experimental Facility

The experimental rig, shown in Figure 2 and Figure 3, consists of two premixed, methane-
air combustors in series. The first combustor is used to vitiate the flow and raise its tem-
perature. The second, bluff body stabilized combustor consists of a rectangular section
with a bluff body spanning the width of the combustor, creating a nominally 2D flow.
The bluff body has a diameter of D = 19.1 mm. The aspect ratio of bluff body height
to chamber width is 0.15. This combustor has quartz windows for optical access from all
four sides. The bluff body used in the test section, shown in Figure 3b has a 2D ballistic
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Figure 2. Schematic of the atmospheric pressure, vitiated, bluff body rig

(a) (b)

Figure 3. Drawings of a) the test section and b) the bluff body

shape. Additional fuel and air injection sources are located between the two burners,
allowing substantial flexibility in density ratio and lip velocity. The Reynolds number
for these experiments varies from Re = 10, 000 to Re = 27, 000. Further details of this
facility and its design are provided in Emerson et al. (2012).

3.2. Diagnostics

Velocity fields are measured using particle image velocimetry (PIV). Mie scattering im-
ages for high speed PIV are obtained as follows. The flow is seeded with 5 µm Al2O3

particles, chosen due to their durability in reacting flows and their high refractive index
(Melling 1997). This particle size is chosen because it is large enough to slow down ac-
cumulation on and clouding of the test section windows, while retaining a sufficiently
small Stokes number to accurately track the flow at the frequencies of interest. Following
the work by Mei (1996), the Stokes number calculated for this flow and seed particle
combination is 0.015. This Stokes number is calculated using a kinematic viscosity of
3× 10−4 m2/s, and oscillation frequency of 850 Hz (roughly the highest global mode fre-
quency encountered). This Stokes number is comfortably below the cutoff Stokes number
for solid particles in air (Mei 1996), which is in the range of .02-.04 and would correspond
to a frequency of at least 1500 Hz.

The particle-laden flow is illuminated with a double-pulsed Nd:YLF laser, with wave-
length of 527 nm, pulse duration of 100 ns, and 4 mJ/pulse pulse energy. Each of the two
lasers in the double-pulsed system is operated at 5000 Hz. The laser beams are expanded
with a -50 mm cylindrical lens into an expanding sheet, and the sheet is shaped with a 750
mm cylindrical lens to have a nominally 4 mm thickness. An expanding sheet is chosen
instead of a collimated sheet because of the large test area. The time-delay, dt, between
the two illuminating laser pulses of a given pair was 12 µs. The short dt is responsible
for much of the velocity uncertainty, as discussed below. Mie scattering image pairs are
captured by a high speed CMOS camera with 20 µm pixels. The camera is outfitted with
a 55 mm lens, with aperture at f/5.6. The camera is operated with a pixel resolution of
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640 × 448, with image pairs acquired at a frame rate of 5 kHz. The optical configuration
produces a magnification of 1:12.5, such that the measurement domain covers a 640 ×
320 pixel region of the CMOS chip, which corresponds to a region of the combustor that
is roughly 160 mm long in the axial direction and 80 mm wide in the transverse direction.
The measurement plane is located at the center-span of the bluff body. The diffraction
limited spot size for this configuration is 7 µm. Slight defocusing, together with the nat-
ural aberration and imperfections of the imaging optics, distributes the scattered light
from the particles over a nominal 3 pixel diameter. A bandpass optical filter is placed
in front of the camera in order to reject the majority of flame and other background
luminosity. The filter pass-band is centered at 527 nm and has a transmission of greater
than 93 % from 517 nm to 537 nm.

Velocity vectors are computed from the Mie scattering image pairs using a digital
cross-correlation algorithm (Willert 1991) with a multi-pass approach (Soria 1996) and
2D Gaussian sub-pixel interpolation (Willert 1991). The multi-pass analysis consists of
a single pass with 64 × 64 pixel interrogation windows and 50 % overlap between inter-
rogation windows, followed by 2 passes with 32 × 32 pixel interrogation windows and 50
% overlap between the interrogation windows. The spacing between vectors is 4 mm.
Post-processing algorithms are used to discard and replace a small number of spurious

vectors, and to validate the PIV data. First, any velocity vector with an axial compo-
nent outside of a 20 m/s ± 90 m/s range or a transverse component outside of a ± 45
m/s range is discarded. These ranges are based on the expected range of mean axial
and transverse velocities, and additionally, they conservatively accommodate coherent
structures with unsteady velocity on the order of the nominal 50 m/s lip velocity. Next,
any velocity vector whose velocimetry calculation has a peak correlation coefficient less
than 0.2 is discarded and a local validation method discards neighboring vectors whose
ratio of difference to average velocity magnitude is greater than 20 % of the rms of the
nearest neighbors. This threshold is consistent with values recommended in the literature
(J. Nogueria 1997). In all, less than 1 % of the total velocity vectors are discarded and
their values filled with the instantaneous average of neighboring vectors.
The PIV measurement is calibrated by imaging a black anodized aluminum calibration

plate with a laser etched pattern, which is located coincidently with the laser light sheet.
The laser etched pattern consists of a regularly spaced grid of crosses, composed of 0.3 mm
thick lines, with spacing of 6 mm and with positional uncertainty of .004 %. The spatial
coordinates of the Mie scattering images and resultant velocity fields are mapped to this
grid. The worst-case calibration error is estimated to be 1 pixel over the large 160 mm
calibration plate, which would result in a small 0.2 % bias error. The phase jitter between
the pair of laser illumination pulses is measured to be on the order of nanoseconds, which
is significantly less than the relatively long 100 ns duration at half-maximum of each
illumination. Therefore, the duration of the laser illumination dominates the temporal
measurement uncertainty, which is less than 1 % of the time delay between the pair of
illumination pulses. Peak-locking during sub-pixel interpolation (Fincham & Spedding
1997), combined with the relatively short dt, is estimated to provide a velocity uncertainty
of 4 %. In/out of plane motion dominates the random velocity uncertainty over much
of the measurement domain, and increases with distance from the measurement center
(located at x/D = 4). For example, at axial positions 20 mm from the measurement
center (ie at x/D = 3 and x/D = 5), this uncertainty is 5 %. As the measurement
position moves to the extreme axial extents of the measurement, ie to x/D = 0 and
x/D = 8, this uncertainty increases linearly to 20 %. However, this uncertainty due to
in and out of plane motion applies to turbulence and secondary instabilities in this flow,
but does not directly impact the nominally 2D hydrodynamic motion and time averaged
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velocity field of interest. Just downstream of the bluff body, from x/D = 0 to x/D = 0.3,
laser light scattering off of the bluff body spoils the PIV measurement and introduces
large uncertainties; we do not report results from this region.

The measured oscillatory velocity magnitude is subject to an additional source of
uncertainty. Following the seeding particle Stokes number discussion above, the seeding
particles are expected to respond at the forcing frequency with 92 % of the flow response
amplitude, and with less than a 20 degree phase delay. It is important to note that the
significant experimental velocity field uncertainties lie in the unstead velocity magnitude.
The uncertainty in the measured oscillatory velocity affects the validation of the stability
analysis, and is quantified with error bars when compared to stability analysis predictions.
The time-averaged velocity, which is used as an input to the stability analysis, is not
subject to these larger experimental uncertainties.

The time-averaged density field is estimated from the Mie scattering images. An edge
detection algorithm is used to extract the sharp jump in seed particle density that occurs
at the flame sheet (Gülder et al. 2000). The instantaneous density is then specified as
a binary field having either the burned or unburned value. The unburned density value
is estimated from a temperature measurement just upstream of the test section, and
a gas composition consisting of the vitiated gas stream mixed with the fresh air and
fuel streams. The burned density value is estimated as the adiabatic flame temperature
of this mixture. The instantaneous density fields are then averaged at each location to
obtain the temporally averaged density field. The key assumption behind this method
is that the density change occurs across a thin, unbroken reaction zone, such that there
is minimal turbulent mixing between reactants and products outside of this thin zone.
This assumption is supported by the modified Borghi-Peters diagram (Peters 1999), due
to two considerations for this flow. The first consideration is that the laminar flame
thickness is very thin relative to the bluff body diameter, which is well satisfied for this
problem, as verified by detailed chemical kinetic calculations of an unstretched, premixed
flame (using GRI 3.0) showing that the estimated flame thickness is roughly 2 % of the
bluff-body diameter (and hence the integral length scale). The second consideration is
that the turbulence intensity is less than 50 times the laminar flame speed. We quantified
the uncertainty of this density ratio measure in a previous study, and demonstrated that
it is better than 10 % (Emerson 2013), which is less than the step-changes in density
ratio reported here during density ratio sweeps.

3.3. Test Marix Design

The test matrix is designed to vary the global mode growth rate and frequency. This is
accomplished by sweeping two stability parameters: the density ratio and the lip velocity.
Previous studies have shown that the absolute growthrate is sensitive to the density ratio
(Yu & Monkewitz 1990), and that the global mode frequency scales with the bluff body
lip velocity, fg = StDUlip/D (Prasad & Williamson 1997). In these experiments, the
density ratio is varied over the range of ρu/ρb = 1.7 to ρu/ρb = 2.5 to sweep the global
mode growthrate. For each density ratio, the bluff body lip velocity is varied from 20
m/s to 70 m/s in order to vary the global mode frequency. The Reynolds number for
these experiments ranges from Re = 10, 000 to Re = 27, 000.

The experimental parameters, bluff body lip velocity Ulip and density ratio ρu/ρb, are
determined as follows. The bluff body lip velocity is calculated as Ulip = ṁ/(ρuAlip),
which is an average streamwise flow velocity. The mass flowrate, ṁ, is the mass flowrate
entering the test section. The area, Alip, is the cross-sectional area of the flow at the
plane of the bluff body trailing edge, accounting for the blockage of the bluff body. The
density of the wake, which consists of burned products, is denoted ρb, and the density of
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the unburned flow outside of the wake is denoted ρu. The values of these densities are
estimated according to the procedure outlined at the end of Section 3.2.

4. Experimental Results

4.1. Base Flow Approximation

This section describes the experimentally-measured mean flow field, which is the base
flow used for the stability analysis. The time averaged axial velocity field is plotted in
Figure 4a. This plot shows that the velocity profile is that of a recirculating wake. The
reverse flow in the recirculation zone reaches a maximum reverse flow velocity between 1
and 2 bluff body diameters downstream, which is generally true for all conditions tested
in this study. Figure 4b plots the time averaged density field generated by the bluff-
body stabilized flame. This plot shows that the mean density field consists of a region
of low density flow (hot combustion products) in the wake region, and high density flow
(reactants) in the free-stream. The density field also illustrates that this flow holds a
nearly flat flame, which ’pinches’ slightly just downstream of the recirculation zone. The
small spreading angle of the flame is due to the fact that the free stream velocity is two
orders of magnitude faster than the laminar flame speed.

4.2. Flow Dynamics

Figure 5 shows power spectra of the unsteady transverse velocity at three different density
ratios and velocities. Figure 5a presents power spectra for three values of ρu/ρb, and
shows that there is is a strong narrowband peak at StD = 0.24. The frequency of this
response is proportional to the bluff body lip velocity, as is evident in Figure 5b. This
indicates that the strong oscillation is driven by a hydrodynamic mechanism, not an
acoustic mechanism.

The global mode associated with the StD = 0.24 oscillations is sinuous, as it is for a
non-reacting wake. To illustrate this, we perform a Proper Orthogonal Decomposition
(POD) on the velocity field (Berkooz et al. 1993). The POD decomposes the velocity field,
~u(~x, t) into a series of N spatial basis functions, φn(~x), each with temporal evolution of
qn(t), such that

~u(~x, t) =

N
∑

n=1

qn(t)φn(~x) (4.1)

Here, ~x is a spatial position vector that points to the axial position, x, and transverse
position, y. Figure 6 shows the most energetic pair of POD modes along with the corre-
sponding spectra of their time coefficients. This pair of POD modes is selected because
the two modes combine to reconstruct the global mode (Ma et al. 2000; Perrin et al.

2007; Konstantinidis et al. 2007). The time coefficients for each POD mode are denoted
qn and their power spectral densities are denoted |qn|

2, where n is the number of the
POD mode. Together, these two modes represent a strong sinuous vortex shedding at
the StD = 0.24 frequency. A detailed discussion of the dynamics of this flow is provided
by Emerson et al. (2012) and Emerson (2013).
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(a) (b)

Figure 4. Contour plots of the measured base flow, showing a) axial velocity field, and b)
density field. Conditions are ρu/ρb = 1.7, Ulip = 30 m/s, which are qualitatively representative
of all cases.
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Figure 5. Power spectra of the centerline transverse velocity at x/D = 5, y/D = 0, for a)
three density ratios at Ulip = 50 m/s and b) three velocities at ρu/ρb = 1.7
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5. Computational Results and Comparison

In this section, the predictions from the local stability analysis, applied around the
mean flow, are compared with the flow dynamics measured experimentally. The validity
of applying linear stability analysis to turbulent mean flows is still an area of active
research. On the one hand, Reynolds & Hussain (1972) provided a theoretical basis
by dividing the flow into a mean component, a periodic component, and a turbulent
component. By considering a local stability analysis of a turbulent shear layer, they
concluded that a turbulence model needs to be included in the stability analysis. On
the other hand, other studies have obtained accurate results without using turbulence
models. For example, Meliga et al. (2012) performed a linear stability analysis on the
mean flow around a D-shaped cylinder at Re = 13000, using a frozen eddy viscosity
approach. Their predicted frequency was reasonably close to that of their oscillating flow
(ω = 1.57, giving St = 0.25). Mettot et al. (2014) performed a similar study on the same
D-shaped cylinder but with molecular viscosity instead of a frozen eddy viscosity. Their
predicted frequency was close to that of Meliga et al. (2012) and their predicted growth
rate was also positive (σ = 0.26). Given the success of Mettot et al. (2014) at predicting
frequency and spatial structure without turbulence models in a configuration close to
ours, we also use only molecular viscosity in our stability analysis. It is interesting to
note that Barkley (2006) also performed a stability analysis around the mean flow behind
a cylinder at Re = 45 to 180. Like Meliga et al. (2012), Barkley found that this produces
an eigenmode with the same frequency as the original oscillating flow, but with zero
growth rate. In this case, however, turbulent models would not be appropriate because
the flow, although oscillating, was laminar.

The main focus of the studies by Meliga et al. (2012) and Mettot et al. (2014), was to
perform sensitivity analysis of the flow by combining the direct and adjoint eigenfunctions
of the most unstable eigenmodes. They were not as concerned with the growth rate. In
this section, we start by computing the linear global mode frequency, growth rate, and
mode shapes around the time-averaged experimental data and then comparing the results
with the full experimental data. This reveals whether the stability analysis can predict
the correct frequency and mode shape, which is a pre-requisite for finding the eigenvalue
sensitivity, discussed in Section 5.2. During this process, we also examine the growth rate
because we find the same relationship between (i) the linear global mode growth rate and
(ii) the nonlinear limit cycle amplitude that is expected for laminar flows near a Hopf
bifurcation.

5.1. Local Stability Analysis

Figure 7 (top) compares the streamwise dependence of the absolute frequency, ω0,r/2π,
(dashed lines) with the measured global mode frequency (solid lines). Figure 7 (bottom)
plots the absolute growthrate, ω0,i and reveals a pocket of absolute instability around
0.2 < x/D < 2. The stability analysis correctly captures that higher bluff body lip
velocities lead to higher frequencies.
The linear global mode frequency and growth rate, fg,l and ωg, are calculated by

finding the saddle point of ω0 in the complex X-plane, as described in section 2. Figure
8a compares the predicted global mode frequency, fg,l, with the experimentally-measured
frequency, fg,m. These are compared for various values of the lip velocity at six different
density ratios. This comparison shows that the local linear analysis consistently under-
predicts the frequency by around 15%, across all density and velocity ratios. This can be
compared with the global linear analysis of Barkley (2006), which slightly under-predicts
the frequency and the global linear analyses of Meliga et al. (2012); Mettot et al. (2014),
which over-predict the frequency by around 10%. Regarding local analyses, the same 10
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Figure 7. Top: Comparison of the measured global mode frequency (solid lines) and the pre-
dicted absolute frequency (dashed lines). Bottom: For reference, the absolute growthrate is
shown. The left column is for a fixed density ratio of ρu/ρb = 1.7 and the right column is for a
fixed density ratio of ρu/ρb = 2.0

to 15% under-prediction of the frequency was seen in a local analysis by Juniper et al.

(2011) for a uniform density wake flow in a channel at Re = 100. Similarly, a smaller
under-prediction was seen by Giannetti & Luchini (2007) for the local analysis of the
flow around a cylinder, but only for Reynolds numbers greater than 80. Interestingly,
the degree of accuracy in the frequency is similar to that of previous studies based on
analyses around the mean flow, but for studies that determined the base flow with RANS
simulations rather than experiments.

Another way to estimate the global mode frequency from the local analysis is to use
the frequency selection criterion from the nonlinear wave front theory of Pier & Huerre
(1996). The nonlinear wave front theory predicts that the experimentally measured fre-
quency and spatial growth rate should match those predicted by the local analysis at
the streamwise position where the flow transitions from convective to absolute instability.
Therefore, the global mode frequency can be estimated from the absolute frequency, ω0,r,
at the upstream point of ω0,i = 0. Figure 8b compares the frequency predicted from the
nonlinear wavefront theory, fg,nw, to the experimentally measured frequency. The figure
shows a slight underprediction of the global mode frequency similar to that observed
from the saddle point approach.

Next we define the local energy of the oscillations, E(x), by integrating the spectral
energy of the measured streamwise and cross-stream velocity components from StD =
0.20 to StD = 0.28, and then integrating this across the transverse dimension, y, from
the flow centerline to the channel wall:

E(x) =

∫

y

∫ 0.28

0.20

(|u(x, y, StD)|2 + |v(x, y, StD)|2) dStD dy (5.1)
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Figure 8. Comparison of measured and predicted global mode frequencies, from velocity sweeps
at six different density ratios. Part (a) compares measured global mode frequencies, fg,m to
those predicted from saddle point of ω0(X) approach, fg,l. Solid line corresponds to fg,l = fg,m.
Dashed line is least squares fit to the slope of fg,l vs fg,m. Part (b) compares measured global
mode frequencies to those predicted from nonlinear wave front theory, fg,nw. Cases where the
PIV measurement was noisy near the transition point from convective to absolute instability
were omitted from part (b).

Figure 9 compares E(x) (top) with the local absolute growth rate ω0,i (bottom) at two
values of Ulip. The energy of the oscillations grows rapidly in the absolutely unstable
region. Therefore, we hypothesize that the oscillations at the global mode frequency
are generated by hydrodynamic feedback mechanisms in the absolutely unstable region.
Furthermore, the oscillations’ energy increases as the linear global mode growth rate
increases. This relationship can be examined more precisely by assuming that the complex
amplitude, A, of the oscillations can be modelled by the Stuart-Landau equation (Landau
1944; Stuart 1958; Provansal et al. 1987): dA/dt = ωg,iA − β|A|2A. This is a good
approximation when the operating point is close to that of the onset of oscillations,
which is not always the case here. Saturation is achieved when dA/dt = 0, which leads
to the relation that |A|2 ∝ ωg,i, where A2 ∝ E, as defined above. Figure 10 plots the
maximum of E against ωg,i (calculated from the local linear analysis) for five values of
Ulip and three values of ρu/ρb. The fact that E is proportional to ωg,i shows that the
linear growth rate, which is calculated here around the turbulent mean flow, has the
same relationship to the nonlinear saturated amplitude as that which would be expected
for a laminar base flow. This is a surprising result, especially given that the growth rates
calculated from global analyses by Barkley (2006); Meliga et al. (2012); Mettot et al.

(2014) do not have this characteristic.

Figures 9 and 10 also show that the stability analysis correctly captures the role of
the density ratio: lower density ratios lead to higher absolute growth rates and larger
limit cycle amplitudes in this flow. The density ratio at which the flow becomes unsta-
ble, ρu/ρb|crit, can be calculated from this data by extending the Stuart-Landau model
described above. If the linear growth rate, ωg,i, is proportional to ρu/ρb−ρu/ρb|crit, and
|A|2 ∝ ωg,i, then |A|2 ∝ ρu/ρb − ρu/ρb|crit. Figure 11 plots max(E) against ρu/ρb, show-
ing a satisfactorily linear relationship for each lip velocity Ulip. Least squares lines are
overlaid for each velocity in order to extrapolate to E = 0. This shows that the critical
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density ratio is in the range ρu/ρb = 2.6− 2.8, and is relatively insensitive to Ulip, as is
expected.

Figure 9 also shows that the amplitude of the oscillations increases in the absolutely
unstable region and that the maximum spatial growth rate coincides approximately with
the point of maximum absolute instability. This can be examined more precisely by com-
paring the spatial growthrate from the local analysis with that from the experimental
measurements. In order to obtain the spatial growthrate from experiments, we assume a
linear, normal modes form for the streamwise and transverse global mode velocity com-
ponents, (u, v) = (|û|, |v̂|)exp[−i(ωt− kx)]. Next, we recall that the global mode energy

has the general form, E =
∫H

0
(|u|2+|v|2) dy. Finally, we differentiate to obtain the spatial

growthrate, −2ki = d ln(E)/dx. Figure 12 compares the streamwise dependence of the
spatial growthrate derived from the local analysis (solid line) and from the experiments
(dashed line). The spatial growth rates from the local analysis are composed of the k+

and k− branches, computed for the predicted global mode frequency, fg,l. The k
− branch

is selected in the region upstream of the wavemaker, and the k+ branch is selected down-
stream of the wavemaker. In a local analysis around a steady flow, the two should match
well in the low amplitude region upstream, where the growth is linear, but would not be
expected to match in the high amplitude region downstream. In the local analysis around
the time-averaged flow shown here, however, the two match reasonably well upstream
(particularly for the Ulip = 60 cases) but match even better in the high amplitude region
downstream. This shows that, given a mean flow, the linear local analysis can predict the
local spatial growth rate and therefore is likely to give a correct mode shape. Although
this is something of a circular argument, because the mean flow was generated from the
mode shape in the first place, it is reassuring for the next stage in this analysis, which is
to calculate the direct and adjoint global modes from the local linear analysis.
Recalling the nonlinear wave front theory of Pier & Huerre (1996), the measured and

predicted linear spatial growth rates are expected to match at the point where the flow
transitions from convective to absolute instability. Figure 12 identifies this point with a
⋆ symbol. The figure shows a good match between experiment and prediction at this
point for the 60 m/s cases, and a poorer match for the 30 m/s cases. The reason for the
poor comparison (as well as for the scatter in the nonlinear wave front frequencies in 8b)
is unknown, but the authors suspect that it is due to the higher measurement uncertainty
of the fluctuating velocity at this spatial position (as quantified by the error bars).
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Figure 9. Axial dependence of the oscillatory kinetic energy, E (Top), and Predicted absolute
growthrate (Bottom). Results are shown for density ratio sweeps at fixed velocities of Ulip = 30
m/s (left column) and Ulip = 50 m/s (right column). As expected, the amplitude of the mode
grows most rapidly in the region of strong absolute instability.
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Figure 10. Maximum of the oscillatory kinetic energy, E(x) plotted as a function of the linear
global mode growthrate. This is shown for a combination of five values of Ulip and six values
of ρu/ρb and for max(E) (left) and for E(x/D = 3.0) (right). The dashed line is a linear
least-squares fit. The error bars represent PIV measurement uncertainty due to the Stokes
number considerations discussed in Section 3.2.
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Figure 11. Maximum of the oscillatory kinetic energy, E(x), plotted as a function of the density
ratio, shown for a combination of five values of Ulip and six values of ρu/ρb. Linear least-squares
fit lines are overlaid for each velocity. The error bars represent PIV measurement uncertainty
due to the Stokes number considerations discussed in Section 3.2.
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Figure 12. Comparison of predicted linear spatial growthrate to measured spatial growthrate.
Symbol ⋆ is placed at the streamwise position where linear stability analysis predicts the tran-
sition from convective to absolute instbility (the upstream boundary of the pocket of absolute
instability). The error bars represent PIV measurement uncertainty due to the Stokes number
considerations discussed in Section 3.2.
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This section showed comparisons between stability analysis predictions using an ex-
perimentally measured base flow, and the experimentally measured flow oscillations. The
comparisons show good qualitative trends in the predictions, with small quantitative dis-
crepancies. Three sources of error may account for these discrepancies. These potential
sources of error, discussed in detail in Sections 2 and 3.2, are uncertainty in the mea-
sured base flow (which propagates through the stability analysis), errors inherent to the
stability analysis procedure, and uncertainty in the measured oscillatory velocity. Experi-
mental uncertainty in the oscillatory frequency is extremely small, and uncertainty in the
oscillatory velocity amplitude is quantified and indicated with error bars. The authors
hypothesize that discrepancies beyond these error bars are due to errors that are inherent
to the stability analysis, not due to the small uncertainty in the measured base flow. The
weakest components of the analysis procedure are the parallel flow assumption, and the
use of a time averaged turbulent flow field as the base flow. The influence of the parallel
flow assumption could be investigated in future work with a full global analysis.

5.2. Direct global mode, adjoint global mode, and wavemaker

The aim of this section is to compare the predicted (linear) 2D global mode shape to the
measured (nonlinear) 2D global mode shape, and to obtain the adjoint global mode and
the eigenvalue sensitivity, λ. This analysis, which is performed around the time-averaged
mean flow is similar to that of Meliga et al. (2012), which included a frozen eddy vis-
cosity, and Mettot et al. (2014), which used only molecular vicosity. These analyses were
compared with the experimentally-derived sensitivities by Parezanovic & Cadot (2012)
and found to give excellent predictions of the oscillation’s sensitivity to the addition of
a passive control element.

The measured global mode shape is obtained by conditionally averaging the velocity
field at a fixed phase of the global mode oscillation. To accomplish this, the mean-
subtracted transverse velocity time series from a single spatial point is locally fitted to a
sinusoid with a fixed frequency of fn = 0.24Ulip/D over two period windows (Emerson
et al. 2012). The phases of these sinusoidal fits are stored as a time-dependent signal.
This signal is then used as a reference phase, to conditionally average the entire velocity
field at instants that correspond to a fixed reference phase.

An example snap-shot (ie, a single phase) of the conditionally averaged transverse ve-
locity is shown in the top frame of Figure 13 for the upper half of the channel. The direct
global mode shape is presented in the frame immediately below. Comparison between
these two shows qualitatively similar transverse mode shapes. For a more quantitative
comparison of the global mode to the experimental measurement, Figure 14 compares
the axial dependencies of the phases of the linear global mode and conditionally aver-
aged transverse velocity. The experimentally measured phase was determined by first
performing a Fast Fourier Transform (fft) of the transverse velocity at every spatial po-
sition. Next, the phase was extracted from the transverse velocity Fourier coefficients, v̂,
at the global mode frequency, fg,m, and at a transverse position of y/D = 0. As such, for
the experimental measurement, we define the phase as θ(x) = ∠v̂(x, y/D = 0, f = fg,m).
For both the stability analysis and the experimental measurement, the bottom frame of
Figure 14 shows the phase speed, which is representative of the convective velocity, and
which is calculated from finite differencing the axial dependence of the phase. The phase
speed is calculated as

Uc(x) = 2πfg
∆x

∆θ
(5.2)

where ∆x represents a finite difference of axial position, and ∆θ represents a finite dif-
ference of the phase. The figure shows that the linear stabiltiy analysis captures the
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qualitative trend of an accelerating phase speed with increasing axial position. Addi-
tionally, the figure shows close quantitative agreement, although the stability analysis
appears to slightly over-predict the phase speed. This overprediction of the phase speed
is also evident in Figure 13, which suggets a slightly longer axial wave length for the
prediction, relative to the experiment. As a quantitative comparison of the magnitudes
of the predicted and measured global modes, the reader is referred to the spatial growth
rates plotted in Figure 12, which shows the same case as Figures 13 and 14.

The adjoint global modes for streamwise and transverse velocity perturbations are
shown in the third and fourth frames of 13. These quantify the influence that open
loop velocity forcing has on the oscillation amplitude, as shown by the final term in
equation (9) of Chomaz (2005). For example, this shows that the global mode is most
sensitive to open loop velocity forcing in the shear layers aft of the bluff body and that
it is slightly more sensitive to streamwise forcing than transverse forcing. Finally, the
eigenvalue sensitivity, λ is shown in the last frame. The values of λ shown here are the
products of the direct and adjoint global mode velocity magnitudes, λ =

√

|u|2 + |v|2 ×
√

|u†|2 + |v†|2. This quantity physically represents the eigenvalue drift caused by a device
that produces an extra acceleration (ie, momentum feedback) at a given point in space.
This is large in locations that have both significant oscillation amplitude (contained in the
direct global mode), and significant sensitivity to oscillations (contained in the adjoint
global mode), and therefore identifies the location where a passive feedback device would
have most influence if it affects the perturbation but not the base flow. This is the
wavemaker region of the flow. Notice that for this flow, the wavemaker is located in the
recirculation zone of the wake, between x/D = 1 and x/D = 2.

This study pursues the eigenvalue sensitivity to momentum feedback, defined above
as λ. However, it is important to note that there are many different ways to define the
eigenvalue sensitivity, each of which describes the eigenvalue drift caused by a different
type of feedback. As a practical example, the quantity λ/ρ0 would physically represent
the eigenvalue drift due to a device that causes an extra force-feedback at a point in
space. Although not shown here for reasons of space, analysis of this scenario reveals a
nearly identical wavemaker region, due to the fact that the wavemaker region lies almost
entirely in the uniform-density combustion products region.
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5.3. Influence of density ratio and lip velocity on wavemaker region and receptivity

regions.

Figure 15 presents a comparison of the wavemaker region for three density ratios and
two lip velocities. The left column is a density ratio sweep at a fixed lip velocity of Ulip

= 30 m/s, and the right column is a density ratio sweep at a fixed lip velocity of Ulip =
60 m/s. The figure shows that the wavemaker shape and location is relatively insensitive
to these two parameters, even though the growth rates, frequencies, and amplitudes vary
significantly, as shown earlier. The most noticeable influence is the slight elongation of
the wavemaker region with increases in bluff body lip velocity. There also appears to
be slight elongation of the wavemaker region with increase in density ratio, which is
apparent when comparing the ρu/ρb = 1.7 cases to the ρu/ρb = 2.0 cases. These effects
are probably due to the slight increase in recirculation zone length with increases in lip
velocity and density ratio (Emerson et al. 2012), and support the observation from the
end of section 5.2, as well as that from analyses around steady flows (Giannetti & Luchini
2007) that the wavemaker is centred on the recirculation zone.
Figure 16 presents a comparison of the receptivity to transverse velocity forcing (the

adjoint mode). This region follows the edge of the time-averaged recirculation region,
which varies slightly as the lip velocity and density ratio change.
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Figure 15. Comparison of the sinuous mode eigenvalue sensitivity, λ, for several velocities and
density ratios
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Figure 16. Comparison of the sinuous mode receptivity to transverse velocity forcing, |v†|, for
several velocities and density ratios

5.4. Varicose oscillations

The previous sections concerned the sinuous mode, which is the observed wake mode in
the absence of external forcing or thermoacoustic oscillations. However, varicose oscilla-
tions may be excited by external forcing. For example, experimental work by Emerson
et al. (2013) demonstrated that varicose oscillations often dominate in longitudinal com-
bustion instabilities of bluff body combustors. Therefore, the stability of the varicose
mode has direct application to the combustion instability problem. While the stability
analysis does not model the acoustically coupled, global thermo-acoustic system, it does
reveal the most significant sensitivites of the hydrodynamic component of such a system,
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from which one may speculate about the overall system. For example, Figure 17 will show
that the hydrodynamic response to acoustic driving is much more sensitive to streamwise
forcing than to transverse forcing, and that the highest eigenvalue sensitivity sits on the
flow centelrine just downstream of the bluff body. For this reason, this section explores
the stability of varicose oscillations around the time-averaged flow calculated from the
experimental data.

It is worth noting that the predominant unsteady feature in the experimental data is
a sinuous mode. Therefore this analysis is pertinent to varicose oscillations occurring on
top of a flow that is already oscillating sinuously. An important point when considering
a linear interpretation of such a situation is for the two modes to oscillate independently
at different time scales. For the conditions presented in this section (ρu/ρb = 1.7, Ulip =
30m/s), the predicted frequency of the varicose global mode is 35 Hz, which is an order
of magnitude lower than the 374 Hz frequency predicted for the sinuous global mode.
Figure 17 shows (a–b) the direct global mode, (c–d) the receptivities to streamwise and

transverse velocity forcing, and (e) the wavemaker of the varicose mode. The varicose
mode shown in Figure 17 was computed for the same base flow as the sinuous mode shown
previously in Figure 13. Comparing these two figures reveals some significant differences
between the sinuous and varicose modes.

Firstly, the streamwise wavelength of the varicose direct global mode is much longer
than that of the sinuous mode. Evidence of this has been observed previously in the direct
numerical simulations of Biancofiore et al. (2014). Secondly, by comparing the relative
amplitudes of the (c) streamwise and (d) transverse receptivites in figures 16 and 17,
it can be seen that the varicose mode is much less sensitive to transverse forcing than
the sinuous mode. Thirdly, although the varicose mode is similar to the sinuous mode in
that it is very receptive to forcing in the shear layers, it is also receptive to streamwise
velocity forcing along the centreline around x/D = 1. This implies that the growth rate of
the varicose oscillations could be reduced (or the damping rate increased) by streamwise
injection from the body at y/D = 0, while minimally affecting the sinuous oscillation. In a
system that is forced in a varicose manner, e.g. by thermoacoustic oscillations, this would
reduce the amplitude of the hydrodynamic oscillations and thereby weaken the feedback
mechanism between the acoustics and heat release. Fourthly, the wavemaker region of
the varicose mode has highest amplitude at y/D = 0, while that of the sinuous mode
is at y/D = 0.25. Additionally, there is a separate, distinct, weaker wavemaker region
in the shear layer. This tendency of the varicose mode to have two distinct receptivity
regions and wavemaker regions was not present in the sinuous mode, and is consistent
when varying ρu/ρb and Ulip.
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Figure 17. Varicose mode shape, showing from top to bottom: direct streamwise velocity global
mode, ur, direct transverse velocity global mode, v, adjoint global mode showing receptivity to
streamwise velocity forcing, |u†|, adjoint global mode showing receptivity to transverse velocity
forcing, |v†|, eigenvalue sensitivity, λ. Conditions are ρu/ρb=1.7, Ulip = 30 m/s. Colorbar for

|v†| is 1/10th the colorbar of |u†| for visibility purposes.

6. Conclusions

This study examines the receptivity and sensitivity of the oscillating flow behind a
flame holder in the presence of combustion. A local stability analysis is used in order
to calculate the direct and adjoint linear global modes about the experimentally-derived
time-averaged base flow. This procedure has been applied to laminar nonreacting wakes
(Juniper & Pier 2015) and has been shown to give a very good approximation to the
modes found from a global analysis, particularly for nearly-parallel flows such as this.
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The direct global modes calculated from the local stability analysis have similar fre-
quencies, mode shapes, phase speeds, and streamwise growth rates as the experimentally-
observed oscillations over a wide range of flame density ratios and bluff body lip velocities.
This provides a sound basis on which to form the adjoint global modes for the receptivity
and sensitivity analysis. In addition, the linear local analysis predicts a global growth
rate that is proportional to the square of the experimentally-measured amplitude of os-
cillation, in accordance with a Stuart-Landau model. This feature was not found in the
linear global analyses of Barkley (2006); Meliga et al. (2012); Mettot et al. (2014), which
were also around the time-averaged mean flow.

The adjoint global modes show where the flows are most receptive to external forcing.
For sinuous oscillations, the flow is slightly more receptive to streamwise forcing than
to transverse forcing and is most receptive in the shear layers just downstream of the
bluff body edges. For varicose oscillations, the flow is much more receptive to streamwise
forcing than to transverse forcing. It is quite receptive in the shear layers, but it is most
receptive along the centreline, although only to streamwise forcing. The overlap of the
direct and adjoint global modes show where the flows are most sensitive to changes in
internal feedback, which is the wavemaker region. For both sinuous and varicose oscilla-
tions, this region is at around x/D = 1.5.
The regions of high receptivity and sensitivity change very little as the density ratio

and lip velocity change. However, the stability analysis shows that increasing the density
ratio reduces the global mode growthrate and has little influence on the global mode
frequency. This stabilizing influence is reflected in the experiments, in which the limit
cycle amplitude reduces when the density ratio increases. The stability analysis also
shows that increasing the bluff body lip velocity causes a proportional increase in the
global mode frequency, which compares well with the experimentally measured global
mode frequency.

This study performs a local stability analysis on experimentally-derived time-averaged
velocity profiles in a slowly-developing wake flow. The authors implement the techniques
described in Juniper & Pier (2015) to extract the direct and adjoint global modes from
the local analysis. These modes show the regions of the flow that are most receptive
to external forcing and sensitive to changes in internal feedback. For the combusting
flow behind a bluff body studied here, this analysis shows that the sinuous mode is
more hydrodynamically unstable than the varicose mode and that the varicose mode
has a much lower frequency and longer wavelength. Nevertheless, the varicose mode can
lock into longitudinal oscillations in practical combustion systems and thereby cause
thermoacoustic oscillations. The varicose mode is quite receptive to momentum forcing
in the shear layers downstream of the bluff body. A longitudinal acoustic mode would
have high amplitude in these regions, which reveals how this type of acoustics couples
to the flame effectively. The varicose mode is most receptive to streamwise momentum
forcing along the centreline, however, where the sinuous mode is insensitive to forcing.
This provides physical insight into the reasons behind the behaviour of this flow, and
suggests a control strategy involving streamwise forcing behind the bluff body, either
with feedback control or with a passive device. Such a strategy might change the varicose
mode, which is dangerous for thermoacoustics, without affecting the sinuous mode, which
is good for mixing.
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