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a b s t r a c t

For the flow over curved surfaces, an extra wall-normal pressure gradient is imposed to the flow through ex-

cessive surface pressure, such that the flow turns in alignment with the surface. In turn, turbulent fluctuations

are suppressed over the convex surface; whereas, they are enhanced over the concave. Recently, the direct

numerical simulation (DNS) of turbulent channel flow experiencing a 60 degree circular bend shows highly

complex flow phenomena. Particularly, the mean flow properties are directly related to the channel geome-

try; in the impulse response of the mean flow to the step change of streamline curvature, sudden changes in

mean strain rate and extra rates of strain emerge. This mean flow process is prior to the response of the tur-

bulence structures. Due to the large streamline curvature, the underlying turbulence lagging mechanism and

the stress strain misalignment are difficult to model. For this, the new DNS data for the wall bounded flow

with high streamline curvature and large integral length scales is used to explore RANS performance. For

eddy-viscosity models, this leads to the Boussinesq approximation being questionable. Also, for a Reynolds-

stress model (RSM) with closure approximations applicable to homogeneous turbulent flows that are nearly

in equilibrium, the current case can result in substantial predictive error. This is because of, for example, the

linear approximation for the rapid pressure–strain correlation. To help move towards better turbulence mod-

elling, Reynolds-averaged Navier–Stokes (RANS) predictions are compared for the same flow configuration

as the DNS, using some popular turbulent models. These models include the second-order closure with the

stress-ω formulation, the standard k − ω and the Menter’s shear-stress transport (SST) models, the standard

Spalart–Allmaras (S-A) model with and without the corresponding strain–vorticity correction. As expected,

overall, the RSM provides closer predictions to the DNS data than the selected eddy-viscosity models, even

though the predictive accuracy needs to be further improved. Potentially, a non-linear constitutive relation

or second-order closure, incorporating a relaxation approximation for the lagging mechanism, may lead to a

remedy for the current non-equilibrium flow. Moreover, all models would also benefit from sensitisation to

the impact of the large integral length scales.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Relative to flow over a flat surface, when experiencing curved

oundaries, more complexity emerges from the turbulence struc-

ures. Depending on the shape of such a viscous surface, extra mo-

entum is imposed to the flow through an excessive wall pressure

istribution. In such a way, the flow is forced to turn in alignment

ith the solid boundary. This usually results in static pressure gradi-

nt and dynamic head variation. Naturally, the shear layer structures
∗ Corresponding author. Tel.: +44 1223 337 582; fax: +44 1223 332 662.
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re distorted due to extra strain rates. Early efforts on this subject are

eviewed by Bradshaw [1–3].

In addition to the usual productive shear ∂U/∂y driving the wall

urbulence, to gain some insight about modelling extra strain rates,

he impulsive response of the boundary layer to high surface cur-

ature was tested by Smits et al. [4] in their boundary layer exper-

ment of 20 and 30 degree bends. Characteristic structural changes

ere investigated based on analysis of single-point double and triple

elocity products. The various forms of the shear-stress parameters

ere increased over the concave side, and thereafter decayed further

ownstream. On the convex side, large reductions were found, be-

ore downstream recovery. Notably, in these experiments, separation

s avoided. In the companion, after transition, the alteration due to

he lateral divergence ∂W/∂z was confirmed in almost the same way
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compfluid.2015.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.11.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:xiaoyu.yang@alumni.stanford.edu
mailto:xiaoyu.yang.alumni.cambridge@outlook.com
http://dx.doi.org/10.1016/j.compfluid.2015.11.010
http://creativecommons.org/licenses/by/4.0/


92 X. Yang, P.G. Tucker / Computers and Fluids 126 (2016) 91–101

t

m

d

f

c

i

s

u

l

a

t

t

o

b

m

[

S

o

t

y

m

A

g

a

t

N

s

o

o

c

c

a

e

L

R

a

l

t

i

b

t

f

s

t

c

fl

l

l

s

l

s

r

t

i

R

a

t

t

R

i

-

as the longitudinal curvature above. Where, W is the mean velocity in

the spanwise direction z. This is given by Smits et al. [5].

The corresponding asymptotic response to the streamline curva-

ture was investigated in the pioneering experiments by So and Mel-

lor [6–8]. Strikingly, in this experiment [6,9], substantial laminari-

sation was observed over a convex surface under laboratory condi-

tion. Such a phenomenon is also common in meteorology. As origi-

nally determined by Richardson [10] based on atmospheric data, for

this phenomenon, above a critical Richardson number Ricr turbulence

collapses.

Usually, the gradient Richardson number provides a measure of

the ratio between typical body (centrifugal or buoyant) force and typ-

ical inertia force, i.e. Ri = typical body force/typical inertia force. It

also reflects the dimensionless rotational/angular frequency, i.e. the

square of the ratio of the mean rotational frequency U/R to the mean

vorticity ∂U/∂r. For curved shear flow, this may be defined as [7,11]

Ri = SC · (1 + SC) (1)

where,

SC =
2kcU

1 + kcy
− 2�

∂U

∂y
− kcU

1 + kcy

(2)

and kc = 1/R is the surface curvature, y is the wall-normal distance,

and � is the magnitude of the rotational tensor. Alternatively, the flux

Richardson number measures the ratio of the turbulence kinetic en-

ergy (TKE) production magnitude due to body force and mean shear.

This may be written as the equation below.

Ri f = SC/(1 + SC) (3)

Also, in addition to the usual production term for the Reynolds

shear stress, for curved shear flow, another term is active. The cor-

responding production ratio, i.e. the stress Richardson number, may

be written as Ris = (v′
sv′

s/v′
nv′

n) · Ri f , where v′
s and v′

n are the stream-

wise and the wall-normal velocity fluctuations. Mostly, the gradient

and/or flux Richardson number is used as a measure for the signifi-

cance of the streamline curvature effect.

On the other hand, for the early effort to model the turbulence re-

duction mechanism, Prandtl [12] reduced the eddy-viscosity/mixing-

length when the global rotational rate is comparable to the local

mean shear. Based on the Richardson number

Ri = (U/R)/(∂U/∂r), (4)

multiplying the mixing length by a factor F = 1 − β · Ri was proposed

for curved flow, where β = 1/4. This is analogous to buoyancy ef-

fect. However, this model under-predicts the observations, for exam-

ple those given by Wilcken [13] and Wattendorf [14]. For mild/small

streamline curvature δ/R ∼ 0.01, substantial improvement was made

by Bradshaw [11] based on an approximate gradient Richardson num-

ber, i.e. F = 1 − β · RiA, where

RiA = 2SA · (1 + SA) (5)

and

SA =
(

kcU

1 + kcy

)/(
∂U

∂y

)
. (6)

This is in analogy to the Monin–Oboukhov [15] formula for buoy-

ant flows. For such early models, inadequacy arises, for example,

when pressure gradient effects cannot be neglected. For moderate

streamline curvature δ/R ∼ 0.1, So and Mellor [6,7,9] derived an eddy-

viscosity function from the Reynolds-stress equations, including the

pressure-velocity correlation terms, etc.. This gives a turbulence ve-

locity scale. Accordingly, the calculated boundary layer development

was found in good agreement with their measurements. Meanwhile,
he occurrence of laminarisation was also accurately predicted. The

odel was shown to be valid for −0.21 ≤ Ri f ≤ 0.21, where, Rif is

efined to be a flux Richardson number. Also, the critical value was

ound to be Ri f,cr = 0.215.

In the succeeding efforts to predict large curvature effects, the fo-

us was on the two-dimensional curved boundary layer equations,

nstead of the thin shear layer approximation neglecting static pres-

ure variation. For example, this is shown by So and Mellor [16,17]

sing an ASM with k − ε model. Additionally, using the universal log-

inear law for the near wall region, So [18] further illustrated the close

nalogy between buoyancy and streamline curvature. Meanwhile, for

he standard k − ω model, Wilcox and Chambers [19] proposed a cen-

rifugal acceleration term to account for surface curvature effect. This

riginated from the exact v′v′ equation, based on the classical sta-

ility arguments advanced by von Karman [20]. The corresponding

odel predictions are much closer to So and Mellor’s measurements

6] than the standard model [21]. Similarly, Launder, Priddin and

harma [22] proposed a correction term for the k − ε model based

n a turbulence Richardson number similar to the Prandtl’s formula-

ion above. Such curvature corrections usually result from the anal-

sis of the full Reynolds-stress equations. The suitability of second-

oment closure is investigated, for example, by Gibson et al. [23].

comprehensive overview on modelling curvature effects has been

iven by Lakshminarayana [24]. These early modelling efforts, as well

s the characteristic alterations in the mean and turbulent proper-

ies, are well introduced by Moser and Moin [25,26] where Direct

umerical Simulation (DNS) is undertaken for mild curvature. Also,

cenarios related to non-linear constitutive relations and second-

rder closures are discussed by Wilcox [21,27,28]. Later development

n analysis and modelling for the longitudinal curvature effects are

omprehensively reviewed by Patel and Sotiropoulos [29], and the

orresponding transverse curvature effects are reviewed by Piquet

nd Patel [30]. Recent advances and applications with non-linear

ddy-viscosity models and second-moment closure are outlined by

eschziner [31].

Lately, while studying aero engine intake flow physics, the

ichardson number above, i.e. Eq. (4), is used by Oriji and Tucker [32]

s an indication of the corresponding centrifugal effects for turbu-

ence modelling. For this Richardson number, U is the mean tangen-

ial velocity aligned with a flow streamline, and R is the correspond-

ng radius of the streamline curvature. Then, the number is scaled

y the freestream velocity and the boundary layer thickness. No-

ably, the streamline curvature effects are of fundamental importance

or such flow physics. This is equally evident for aerodynamic de-

ign of compressor and turbine blades, as well as aerofoils. However,

he efforts to understand and predict such flow physics are far from

omplete.

For this, recently, DNS is undertaken for fully developed channel

ow experiencing a 60 degree circular bend [33]. Notably, for this

arge streamline curvature case, over the convex surface (δ/R = 1/6),

aminarisation, the succeeding laminar separation and induced tran-

ition, and then turbulence recovery, are directly observed; turbu-

ence enhancement over the concave surface is also evident. These

equential flow behaviours are essentially altered by the production

ate P12 of the Reynolds shear stress. These observations are qualita-

ively similar to the early experimental observations. In the follow-

ng, to explore the performance of turbulence models, some popular

eynolds-stress (RSM) and eddy-viscosity models are benchmarked,

nd possible improvements are suggested.

Notably the data in [33] is for flow over a curved surface exposed

o large upstream integral length scales. This is an important aspect of

he current contribution aimed at understanding the performance of

ANS models. Flows over curved surfaces subjected to large external

ntegral length scales occur in many areas of industrial application

see for example [34]. Full details of the 6th-order finite difference
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ncompressible DNS involving 8 million cell grids are given in [33].

otably, this paper connects with the companion paper [35] where

arge integral length scales exposed to acceleration are explored.

. Turbulence models

For flow over a curved surface, to certain degree, the pres-

ure gradient alters the turbulence behaviour. This usually results

n laminarisation, turbulence enhancement, and even turbulence

ecovery through separation induced transition. Without proper cor-

ection/treatment, linear eddy-viscosity models are generally inade-

uate to predict such streamline curvature effects. On the contrary,

he second-order closures, solving extra partial differential equations

or the Reynolds stresses, are considered to be more reliable to de-

ineate such flow physics [36,37]. In the modelled Reynolds-stress

ransport equations, the effects of the system rotation and/or stream-

ine curvature are imitated by the corresponding explicit terms [26].

hereas, eddy-viscosity models in the baseline form are primar-

ly constructed based on the flat wall production mechanism pro-

oked by the usual mean shear ∂U/∂n in the wall-normal direction

. As has been shown by the DNS [33], the impact of streamline

urvature can be more significant, with respect to the expectation

ased on early numerical and experimental data. For better turbu-

ence modelling, Reynolds-averaged Navier–Stokes (RANS) simula-

ions are performed, for the same curved channel geometry, at a low

eynolds number the same as this DNS. Through these simulations,

ome of the available models, as well as the corresponding stream-

ine curvature corrections, are benchmarked regarding to the DNS

ata.

These selected widely-used RANS models are as follows: the

econd-order closure/RSM with the stress-ω formulation [28,38–41],

he standard k − ω model [28] and the Menter’s SST model [42–45],

he standard Spalart–Allmaras (S-A) model [46] and the correspond-

ng strain–vorticity correction [47]. This latter correction is generally

eferred to as the approximate Spalart–Allmaras rotational correction

ASARC). This reduces the eddy-viscosity/turbulence when the mean

ate of rotation exceeds that of the strain; the standard formulation

or the production of the modified turbulent viscosity ν̃ is altered as

he following Eq. (7). This results in more accurate predictions on the

ffects of rotation and streamline curvature. The production term for

SARC takes the form below

S−A =| �i j | +Cprod · min(0, | Si j | − | �i j |), (7)

where Cprod = 2.0, | �i j |= √
2�i j�i j, and | Si j |= √

2Si jSi j . �ij

nd Sij are the mean rotation and strain tensor, respectively. Notably,

hen Cprod is set to be 0, the standard form is recovered.

The detailed description on these selected models have been

iven, for example, by Wilcox [28] or the ANSYS-FLUENT theory guide

48]. Also, a recent assessment on such models has been summarised

y Nichols [49]. Particularly, it has been shown that this ASARC mod-

fication gives RANS results similar to that of the Spalart–Shur’s cor-

ection [36,37] for rotation and curvature (SARC) [49]. This latter case

s not studied here, due to the expensive evaluation of a Lagrangian

erivative of the strain tensor.

For the RSM with the stress-ω formulation [28], the ω equa-

ion of specific dissipation rate, identical to the Wilcox (2006) k − ω
odel, is used as the scale-determining equation. For the corre-

ponding modelled Reynolds-stress transport equations, the under-

ying k equation is also identical to the above k − ω model. As em-

loyed in this second-moment closure, for the exact incompressible

ransport equations for the (specific) Reynolds stresses τi j = u′
i
u′

j
, i.e.

q. (8), the approximations are as follows: the dissipation tensor ε ij

s approximated based on the Kolmogorov [50] hypothesis of local

sotropy; the Daly and Harlow [51] simple approximation is employed

or turbulent transport terms Cijk. Meanwhile, for the pressure–strain
orrelation 
i j = Ai j + Mi jkl · ∂Uk/∂xl , the slow pressure strain Aij is

odelled using Rotta’s postulation [52,53], and the Launder, Reece

nd Rodi [39] linear approximation is used for the rapid pressure

train Mijkl · ∂Uk/∂xl. Notably, with the scale-determining ω equation,

he stress-ω formulation does not require a wall-reflection/pressure-

cho term such as that used for the RSM model based on the ε
quation. Also, similar to the k − ω model, this second-moment

losure has the potential for excellent predictions over a wide

ange of turbulent flows, particularly, for flows over curved sur-

aces [48]. The Reynolds stress transport equations take the form

elow

∂τi j

∂t
+ Uk

∂τi j

∂xk

= Pi j − εi j + 
i j + ∂

∂xk

[
ν0

∂τi j

∂xk

− Ci jk

]
(8)

here,

i j = −τik

∂Uj

∂xk

− τ jk

∂Ui

∂xk

(9)

i j = 2ν0

∂u′
i

∂xk

∂u′
j

∂xk

(10)

i j = p′
ρ0

(
∂u′

i

∂x j

+
∂u′

j

∂xi

)
(11)

0Ci jk = ρ0u′
i
u′

j
u′

k
+ p′u′

i
δ jk + p′u′

j
δik (12)

. Numerical methods

The RANS simulations are performed using the Rolls Royce HY-

RA [54,55] compressible Navier–Stokes solver and the ANSYS-

LUENT (Version 13) [48] pressure based incompressible solver. For

he former, under the compressible solver framework, the four-stage

unge–Kutta time integration and the second order Roe’s scheme

re used for temporal and spatial discretisation, together with a low

ach number pre-conditioning and a four-level multi-grid cycle. For

he latter, the pressure terms are chosen to be coupled with ve-

ocity field through the pseudo-transient time integration. For bet-

er numerical accuracy, the combination of the spatial discretisation

chemes are the least-square cell based gradient term, the second-

rder pressure term, and the third-order MUSCL scheme for the

omentum and other turbulence-model terms. The low-Re correc-

ion/viscous damping is employed for all the benchmarked models.

lso, the viscous sublayer is directly resolved using the standard no-

lip wall boundary condition; for the upstream fully developed sec-

ion, the first grid spacing immediately adjacent to the wall is be-

ow the wall unit, i.e. �d+
1st

� 0.36. Also, to ensure all the essential

ean characteristic changes are captured, the wall-normal grid uses

1 nodes. This is about half of the number used for the DNS. These

re considered to be sufficient to provide grid independent solutions.

o ensure this, a grid independence study has been performed. For

he RSM which is expected to have the greatest sensitivity to grid, the

verage profile change for the mean velocities is around 0.1% and the

hange in turbulence quantities around 2% for a grid doubled in all

irections. For the models involving less equations and hence gradi-

nts, smaller changes are expected.

Also, for the upstream incoming flow, the stagnation and static

ressure difference, through the standard pressure inlet boundary

ondition, is used to develop the desired flow properties. The stan-

ard outflow boundary condition is applied to the channel exit. These

oundary conditions are shown in the following Fig. 1. Besides, for

ssessment, the ASARC result is also compared using the Rolls Royce
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Fig. 1. Schematic of the actual simulated 60 degree circularly bent channel. (Note: the streamwise lengths for the upstream inlet section (Sec 0) and the downstream outlet section

(Sec 5) are 120δ and 30δ, respectively. These are not shown in the figure. Also, the half channel height δ is scaled to be unity, and the axes are equal.).

i

d

s

f

s

b

5

s

f

p

v

o

c

s

g

r

a

t

v

t

t

t

�
�
c

s

w

d

a

t

F

c

t

HYDRA. For all the following results, the iterative convergence criteria

is taken to be 1 × 10−6 for all the scaled residuals.

4. Flow configuration

As shown in Fig. 1, for the current RANS study, the actual simu-

lated two-dimensional curved channel geometry is exactly the same

as the cross-section of the DNS case [33]. It contains the upstream

fully developed region (Sec 1), the immediate upstream guide sec-

tion (Sec 2), the 60 degree circularly bent test section (Sec 3), and the

downstream guide section (Sec 4). Along the lower channel surface,

the streamwise lengths for these sections are L1 = 2πδ, L2 = 0.5πδ,
L3 = 2πδ, and L4 = 3πδ, respectively. Where, δ is the geometrical

half channel height. For the test section, in the streamwise direction,

with the circumferential length of the lower convex wall L3 = 2πδ,
it can be seen that the curvature is δ/R = 1/6. This expands a per-

fect triangle. In addition, the most upstream inlet section (Sec 0 with

L0 = 120δ) is used here to develop the flow, and the most down-

stream outlet section (Sec 5 with L5 = 30δ) for outflow. The axis

origin is on the lower channel surface at the end of the upstream in-

let section, and it is 2.5πδ to the leading edge of the curvature. In-

between, the flow is considered to be fully developed. In this way,

the coordinate system is exactly the same as the DNS case. In the

following, only the results close to the curvature will be examined.

Besides, s, n, and z will be used as the streamwise, wall-normal, and

spanwise directions, respectively, for the local curvilinear orthogonal

coordinates.

To compare with the DNS data [33], for the current RANS con-

figuration, the flow is simulated nominally at Reδ = 3300 or equiv-

alently Reτ � 180 for the upstream fully developed section. The total

grid points used are 88 × 51. The first grid spacing above the wall

is �d/h = 0.002. For the upstream fully developed region, it is be-

low the wall unit, i.e. �d+
1st

∼ 0.36; equivalently, the viscous sublayer

is resolved. The half channel height h or δ is fixed as 1 mm; under

sea-level atmospheric condition, this requires the upstream centre-

line velocity Umax around 48.262 m/s, i.e. Ma � 0.142. In the follow-
ng, the corresponding RANS solutions are compared with the DNS

ata for the mean streamwise velocity and TKE profiles, as well as the

treamwise distributions of Cf and Cp on the concave and convex sur-

aces. Also, the streamwise acceleration parameter and the Richard-

on number will be examined to gain insight about the discrepancy

etween the DNS and RANS results.

. Results

Figs. 2–4 compare the mean streamwise velocity profiles at six

treamwise stations. These are given in the frame (a) of Fig. 2 to the

rame (b) of Fig. 4. The locations of these stations are shown in the

revious Fig. 1. The first four locations are at the upstream fully de-

eloped region, the leading edge, the mid-plane, and the trailing edge

f the curved section, and the other two located downstream to the

urvature within and after the mean separation. The corresponding

treamwise distances, along the lower channel wall, to the axes ori-

in are given in Table 1. In these figures, the wall-normal distance,

epresented by y, is scaled by the half channel height/the bound-

ry layer thickness for the upstream fully developed turbulence, and

he mean velocity is scaled by the corresponding mean centreline

alue. Also, in this figure and the following, the full-line represents

he DNS data, the dash-dot line is for the laminar profile that gives

he same wall shear for the upstream fully developed region, and

he RANS results are given by symbols (◦ the RSM, � the k − ω SST,

the k − ω standard, � the S-A with the strain–vorticity correction,

the S-A standard, and + the HYDRA S-A with the strain–vorticity

orrection). As can be seen from the frame (a) of Fig. 2, for the up-

tream fully developed turbulence, the RANS results conform well

ith the DNS. Here, the standard k − ω model results in the largest

eviation. It is around 5%. Also, for the lower half channel, they are

ble to capture the general trend superior to the end of the curva-

ure. These are given in the frame (b) of Fig. 2 and the frame (a) of

ig. 3. Whereas, further downstream, there are relatively large dis-

repancies ( > 10%) within the mean separation and the induced

ransition thereafter. These are given in the frame (b) of Fig. 3, and
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a b

Fig. 2. Mean streamwise velocity profiles at the streamwise locations, S0 (a) and S1 (b). (− the DNS, −. the laminar, ◦ the RSM, � the k − ω SST, � the k − ω standard, � the S-A

with the strain–vorticity correction, � the S-A standard, and + the HYDRA S-A with the strain–vorticity correction.).

a b

Fig. 3. Mean streamwise velocity profiles at the streamwise locations, S2 (a) and S3 (b). (− the DNS, −. the laminar, ◦ the RSM, � the k − ω SST, � the k − ω standard, � the S-A

with the strain–vorticity correction, � the S-A standard, and + the HYDRA S-A with the strain–vorticity correction).
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he frame (a) and (b) of Fig. 4. For the upper half channel, the devia-

ion is even more substantial. For example, in the frame (a) of Fig. 4,

ll the RANS models result in more than 20% error with respect to

he DNS.

More importantly, understanding the extent of the validity of the

ogarithmic law of the wall is essential for turbulence modelling over

curved surface [29]. Hence, for the lower half channel, the above

ean streamwise velocity profiles are recast on the logarithmic ab-

cissa. This is given in Figs. 5–7. In these figures, the wall-normal

istance and the mean velocity are scaled by the corresponding lo-

al inner values. As can be seen, overall, the RSM model provides

he closest approximation to the DNS. Also, the S-A model with the

train–vorticity correction (both FLUENT and HYDRA solutions) re-

ults in predictions similar to that of the RSM model. Whereas, the

ther eddy-viscosity models, without proper streamline curvature

orrections, lead to large solution errors. Particularly, when the mean

ow separates, no models are able to capture the mean velocity pro-

le. This is shown in Figs. 6 and 7.
Correspondingly, the surface distributions of the local uτ , Cf, and

p are compared in Fig. 8. Five of the aforementioned streamwise

tations (S1—S5) are indicated as the vertical dash-dot lines in each

f these frames, as well as the following Fig. 10. As can be seen,

verall, the RANS models predict the general trends for these coef-

cients, even though the quantitative difference can be substantial.

he largest error can be more than 50%. Notably, over the bottom

onvex and the top concave surfaces, the wall shear stress distribu-

ions predicted by the DNS are qualitatively similar to the general

rend observed in the early experiments as summarised by Moser

nd Moin [26]. Due to turbulence enhancement, the wall shear over

he concave surface is higher than the upstream fully developed case;

hereas, it is lower for the convex side. The latter is due to a reduc-

ion in turbulence. However, for this curved section, all the tested

ANS models predict a relatively opposite trend. Additionally, up-

tream to the mean separation, the Cp distributions predicted by the

ANS models match the DNS data. But, thereafter, they do not accu-

ately reflect the turbulence recovery process through the separation
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a b

Fig. 4. Mean streamwise velocity profiles at the streamwise locations, S4 (a) and S5 (b). (− the DNS, −. the laminar, ◦ the RSM, � the k − ω SST, � the k − ω standard, � the S-A

with the strain–vorticity correction, � the S-A standard, and + the HYDRA S-A with the strain–vorticity correction).

Table 1

Streamwise distance (s/δIN) to the axes origin.

Stations s/δIN
a

S0 Upstream

S1 2.5π

S2 3.5π

S3 4.5π

S4 15.232

S5 19.040

a This is measured along the lower convex channel surface.
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and the succeeding induced transition. This is also the case for the Cf

predictions.

In addition, Fig. 9 compares TKE profiles for the RSM and the two

k − ω models at the aforementioned six streamwise locations. In this

figure, the TKE is scaled using uτ from the upstream fully developed

region. As can be seen, for the incoming turbulence (the frame (a)),
a b

Fig. 5. Mean streamwise velocity profiles in logarithmic abscissa at the streamwise locations

standard, � the S-A with the strain–vorticity correction, � the S-A standard, and + the HYDR
he predicted TKE distributions agree well with the DNS data; here,

he relative error is less than 2%. Whereas, the discrepancy arises pro-

ressively, when the curvature effects accumulate. Notably, without

roper correction, both the standard k − ω and the SST models have

nadequate sensitivity to the streamline curvature. On the contrary,

o certain degree, the RSM model reflects such effects, even though

he quantitative accuracy is inadequate. For example, as shown in the

rame (f), through the separation induced transition, TKE gradually

ecovers. Whereas, over the lower convex surface, the RSM results in

round 50% error with respect to the DNS.

To see the turbulence reduction and enhancement processes, the

treamwise distributions of the peak TKE for the lower and up-

er half channel are compared in the frame (a) of Fig. 10. The cor-

esponding distributions of the streamwise acceleration parameter
E
s = (ν0/U2

max,IN) · (∂Vs/∂s) and the Richardson number Ri = (Vs/R) ·
(∂Vs/∂r)/(Umax,IN/δ)2 at the wall distance d/δIN � 0.04 are compared

n the frame (b) and (c), respectively. As can be seen from the frame

a), the DNS data shows that, over the lower convex surface, the TKE
, S0 (a) and S1 (b). (− the DNS, −. the laminar, ◦ the RSM, � the k − ω SST, � the k − ω

A S-A with the strain–vorticity correction).
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a b

Fig. 6. Mean streamwise velocity profiles in logarithmic abscissa at the streamwise locations, S2 (a) and S3 (b). (− the DNS, −. the laminar, ◦ the RSM, � the k − ω SST, � the k − ω

standard, � the S-A with the strain–vorticity correction, � the S-A standard, and + the HYDRA S-A with the strain–vorticity correction).

a b

Fig. 7. Mean streamwise velocity profiles in logarithmic abscissa at the streamwise locations, S4 (a) and S5 (b). (− the DNS, −. the laminar, ◦ the RSM, � the k − ω SST, � the k − ω

standard, � the S-A with the strain–vorticity correction, � the S-A standard, and + the HYDRA S-A with the strain–vorticity correction.).
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s substantially reduced through the laminarisation process. There-

fter, it grows almost linearly through the mean separation, until

he induced transition occurs. On the other hand, through the upper

oncave surface, TKE is substantially enhanced. These characteristic

rends are qualitatively captured by the RSM predictions, even though

he accuracy needs to be improved. In contrary, the tested eddy-

iscosity models do not have the corresponding modelled mecha-

ism to reflect such curvature effects as indicated by the KE
s and Ri.

or RANS results, the corresponding spatial distributions of Ri and
E
s are shown in Figs. 11 and 12, respectively. The general patterns of

hese RANS predictions are qualitatively similar to those of the DNS

ata [33], except for the detailed discrepancies as shown in the frame

b) and (c) of Fig. 10, for example.

Finally, as introduced earlier, the DNS [33] shows that the large

treamline curvature can result in highly complex flow physics, par-

icularly the underlying turbulence lagging mechanism and the stress

train misalignment. As described above, the benchmark results

how that, overall, the seven-equation RSM model (five-equation in
wo-dimension) provides better predictions than the eddy-viscosity

odels. To certain degree, they are able to reflect the laminarisa-

ion and the succeeding separation over the lower convex channel

all; whereas, without the corresponding correction, the one/two-

quation models are of inadequate sensitivity to such flow physics.

n the other hand, all the models are inadequate for accurately cap-

uring the correct trend for the wall shear stress distribution over the

oncave side with respect to that over the convex. Also, the substan-

ial difficulty arises when predicting the turbulence recovery process

hrough the separation induced transition.

For the current case, the flow has to response to an impulse/step

hange in streamline curvature. This results in sudden changes in

ean strain rate and extra rates of strain, such that the Boussinesq

pproximation is questionable. Equivalently, for such flow, the as-

umption that the Reynolds stresses change at a rate proportional

o the mean strain rate is not exact. The mean flow processes and

ime scales are directly related to the channel geometry; whereas, the

hanges of turbulence properties are lagging to the sudden mean flow
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Fig. 8. Streamwise distributions of (a) uτ = √
τw/ρ, (b) Cf = τw/(0.5ρU2

max), and (c) Cp = (P − Pmin)/(0.5ρU2
max). (− the DNS, ◦ the RSM, � the k − ωSST, � the k − ω standard, � the

S-A with the strain–vorticity correction, � the S-A standard, and + the HYDRA S-A with the strain–vorticity correction).
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Fig. 9. Turbulence kinetic energy profiles at six streamwise locations. (a) — (f), S0 — S5. (− the DNS, ◦ the RSM, � the k − ω SST, � the k − ω standard).
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Fig. 10. Streamwise distributions of (a) the peak TKE, and (b) and (c) the mean streamwise acceleration parameter KE
s = (ν0/U2

max,IN ) · (∂Vs/∂s) and the Richardson number Ri =
(Vs/R) · (∂Vs/∂r)/(Umax,IN/δ)2 at the wall distance d/δIN � 0.04. (− the DNS, ◦ the RSM, � the k − ω SST, � the k − ω standard, � the S-A with the strain–vorticity correction, � the

S-A standard, and + the HYDRA S-A with the strain–vorticity correction).

Fig. 11. Spatial distributions of the Richardson number, Ri = (Vs/R) · (∂Vs/∂r)/(Umax,IN/δ)2. (The frame (a) — (f) are for the RSM, the SST and the standard k − ω, the S-A with and

without the strain–vorticity correction, and the HYDRA S-A models, respectively).
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Fig. 12. Spatial distributions of the mean streamwise acceleration parameter KE
s = (ν0/U2

max,IN ) · (∂Vs/∂s). (The frame (a) — (f) are for the RSM, the SST and the standard k − ω, the

S-A with and without the strain–vorticity correction, and the HYDRA S-A models, respectively).
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changes. Additionally, as seen from the DNS data [33], the substantial

anisotropy of the Reynolds stresses also contradicts such an eddy-

viscosity approximation. Therefore, it is not surprising that the pre-

dictions of the tested one or two-equation models are unsatisfactory

[2–4,21,27,28]. In this case, a non-linear constitutive relation, such as

that introduced by Pope [56] and then Gatski and Speziale [57], in-

corporating with a relaxation approximation, such as that proposed

for non-equilibrium flow by Speziale and Xu [58] or Olsen and Coak-

ley [59], may be necessary to represent the anisotropy and the lag

mechanism.

On the other hand, for the second-order closure model, even

though the flow mechanism is considered to be relatively complete,

the closure approximations are mostly calibrated with homogeneous

turbulent flows. As shown in the previous section for numerical

methods, in addition to the modelled scale-determining equation, for

the exact Reynolds-stress transport equations, the dissipation tensor

ε ij, the turbulent transport tensor Cijk, and the pressure–strain cor-

relation tensor 
ij have to be modelled to close the equations. For

the tested low-Re stress-ω model, more elaborate approximations

may be used for ε ij and Cijk. Nevertheless, the pressure–strain redis-

tribution approximation 
i j = Ai j + Mi jkl · ∂Uk/∂xl is perhaps most

significant for the current curved channel flow, particularly, the sec-

ond term for the rapid pressure–strain due to mean strain rate. The

corresponding theoretical solution, in terms of appropriate Green’s

function, is strictly valid only for homogeneous turbulence. Accord-

ingly, this is also the case for the Launder, Reece and Rodi [39] lin-

ear approximation for the rapid pressure–strain. Notwithstanding,

for inhomogeneous turbulence, particularly as for the current case,

the turbulence response to the sudden change of the mean strain

rate is clearly not a localised process that can be approximated using

a single-point closure. Certain two-point correlations, reflecting the

aforementioned lag mechanism, would be more physical [28]. More-
 e
ver, for this stress-ω formulation, the model parameter C2, incor-

orating with the Launder, Reece and Rodi approximation above, is

ptimised for the sublayer predictions, primarily for the log-law of

he wall. This is also questionable over a curved surface (see Figs. 6

nd 7. Perhaps, it is these closure approximations that restrict the

SM model’s applicability for the current case, assuming the mod-

lled ω equation is only a supplementary error source. It has been

hown by Speziale [60] and then Speziale and Xu [58] that the tra-

itional second-order closures based on the pressure–strain correla-

ion above are only justifiable for homogeneous turbulent flows that

re near equilibrium. Accordingly, for non-equilibrium turbulence, in

imited consistency with the rapid distortion theory [61,62], a new

on-equilibrium explicit ASM was developed based on the relaxation

ime concept on the Reynolds stress anisotropy tensor. Potentially,

his seems to lead to a new generation of second-order closure mod-

ls [58] and also to a remedy for the current case for which the inte-

ral length scales are of the channel half height.

. Conclusion

The Reynolds-averaged Navier–Stokes simulations have been

erformed for a turbulent channel flow experiencing a 60 degree

ircular bend. Some widely-used turbulence models are selected

o assess the corresponding model performance for the underlying

urbulence lagging mechanism and stress strain misalignment, due

o large streamline curvature. These available models include the

econd-order closure with the stress-ω formulation, the standard

− ω and the Menter’s SST models, the standard Spalart–Allmaras

odel with and without the corresponding strain–vorticity correc-

ion. As expected, comparisons with the DNS data show that, overall,

he Reynolds-stress model produces better predictions than the

ddy-viscosity models. However, the model accuracy needs to be
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urther improved. Particularly, the linear approximation for the rapid

ressure–strain correlation is considered as the primary source of

he model error. This is because such closure approximations are ap-

licable to homogeneous turbulent flows that are nearly equilibrium.

ut, for the current case, the impulse response of the mean flow to

he step change of streamline curvature results in sudden changes in

ean strain rate and extra rates of strain. Whereas, the response of

he turbulence structures is lagging to these mean flow changes. For

he eddy-viscosity models, this also leads to the Boussinesq approx-

mation questionable. Evidently, a non-linear constitutive relation or

econd-order closure, incorporating with certain relaxation approxi-

ation for the lagging mechanism, may be necessary for the current

on-equilibrium flow. Also, as seen, the sensitisation to the impact

f the large integral length scales would be beneficial for all models.
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