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Abstract

In this dissertation, we treat several problems in Ramsey theory, probabilistic

combinatorics and extremal graph theory.

We begin with the Ramsey theoretic problem of finding exactly m-coloured

graphs. For which natural numbers m ∈ N are we guaranteed to find an m-coloured

complete subgraph in any edge colouring of the complete graph on N? We resolve

this question completely and prove, answering a question of Stacey and Weidl [104],

that whenever we colour N(2) with infinitely many colours, we are guaranteed to find

an
(
n
2

)
-coloured complete subgraph for each n ∈ N. In addition, we also demonstrate

that given a colouring of N(2) with k colours, there are at least
√

2k distinct values

m ∈ [k] for which an infinite m-coloured complete subgraph exists. Finally, we also

prove that given a colouring of N(2) with k colours and m ∈ [k], we can always find an

infinite m̂-coloured complete subgraph for some m̂ ∈ [k] such that |m− m̂| ≤
√
m/2.

Next, we give some results in probabilistic combinatorics. First, we investigate

the stability of the Erdős–Ko–Rado Theorem. For natural numbers n, r ∈ N with

n ≥ r, the Kneser graph K(n, r) is the graph on the family of r-element subsets

of {1, . . . , n} in which two sets are adjacent if and only if they are disjoint. Delete

the edges of K(n, r) with some probability, independently of each other: is the

independence number of this random graph equal to the independence number of

the Kneser graph itself? We shall answer this question affirmatively as long as r/n is

bounded away from 1/2, even when the probability of retaining an edge of the Kneser

graph is quite small; we also prove a much more precise result when r = o(n1/3). We

then study a geometric bootstrap percolation model on the three dimensional grid

[n]3 called line percolation. In line percolation with infection parameter r, infection

spreads from a subset A ⊂ [n]3 of initially infected lattice points as follows: if there is

an axis parallel line L with r or more infected lattice points on it, then every lattice

point of [n]3 on L gets infected and we repeat this until the infection can no longer

spread. Our main result is the determination the critical density of initially infected

points at which percolation (infection of the entire grid) becomes likely.

Finally, we present two results in extremal graph theory. First, we consider a

graph partitioning problem. For a graph G, let f(G) be the largest integer k such

that there are two vertex-disjoint subgraphs of G, each on k vertices, inducing the

same number of edges. We prove that f(G) ≥ n/2 − o(n) for every graph G on n

vertices, settling a conjecture of Caro and Yuster [36]. Finally, we study the problem

of cops and robbers on the grid where the robber is allowed to move faster than the

cops. We prove that when the speed of the robber is a sufficiently large constant, the

number of cops needed to catch the robber on an n×n grid is exp(Ω(log n/ log log n)).
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CHAPTER 1

Introduction

This dissertation is divided into three parts. The first part covers some

Ramsey theory, the second is devoted to questions from probabilistic combina-

torics and the third part deals with some problems in extremal graph theory.

In what follows, we briefly discuss the problems and the results presented in

the subsequent chapters.

1. Ramsey theory

Ramsey theory is concerned with questions about whether one can always

find homogeneous substructures in large discrete structures. These questions

are typically phrased in terms of colourings; a homogeneous substructure in

this case is usually a substructure on which the colouring is particularly simple

to describe. The first part of the dissertation consists of three chapters which

are concerned with the following question: given a large coloured structure and

a natural number m ∈ N, can one always find a substructure that is coloured

with exactly m distinct colours?

Given an edge-coloured graph, call a subgraph m-coloured if the colouring

attains exactly m different values in the subgraph. For a natural number

m > 1, it is natural to ask if one is guaranteed to find an exactly m-coloured

complete subgraph in every edge-colouring of the complete graph on N with

sufficiently many colours. It is not clear that there are any natural numbers

with this property; the injective colouring shows, for example, that there is no

such guarantee unless m =
(
n
2

)
for some n ∈ N. In Chapter 2, which is joint

work with T. Kittipassorn [76], we answer a question of Stacey and Weidl [104]

and prove that whenever we colour N(2) with infinitely many colours, we are
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guaranteed to find an
(
n
2

)
-coloured complete subgraph for each n ∈ N. We

need two key ideas to prove this theorem. The first is to ask a more general

question, the answer to which is a canonical Ramsey theorem for m-coloured

complete subgraphs that implies the result we would like to prove. The second

is that to prove this canonical Ramsey theorem (which is about edge-coloured

complete graphs), somewhat strangely, we need to suitably generalise the result

to general edge-coloured graphs (as opposed to complete graphs).

In Chapter 3, we investigate the following question: given a colouring of

N(2) with k colours, for how many distinct values m ∈ [k] are we guaranteed to

find an infinite m-coloured complete subgraph? We show in [91] that we are

guaranteed at least
√

2k distinct values and that this bound is tight infinitely

often. We prove this result by proving a more intricate (and stronger) structural

result by induction.

In Chapter 4, which is joint work with T. Kittipassorn [75], we study the

following related problem: given a colouring of N(2) with k colours and m ∈ [k],

how close can we get to finding an infinite m-coloured complete subgraph?

Our main result is that we can always find an infinite m̂-coloured complete

subgraph for some m̂ ∈ [k] such that |m− m̂| ≤
√
m/2, and that this is best

possible. In the process, we also resolve a conjecture of mine from [91]. We

also study how one might generalise this result to uniform hypergraphs; we

consider two natural variants one of which we prove to be true while showing

the other to be false.

2. Probabilistic combinatorics

The first two chapters of the second part of this dissertation are concerned

with a ‘sparse-random’ analogue of the Erdős–Ko–Rado theorem. The Erdős–

Ko–Rado Theorem is a central (and very simple) result in extremal set theory

which tells us how large uniform intersecting families can be. One possible

formulation of the Erdős–Ko–Rado theorem is the following: if n ≥ 2r, then the

size of the largest independent set of the graph K(n, r) is
(
n−1
r−1

)
, where K(n, r)
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is the Kneser graph with parameters n, r ∈ N; the vertex set of this graph is

the family of r-element subsets of {1, . . . , n}, and two r-sets are adjacent in

K(n, r) if and only if they are disjoint.

Let us delete the edges of the Kneser graph with some probability, indepen-

dently of each other; is the independence number of this random graph equal

to the independence number of the Kneser graph itself? Chapters 5 and 6 are

both concerned with this question.

In Chapter 5, which is based on joint work with B. Bollobás and A. Raig-

orodskii [30], we answer the question affirmatively when r = o(n1/3) and also

determine the precise critical threshold at which the answer becomes negative;

it turns out that a random analogue of the Erdős–Ko–Rado theorem continues

to hold even after we have deleted practically all the edges of the Kneser graph.

Chapter 6, which is based on joint work with J. Balogh and B. Bollobás [17],

contains a more substantial result: we show the answer to be in the affirmative

as long as r/n is bounded away from 1/2. To prove this result, we make use of

a variety of tools. For example, we give some new estimates for the number of

disjoint pairs in a family in terms of its distance from an intersecting family.

We also briefly describe how ideas from the theory of graph containers can help

sharpen these results.

In the third chapter of this part, we study a geometric bootstrap percolation

model on the d-dimensional grid [n]d. In this model, line percolation, with

infection parameter r, infection spreads from a subset A ⊂ [n]d of initially

infected lattice points as follows: if there is an axis parallel line L with r or more

infected lattice points on it, then every lattice point of [n]d on L gets infected

and we repeat this until the infection can no longer spread. The elements of

the set A are usually chosen independently, with some density p, and the main

question is to determine pc(n, r, d), the density at which percolation (infection of

the entire grid) becomes likely. As is often the case with bootstrap percolation

models, analysing the process in three dimensions turns out be significantly

more challenging than the corresponding problem in two dimensions. Our
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main result in Chapter 7, which is based on joint work with P. Balister, B.

Bollobás and J. Lee [11], is the determination of the critical probability in

three dimensions up to multiplicative constants. The crux of the proof is in

showing that long-range interactions are not very helpful in spreading the

infection. This is done with a coupling argument where we run the process

and wait for certain ‘bad’ events to occur; we then restart the process with the

‘badness’ built in from the start, but also impose additional constraints on how

the infection might spread which makes this modified process easier to follow.

We also determine the size of minimal percolating sets using the polynomial

method.

3. Extremal graph theory

The first of the two chapters of this part, Chapter 8, is based on joint

work with B. Bollobás, T. Kittipassorn and A. Scott [28], and is concerned

with a graph partitioning problem. We would like to find two vertex-disjoint

induced subgraphs of a given graph of the same order and size; how large can

we guarantee these subgraphs to be? We answer this question and settle a

conjecture of Caro and Yuster by showing that any n-vertex graph contains

two very large, indeed of order n/2− o(n), disjoint induced subgraphs of the

same order and size. The main idea is that for each graph, there is a (small)

probability such that if we delete vertices from the graph independently with

this probability, the resulting graph has many useful ‘gadgets’ (pairs of vertices

that have suitable degree differences which we can use to find a suitable partition

of this graph). However, since the argument has to cover all graphs, there is

no simple description of this probability and we need to distinguish a few cases

and tailor the argument suitably to fit each case.

The second chapter of this part, Chapter 9, is concerned with the game of

cops and robbers. It is well known that in the traditional variant of the game

of cops and robbers on an n× n grid, two cops are necessary and sufficient to

catch the robber. In Chapter 9, which is based on joint work with P. Balister,
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S. Binski and B. Bollobás [10], we ask how many cops are needed to catch the

robber if the robber is allowed to move faster than the cops. We show that if

the robber’s speed is greater than some large constant, then at least n1/ log logn

cops are needed to catch the robber on an n × n grid. While this seems to

be very far from the truth (indeed, we think the number of cops needed to

catch a fast robber should be almost, if not actually, linear in n), the proof

strategy might be of independent interest: we use a dynamic variant of the

density-based strategy used by Bollobás and Leader to resolve Conway’s Angel

and Devil problem in three dimensions.
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Part 1

Ramsey theory





CHAPTER 2

A canonical Ramsey theorem for exactly m-coloured

graphs

Joint work with Teeradej Kittipassorn.

1. Introduction

A classical result of Ramsey [96] says that when the edges of a complete

graph on a countably infinite vertex set are finitely coloured, one can always

find a complete infinite subgraph all of whose edges have the same colour.

Ramsey’s theorem has since been generalised in many ways; most of these

generalisations are concerned with finding other monochromatic structures. For

a survey of many of these generalisations, see the book of Graham, Rothschild

and Spencer [63]. Ramsey theory has witnessed many developments over the

last fifty years and continues to be an area of active research today; see, for

instance, [106, 39, 69, 82, 22].

Alternatively, anti-Ramsey theory, which originates in a paper of Erdős,

Simonovits and Sós [51], is concerned with finding large ‘rainbow coloured’ or

‘totally multicoloured’ structures. Between these two ends of the spectrum,

one could consider the question of finding structures which are coloured with

exactly m different colours as was first done by Erickson [52]; it is this line of

enquiry that we pursue here.

2. Our results

Our notation is standard. We write [n] for {1, ..., n}, the set of the first n

natural numbers. For a set X, we write X(2) for the family of all two element
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subsets of X; equivalently, X(2) is the complete graph on the vertex set X. We

denote a surjective map f from a set X to another set Y by f : X � Y . By a

colouring of a graph, we mean a colouring of the edges of the graph.

Let ∆ : N(2) � C be a surjective colouring of the edges of the complete

graph on N with an arbitrary set of colours C. If the set of colours C is infinite,

we say that ∆ is an infinite-colouring and if C is finite, we say that ∆ is a

k-colouring if |C| = k. We say that a subset X of N is (exactly) m-coloured if

∆(X(2)), the set of values attained by ∆ on the edges with both endpoints in

X, has size exactly m. We write γ∆(X), or γ(X) in short, for the size of the

set ∆(X(2)); in other words, every set X is γ(X)-coloured.

This chapter is concerned with canonical Ramsey theory, a subject which

originates in a classical paper of Erdős and Rado [47]. To give readers unfamiliar

with this subject a flavour of the results in this area, we recall a basic canonical

Ramsey theorem proved by Erdős and Rado. To state this result, it will be

convenient to introduce some notation. We say that X ⊂ N is rainbow coloured

if no two edges with both endpoints in X receive the same colour. Also, we

say that X ⊂ N is left coloured if for i, j, k, l ∈ X with i < j and k < l,

∆(ij) = ∆(kl) if and only if i = k, and the definition of right coloured is

analogous; if X is left or right coloured, we say, in short, that X is lexically

coloured. With these definitions in place, we can now state the canonical

Ramsey theorem of Erdős and Rado [47].

Theorem 2.1. For any colouring ∆ : N(2) � C, there exists an infinite

subset X of N such that either

(1) X is 1-coloured, or

(2) X is rainbow coloured, or

(3) X is lexically coloured. �

Returning to the question at hand, our main aim in this chapter is to prove

a canonical Ramsey theory for m-coloured graphs. For a colouring ∆ : N(2) � C
10



of the complete graph on N with an arbitrary set of colours, we define the set

G∆ = {γ∆(X) : X ⊂ N}.

Stacey and Weidl [104] considered the following question: are there natural

numbers m ∈ N that are guaranteed to be elements of G∆ for every infinite-

colouring ∆? It is clear that the natural number 1 trivially has this property

since an edge is a 1-coloured complete graph; however, it is not at all clear why

any natural number m > 1 should have this property. By considering a rainbow

colouring of N, we see that m ∈ N cannot have this property unless m =
(
n
2

)
for some n ≥ 2. On the other hand, Stacey and Weidl were able to show that(

3
2

)
is always an element of G∆ for every infinite-colouring ∆. But for n ≥ 4,

they were unable to decide whether or not there exists an infinite-colouring

∆ such that
(
n
2

)
/∈ G∆. In particular, they asked if all natural numbers of the

form
(
n
2

)
must be contained in G∆ for every infinite-colouring ∆.

Here, we shall consider a more general question: when is G∆ 6= N? As

remarked above, for an injective colouring ∆, G∆ = {
(
n
2

)
: n ≥ 2} 6= N. There

is another infinite-colouring ∆ for which G∆ 6= N which is slightly less obvious.

Given X ⊂ N, if there is a vertex v ∈ X such that X \ {v} is 1-coloured and

all the edges between v and X \ {v} have distinct colours (which are also all

different from the colour appearing in X \ {v}), then we say that X is star

coloured (with centre v). It is easy to check (see Figure 1) that if N is star

coloured by ∆, then G∆ = N \ {2}.

Our main result, stated below, is that the two colourings described above

are, in a sense, the ‘canonical’ colourings for which G∆ 6= N.

Theorem 2.2. For every infinite-colouring ∆ : N(2) � N, either

(1) G∆ = N, or

(2) there exists an infinite rainbow coloured subset of N, or

(3) there exists an infinite star coloured subset of N.

11
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Figure 1. A rainbow colouring and a star colouring with centre v.

An immediate consequence of Theorem 2.2 is that the answer to the question

posed by Stacey and Weidl is in the affirmative.

Corollary 2.3. For every infinite-colouring ∆ : N(2) � N, and for every

natural number n ≥ 2,
(
n
2

)
∈ G∆. �

We do not prove Theorem 2.2 as stated. Instead, it will be more convenient

to prove a stronger result which we shall state (and prove) in Section 3.

Stacey and Weidl [104] also asked what happens in the context of colourings

using finitely many colours. More precisely, they raised the following question:

do there exist natural numbers m ∈ N with the property that for all sufficiently

large k ∈ N, m ∈ G∆ for every k-colouring ∆ : N(2) � [k]? Observe that

any such natural number m, assuming one exists, must be of the form
(
n
2

)
or(

n
2

)
+ 1 for some natural number n ≥ 2. One can see this by considering the

family of ‘small-rainbow colourings’ of the complete graph on N which colour

all the edges of some finite complete subgraph with distinct colours and all the

remaining edges with a single colour not used in the finite (rainbow coloured)

complete subgraph. On the other hand, when m is of the form
(
n
2

)
or
(
n
2

)
+ 1

for some natural number n ≥ 2, we have the following positive result.

Theorem 2.4. For all n ∈ N, there exists a natural number C = C(n) such

that for any k-colouring ∆ : N(2) � [k] with k ≥ C, both
(
n
2

)
,
(
n
2

)
+ 1 ∈ G∆.

12



It turns out that the techniques used to prove Theorem 2.2 also allow us

to prove a finitary version of the same theorem. In Section 4, we present this

finitary result and use it prove Theorem 2.4 in a slightly stronger form. We

conclude with some discussion in Section 5.

3. Proof of the main theorem

To prove Theorem 2.2, it will be more convenient to work with general

infinite graphs. By an infinite graph, we mean a graph whose vertex set is N

which has infinitely many edges.

It will be helpful to establish a few notational conveniences. Given an

infinite graph G and an infinite-colouring ∆ : G� N of the edges of G, for a

subset X of N, we shall write γG(X), or just γ(X) when both the colouring

and the graph in question are clear from the context, for the number of distinct

colours attained by ∆ on G[X], the subgraph of G induced by X; if H is a

subgraph of G, we write γH(X) for the the number of distinct colours attained

by ∆ on H[X]. For disjoint subsets X and Y , write γ(X, Y ) for the number

of distinct colours in the induced bipartite subgraph between X and Y in G.

Also, for a vertex v ∈ N, we shall write γ(v) for γ({v},N \ {v}), the number of

distinct colours of the edges incident to v in G.

We define the set G∆ for an infinite-colouring ∆ : G � N of an infinite

graph G in the obvious way by setting

G∆ = {γG(X) : X ⊂ N}.

In a general graph G, we say that X is rainbow coloured in G if G[X] is

a complete subgraph of G which is rainbow coloured. We say that X is star

coloured (with centre v) in G if there is a vertex v ∈ X such that G[X \ {v}] is

either an independent set or a 1-coloured complete graph, and all the edges

between v and X \ {v} are present and have distinct colours, which are also

all different from the colour of G[X \ {v}] in the case where X \ {v} does not

induce an independent set. The following result easily implies Theorem 2.2.

13



Theorem 3.1. For every infinite-colouring ∆ : G� N of an infinite graph

G, either

(1) G∆ = N, or

(2) there exists an infinite rainbow coloured subset of N; or

(3) there exists an infinite star coloured subset of N.

For any finite set of colours S, note that if we delete all the edges of an

infinite graph G which are coloured with a colour from S by an infinite-colouring

∆ of the edges of G, the resulting graph H is infinite and the restriction of ∆

to H is an infinite-colouring. This makes the statement of Theorem 3.1 more

amenable to induction than that of Theorem 2.2 and motivates the stronger

statement of Theorem 3.1.

Fix an infinite-colouring ∆ : G� N of an infinite graph G and note that if

we have a partition X = X1 ∪X2 ∪ . . . Xn of a subset X of N, then∑
1≤i≤n

γ(Xi) +
∑

1≤i<j≤n

γ(Xi, Xj) ≥ γ(X).

Consequently, if γ(X) =∞, then at least one of the terms on the left is infinite;

we shall make use of this fact repeatedly.

Next, we state a technical lemma about ‘almost bipartite colourings’ which

will be useful in proving Theorem 3.1.

Lemma 3.2. Let G be an infinite graph and suppose that an infinite-colouring

∆ : G� N of G is such that

(1) γ(v) <∞ for all v ∈ N, and

(2) there is a partition of N = A∪B such that γ(A) <∞, γ(B) <∞ and

γ(A,B) =∞.

Then for every natural number m, there exists a subset X of N such that

X ∩ A 6= ∅, X ∩B 6= ∅ and γ(X) = m.

Our strategy for proving both Theorem 3.1 and Lemma 3.2 is to inductively

construct a set X for which γG(X) = m. To do this, we shall first delete some

14



edges from G to get a new infinite graph H so that the restriction of ∆ to H is

also an infinite-colouring. We then inductively find a set Y with γH(Y ) = l for

a suitably chosen l < m. Finally, we use the deleted edges in conjunction with

Y to obtain X.

We first prove Lemma 3.2 and then show how to deduce Theorem 3.1 from

it.

Proof of Lemma 3.2. Before we begin, let us note some consequences

of our assumptions about the colouring ∆. Since γ(v) <∞ for all v ∈ N and

γ(A,B) = ∞, both A and B must be infinite. Furthermore, observe that if

γ(U) =∞ for some U ⊂ N, then since γ(A) <∞ and γ(B) <∞, both U ∩ A

and U ∩B must be infinite.

We proceed by induction on m. The result is trivial for m = 1. Assuming

the result for all l < m, we shall prove the result for m.

Pick an edge uv such that u ∈ A and v ∈ B and say that the colour of

the edge is c. We know that γ(u) <∞. We may assume, relabeling colours if

necessary, that the colours of the edges incident to u are 1, . . . , γ(u). Consider

the partition

N \ {u} = U0 ∪ U1 ∪ · · · ∪ Uγ(u)

where U0 is the set of vertices not adjacent to u in G and for 1 ≤ i ≤ γ(u), Ui is

the set of all vertices that are joined to u by an edge of colour i. By considering

the following three cases, we first show that we may assume that γ(U0) =∞.

Case 1: γ(Ui) =∞ for some i 6= 0. We begin by observing (see Figure 2)

that

γ(Ui ∩ A) + γ(Ui ∩B) + γ(Ui ∩ A,Ui ∩B) ≥ γ(Ui).

Since γ(Ui ∩ A) ≤ γ(A) < ∞ and γ(Ui ∩ B) ≤ γ(B) < ∞, we conclude that

γ(Ui ∩ A,Ui ∩B) =∞.

Let H be the infinite subgraph of G[Ui] obtained by deleting all the edges

of G[Ui] of colour i. Then there exists, by the induction hypothesis, a subset

Y of Ui such that Y ∩ (Ui ∩ A) 6= ∅, Y ∩ (Ui ∩ B) 6= ∅ and γH(Y ) = m − 1.
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Figure 2. Case 1.

Observe that all the edges between u and Y ⊂ Ui are coloured i in G. Since

the colour i is not counted by γH , we see that γG(Y ∪ {u}) = m. Therefore

X = Y ∪ {u} is the required subset since X ∩ A 6= ∅ and X ∩B 6= ∅.

Case 2: γ(Ui, Uj) =∞ for some 0 < i < j. Observe (see Figure 3) that

γ(Ui ∩ A,Uj ∩ A) ≤ γ(A) < ∞ and γ(Ui ∩ B,Uj ∩ B) ≤ γ(B) < ∞. So we

must either have γ(Ui ∩ A,Uj ∩B) =∞ or γ(Ui ∩B,Uj ∩ A) =∞. Without

loss of generality, assume that γ(Ui ∩ A,Uj ∩B) =∞.

If m ≥ 3, we may assume that the result holds for m − 2. Let H be the

infinite subgraph of G[(Ui ∩A)∪ (Uj ∩B)] obtained by deleting edges of colour

i and j from G[(Ui ∩ A) ∪ (Uj ∩ B)]. Then there exists, by the induction

hypothesis, a subset Y of (Ui ∩ A) ∪ (Uj ∩ B) such that Y ∩ (Ui ∩ A) 6= ∅,

Y ∩ (Uj∩B) 6= ∅ and γH(Y ) = m−2. Since Y ⊂ Ui∪Uj , all the edges between

u and Y in G are coloured either i or j and as Y ∩ Ui 6= ∅ and Y ∩ Uj 6= ∅,

edges of both colours are present. Since both colours i and j are not counted

by γH , it follows that γG(Y ∪ {u}) = m. Clearly, Y ∩ A 6= ∅ and Y ∩B 6= ∅

and therefore X = Y ∪ {u} is the required subset.

Now suppose that m = 2. Since γ(w) <∞ for all w ∈ N, we can greedily

find an infinite matching M = {a1b1, a2b2, . . . } between Ui ∩ A and Uj ∩B in

G such that each edge of the matching has a distinct colour; indeed, when we
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Figure 3. Case 2.

choose an edge and delete the edges incident to the ends of the chosen edge, we

only loose finitely many colours from our graph. If ak and bl are not adjacent

in G for some k, l ∈ N, then X = {u, ak, bl} is 2-coloured. So we may suppose

that for each k, l ∈ N, ak is adjacent to bl in G.

Since γ({a1, a2, . . . }) < ∞ it follows from Ramsey’s Theorem that there

exists a subset {a′1, a′2, . . . } of {a1, a2, . . . } which either induces an independent

set or a 1-coloured complete graph. Let a′k be matched to the vertex b′k in M

and let ck denote the colour of the edge a′kb
′
k.

If {a′1, a′2, . . . } is an independent set in G, then since γ(a′1) <∞, there exist

s, t ∈ N such that a′1b
′
s and a′1b

′
t have the same colour, say d. By our choice of

M , cs 6= ct. Hence, at least one of cs or ct, say cs, is not equal to d. Then it is

easy to check that X = {a′1, a′s, b′s} is the required subset.

If {a′1, a′2, . . . } induces a complete graph of colour d in G, we may assume

(by discarding the edge a′1b
′
1 and relabelling the remaining vertices if necessary)

that c1, the colour of the edge a′1b
′
1, is not equal to d. Since γ(b′1) <∞, there

exist s, t ∈ N such that ∆(a′sb
′
1) = ∆(a′tb

′
1). If ∆(a′sb

′
1) = d, then we may take

X = {a′1, a′s, b′1}. On the other hand, if ∆(a′sb
′
1) 6= d, then X = {a′s, a′t, b′1} is

the required subset.
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Case 3: γ(U0, Ui) = ∞ for some i 6= 0. We argue as we did in Case 2.

We may assume that γ(U0 ∩ A,Ui ∩B) =∞. Let H be the infinite subgraph

of G[(U0 ∩ A) ∪ (Ui ∩ B)] obtained by deleting all the edges of colour i from

G[(U0 ∩ A) ∪ (Ui ∩B)].

By the induction hypothesis, there exists a subset Y of (U0 ∩A) ∪ (Ui ∩B)

such that Y ∩ (U0 ∩A) 6= ∅, Y ∩ (Ui ∩B) 6= ∅ and γH(Y ) = m− 1. As before,

every edge between u and Y is coloured i in G (and u is adjacent to at least

one vertex of Y since Y ∩ (Ui ∩ B) 6= ∅). Since the colour i is not counted

by γH , it follows that γH(Y ∪ {u}) = m. Hence, X = Y ∪ {u} is the required

subset.

Hence, we may now assume that γ(U0) =∞. Since γ(U0) =∞, U0 clearly

meets both A and B in infinitely many vertices. We consider the graph induced

by U0 ∪ {v} and let V0 be the set of those vertices of U0 not adjacent to v in

G[U0 ∪ {v}]. Since γ(v) < ∞, we have a partition of U0 \ V0 = V1 ∪ · · · ∪ Vn,

with n ≤ γ(v), based on the colour of the edge joining a given vertex of U0 \ V0

to the vertex v. Applying the same argument as in Cases 1, 2 and 3 (which

depended only on the vertex u and not on v) to the vertex v in G[U0 ∪ {v}],

we see that we are done unless γ(V0) =∞.

In this case, we consider the partition V0 = (V0 ∩ A) ∪ (V0 ∩B). Note that

γ(V0 ∩ A) < ∞, γ(V0 ∩ B) < ∞ and γ(V0 ∩ A, V0 ∩ B) = ∞. Recall that we

chose u ∈ A and v ∈ B such that the edge uv has colour c. Let H be the

infinite subgraph of G[V0] obtained by deleting edges of colour c from G[V0].

By the induction hypothesis, there is a subset Y of V0 such that γH(Y ) =

m− 1. Observe that uv has colour c and furthermore, u and v are not adjacent

to any of the vertices of Y . Since the colour c is not counted by γH , we see that

γG(Y ∪ {u, v}) = m. Therefore X = Y ∪ {u, v} is the required subset since

clearly, X ∩ A 6= ∅ and X ∩B 6= ∅. This completes the proof. �

We are now in a position to deduce Theorem 3.1 from Lemma 3.2.
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Proof of Theorem 3.1. Let ∆ : G � N be an infinite-colouring of an

infinite graph G. We shall prove by induction on m that if G contains no

infinite rainbow coloured or star coloured subset, then m ∈ G∆ for each m ∈ N.

The result is trivial for m = 1. Now suppose that m ≥ 2. We shall inductively

find a subset X of N with γ(X) = m.

If γ(v) = ∞ for some vertex v ∈ N, then we can find an infinite subset

U = {u1, u2, . . . } of N such that the edges vui and vuj have distinct colours for

all i 6= j. Applying Theorem 2.1 to the restriction of ∆ to G[U ] by colouring

non-edges with a new colour, we can find an infinite subset W = {w1, w2, . . . }

of U such that W is either an independent set, 1-coloured, rainbow coloured or

lexically coloured. We are done if W were rainbow coloured. If W is either an

independent set or 1-coloured, it is clear that W ∪ {v} is star coloured with

centre v. If W is lexically coloured, then it is easy to check that G∆ = N; indeed

to find an m-coloured subgraph, we consider the subgraph induced by the first

m + 1 vertices of W and note that this subgraph induces exactly m colours

unless one of these m colours corresponds to the new colour corresponding to

non-edges, in which case we may take the subgraph induced by the first m+ 2

vertices of W .

So we may assume that γ(v) <∞ for all v ∈ N. Pick an edge uv of G, and

say that the colour of the edge is c. We may suppose that the colours of the edges

incident to u are 1, . . . , γ(u). Consider the partition N\{u} = U0∪U1∪· · ·∪Uγ(u)

where U0 is the set of vertices not adjacent to u in G and for 1 ≤ i ≤ γ(u),

Ui is the set of all vertices that are joined to u by an edge of colour i. Since

γ(N) = ∞, by the pigeonhole principle, we must either have γ(Ui) = ∞ for

some i, or γ(Ui, Uj) =∞ for some i 6= j. We distinguish the following cases.

Case 1: γ(Ui) <∞ for all 0 ≤ i ≤ γ(u). Since γ(N) =∞, it must be the

case that γ(Ui, Uj) =∞ for some i 6= j. Applying Lemma 3.2 to the restriction

of ∆ to G[Ui ∪ Uj], we find a subset X of Ui ∪ Uj such that γG(X) = m.

Case 2: γ(Ui) = ∞ for some i 6= 0. Let H be the infinite subgraph

of G[Ui] obtained by deleting all the edges of colour i from G[Ui]. Clearly,

19



γH(w) <∞ for all w ∈ Ui. So H contains no infinite subset which is rainbow or

star coloured. By the induction hypothesis, there is a subset Y of Ui such that

γH(Y ) = m− 1. Observe that all the edges between u and Y ⊂ Ui have colour

i, and since the colour i is not counted by γH , we see that γG(Y ∪ {u}) = m.

Therefore X = Y ∪ {u} is the required subset.

Case 3: γ(U0) =∞. Let V0 be the set of those vertices of U0 not adjacent

to v in G. Since γ(v) <∞, we have a partition of U0 \ V0 = V1 ∪ · · · ∪ Vn, with

n ≤ γ(v), based on the colour of the edge joining a given vertex of U0 \ V0 to

the vertex v. Applying the same argument as in Cases 1 and 2 to the vertex v,

we see that we are done unless γ(V0) =∞. In this case, we consider the infinite

subgraph H of G[V0] obtained by deleting all the edges of colour c from G[V0].

The fact that γG(w) < ∞ for all w ∈ N implies that γH(w) < ∞ for all

w ∈ V0. So H has no infinite rainbow or star coloured subset. By the induction

hypothesis, there is a subset Y of V0 such that γH(Y ) = m− 1. Observe that

uv has colour c and there are no edges between {u, v} and Y ⊂ V0 ⊂ U0 in G.

Since the colour c is not counted by γH , it follows that γG(Y ∪ {u, v}) = m.

Therefore X = Y ∪ {u, v} is the required subset. This completes the proof. �

4. Extensions and applications

In this section, we shall first describe a finitary analogue of Theorem 2.2.

We then use this to prove Theorem 2.4. For us, a countable set is a set that is

either finite or countably infinite.

4.1. Finitary extensions. We can prove a version of Theorem 2.2 for

colourings (of finite or infinite complete graphs) that use only finitely many

colours.

Theorem 4.1. For all n ∈ N, there exists a natural number K = K(n) such

that for every k-colouring ∆ : V (2) � [k] of the complete graph on a countable

set V with k ≥ K colours, either

(1) there is an m-coloured complete subgraph for every m ∈ [n], or
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(2) there exists a rainbow coloured complete subgraph on n vertices, or

(3) there exists a star coloured complete subgraph on n vertices. �

This result can be proved by arguments similar to those used to prove The-

orem 2.2. There are two essential differences. First, as opposed to Theorem 2.1,

we use the following extension of the theorem proved by Erdős and Rado, to

colourings of finite complete graphs with an arbitrary set of colours.

Theorem 4.2. For every n ∈ N, and every colouring ∆ of the complete

graph on a sufficiently large countable set V , there exists a subset X of V of

size at least n such that either

(1) X is 1-coloured, or

(2) X is rainbow coloured, or

(3) X is lexically coloured. �

Second, in the place of Lemma 3.2, we use the following finitary analogue

which is proved in the same way as the lemma.

Lemma 4.3. For all m, d ∈ N, there exists a natural number L = L(m, d)

with the following property: for every colouring ∆ of a graph G on a countable

set V such that

(1) γ(v) < d for all v ∈ V , and

(2) there is a partition of V = A ∪B such that γ(A) < d, γ(B) < d and

γ(A,B) ≥ L,

there exists a subset X of V such that X ∩ A 6= ∅, X ∩ B 6= ∅ and γ(X) =

m. �

4.2. Applications. Theorem 2.4 may be deduced from Theorem 4.1. Re-

call that Theorem 2.4 says for any natural number n ∈ N, both
(
n
2

)
,
(
n
2

)
+1 ∈ G∆

for any colouring ∆ of the complete graph on N using a finite, but sufficiently

large number of colours.
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We prove two propositions which, taken together, imply the result. The

first is an easy corollary of Theorem 4.1

Proposition 4.4. For all n ∈ N, there exists a natural number C1 = C1(n)

such that for any k-colouring ∆ : V (2) � [k] of the complete graph on a

countable set V with k ≥ C1 colours,
(
n
2

)
∈ G∆.

Proof. Take C1(n) = K(
(
n
2

)
), where K is as guaranteed by Theorem 4.1.

�

The next proposition is perhaps not as straightforward.

Proposition 4.5. For all n ∈ N, there exists a natural number C2 = C2(n)

with the property that for all k ≥ C2, there exists a natural number Dk,n such

that for any k-colouring ∆ : V (2) � [k] of the complete graph on a countable

set V with k ≥ C2 colours,
(
n
2

)
+ 1 ∈ G∆, provided |V | ≥ Dk,n.

Proof. For n = 2, it is an easy exercise to check that the result is true

with C2(2) = 2 and Dk,2 = R(k+ 1; k) where R(k+ 1; k) is the Ramsey number

for finding a 1-coloured copy of a complete graph on k + 1 vertices when

using k colours. Indeed, given a k-colouring of a complete graph on V with

|V | ≥ R(k+ 1; k), we first find a maximal 1-coloured set X ⊂ V of size at least

k+ 1 coloured say, blue. Consider a vertex v /∈ X. If v is joined to some vertex

u of X by a blue edge, we may extend {v, u} to a 2-coloured triangle using

the maximality of X. If no edge between v and X is coloured blue, then since

|X| ≥ k + 1, there are two vertices in X which are joined to v by edges of the

same colour, again allowing us to find a 2-coloured triangle.

For n ≥ 3, let s = n4. We claim that C2(n) = K(s) will do, where K is the

constant guaranteed by Theorem 4.1. For k ≥ C2(n), we take Dk,n = ks + s+ 1.

Now, suppose that ∆ : V (2) � [k] is a k-colouring and |V | ≥ Dk,n. Then, by

our choice of C2(n), either

(1) there is an m-coloured complete subgraph for every m ∈ [s], or

(2) there exists a rainbow coloured complete subgraph on s vertices, or
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(3) there exists a star coloured complete subgraph on s vertices.

Note that a star coloured complete subgraph on s vertices contains an m-

coloured complete subgraph for 2 < m ≤ s. Since 2 <
(
n
2

)
+ 1 ≤ s, we are done

unless there exists a rainbow coloured complete subgraph on s vertices. Hence,

suppose that the complete subgraph on the vertex set S = {u1, u2, . . . , us} is

rainbow coloured. For each x ∈ V \ S, there are ks possible values for the

s-tuple (∆(xu1),∆(xu2), . . . ,∆(xus)). Since, |V \ S| ≥ Dk,n − s > ks, we can

find vertices x, y ∈ V \ S such that

(∆(xu1),∆(xu2), . . . ,∆(xus)) = (∆(yu1),∆(yu2), . . . ,∆(yus)).

We claim that there is a subset T ⊂ S of size t = n2 such that for all u ∈ T ,

∆(xu) 6∈ ∆(T (2)). Consider the set

A = {(u, T ) : u ∈ T ⊂ S, |T | = t, ∆(xu) ∈ ∆(T (2))}.

As S is rainbow coloured, there is at most one edge ab in S(2) of colour ∆(xu)

for each u ∈ S. If (u, T ) is in A, then we must have a, b ∈ T . So for each

u ∈ S, there are at most
(
s−2
t−2

)
sets T such that (u, T ) ∈ A. Therefore,

|A| ≤ s
(
s−2
t−2

)
<
(
s
t

)
since s = t2. Hence there exists a T which does not appear

in A and the claim follows.

Hence, there is indeed a subset T of S of size t = n2 such that ∆(xu) 6∈

∆(T (2)) for all u ∈ T . Let Q = {∆(xu) : u ∈ T}. If |Q| < n, then as |T | = n2,

there are vertices v1, v2, . . . , vn in T such that

∆(xv1) = ∆(xv2) = · · · = ∆(xvn).

Since this colour ∆(xv1) is not an element of ∆(T (2)), we conclude that the set

{x, v1, v2, . . . , vn} is (
(
n
2

)
+ 1)-coloured.

So we may assume that |Q| ≥ n. Then there is a subset U ⊂ T of size n

such that the colours ∆(xu) are distinct for all u ∈ U . Since U ⊂ T , the colour
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∆(xu) is not an element of ∆(U (2)) for each u ∈ U . We hence conclude that

U ∪ {x} is rainbow coloured.

Recall that there is a vertex y 6= x in V \ S such that ∆(xu) = ∆(yu)

for all u ∈ S. Since at most one edge e in (U ∪ {x})(2) is coloured with the

same colour as the edge xy, by removing the endpoint of e which lies in U if

necessary, we can find a subset U ′ of U of size n − 1 such that ∆(xy) is not

an element of ∆((U ′ ∪ {x})(2)). Then U ′ ∪ {x, y} is (
(
n
2

)
+ 1)-coloured since

U ′ ∪ {x} and U ′ ∪ {y} are rainbow coloured sets of size n using the same set of

colours. �

It is easy to see that, taken together, Corollary 4.4 and Theorem 4.5 imply

Theorem 2.4.

The following corollary of Lemma 4.3 about finding m-coloured complete

bipartite subgraphs might be of independent interest.

Corollary 4.6. For all m ∈ N, there exists a natural number B = B(m)

such that if ∆ : U × V � [k] is a k-colouring of the complete bipartite graph

between two countable sets U and V with k ≥ B colours, then there exist X ⊂ U

and Y ⊂ V such that the complete bipartite subgraph between by X and Y is

m-coloured.

Proof. It is easy to check that it suffices to take B(m) = L(m,m), where

L is the constant guaranteed by Lemma 4.3. �

5. Concluding remarks

We conclude by mentioning two questions that would merit further study.

First, the problem of determining for each k ∈ N, which natural numbers

m ∈ N are guaranteed to belong to G∆ for every k-colouring ∆ : N(2) � [k] is

quite interesting; while we have taken a few steps towards this in this chapter,

the full question is still far from being resolved. Second, it would be reasonable

to ask the questions considered here for uniform hypergraphs. However, even in

the case of N(3), it is not immediately clear to us what the canonical structures
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analogous to the rainbow coloured and star coloured complete graphs should

be.
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CHAPTER 3

Infinite exactly m-coloured complete graphs

1. Introduction

In the last chapter, we investigated, for a given colouring of the complete

graph on the natural numbers, the properties of the set of those natural numbers

m for which there exists an m-coloured complete subgraph. In this chapter, we

shall study how the situation changes when one is interested in finding a ‘large’

m-coloured complete subgraph.

We begin by briefly recalling some of the definitions from the previous

chapter. Let ∆ : N(2) � C be a surjective colouring of the edges of the complete

graph on N with an arbitrary set of colours C. If the set of colours C is infinite,

we say that ∆ is an infinite-colouring and if C is finite, we say that ∆ is a

k-colouring if |C| = k. Given a colouring ∆ : N(2) � C of the complete graph

on N, we say that a subset X of N is (exactly) m-coloured if ∆(X(2)), the set of

values attained by ∆ on the edges with both endpoints in X, has size exactly

m. Let γ∆(X), or γ(X) in short, denote the size of the set ∆(X(2)); in other

words, every set X is γ(X)-coloured.

In the last chapter, we studied, for a colouring ∆ : N(2) � C of the complete

graph on N, the properties of the set

G∆ = {γ∆(X) : X ⊂ N}.

In the context of Ramsey theory, one is usually interested in finding ‘large’

homogeneous structures with certain properties. With this in mind, for a

colouring ∆ : N(2) � C, we define

F∆ = {γ∆(X) : X ⊂ N such that X is infinite}.
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When ∆ is an infinite-colouring, it might so happen that for each infinite subset

X of N, the set ∆(X(2)) is infinite; consequently, it is only really meaningful to

study the set F∆ in the case of colourings using finitely many colours. This

question of finding infinite m-coloured complete subgraphs was first considered

by Erickson [52]. If ∆ : N(2) � [k] is a k-colouring of the edges of the complete

graph on the natural numbers, then clearly k ∈ F∆ as ∆ is surjective, and

Ramsey’s Theorem tells us that 1 ∈ F∆. Erickson [52] noted that a fairly

straightforward application of Ramsey’s Theorem enables one to show that

2 ∈ F∆. Erickson conjectured however that with the exception of 1, 2 and k,

no other elements are guaranteed to be in F∆.

Conjecture 1.1. Let k,m ∈ N with k > m > 2. Then there exists a

k-colouring ∆ : N(2) � [k] such that m /∈ F∆.

Stacey and Weidl [104] settled this conjecture in the case where k is much

bigger than m. More precisely, for any m > 2, they showed that there exists

a constant Cm such that if k > Cm, then there is a k-colouring ∆ such that

m /∈ F∆.

Erickson’s conjecture, if true, would suggest that it is hopeless to look

for particular values in the set F∆ given a k-colouring ∆ : N(2) � [k]. It is

natural then to consider other properties of the set F∆. The first question

which arises is that of the set of possible sizes of F∆. Since F∆ ⊂ [k], it follows

that |F∆| ≤ k and it is easy to see that equality is in fact possible. Things are

not so clear when we turn to the question of lower bounds. Let us define

ψ(k) = min
∆:N(2)�[k]

|F∆|.

We are able to prove the following lower bound for ψ(k).

Theorem 1.2. Let n ≥ 2 be the largest natural number such that k ≥
(
n
2

)
+1.

Then ψ(k) ≥ n.

It is not hard to check that Theorem 1.2 is tight when k =
(
n
2

)
+ 1 for some

n ≥ 2. To this end, we consider the ‘small-rainbow colouring’ ∆ which colours
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all the edges with both endpoints in [n] with
(
n
2

)
distinct colours and all the

remaining edges with the one colour that has not been used so far. Clearly

F∆ = {
(
i
2

)
+ 1 : i ≤ n}, and so Theorem 1.2 is best possible for infinitely many

values of k.

Turning to the question of upper bounds for ψ, the small-rainbow colouring

demonstrates that ψ(k) = O(
√
k) for infinitely many values of k. When k is not

of the form
(
n
2

)
+1, there are two obvious ways of generalising the small-rainbow

colouring described above: we could replace the rainbow coloured clique in

the construction either with a disjoint union of cliques, or with a clique along

with an extra vertex attached to some vertices of the clique. It is not hard

to check that both these generalisations fail to give us good upper bounds for

ψ(k) for general k; in particular, we are unable to decide if ψ(k) = o(k) for all

k ∈ N. However, by considering colourings that colour all the edges of a small

complete bipartite graph with distinct colours (as opposed to a small complete

graph) and making use of some number theoretic estimates of Tenenbaum [105]

and Ford [56], we get reasonably close to such a statement.

Theorem 1.3. There exists a subset A of the natural numbers of asymptotic

density one such that for all k ∈ A,

ψ(k) = O

(
k

(log log k)δ(log log log k)3/2

)
where δ = 1− 1+log log 2

log 2
≈ 0.086 > 0.

The rest of this chapter is organised as follows. In the next section, we

prove Theorem 1.2. We remark that we do not prove Theorem 1.2 as stated.

Instead, we prove a stronger structural result that implies the theorem. We

postpone the statement of this result since it depends on a certain notion of

homogeneity that we shall introduce in the next section. In Section 3, we

describe how Theorem 1.3 follows from certain divisor estimates. We conclude

by mentioning some open problems in Section 4.
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2. Lower bounds

In this section, we prove Theorem 1.2 by proving a stronger structural

result, namely Theorem 2.3.

We first introduce a notational convenience. Given a colouring ∆ of N(2),

a vertex v ∈ N, and a subset X ⊂ N \ {v}, we say that a colour c is a new

colour from v into X if some edge from v to X is coloured c by ∆ and also, no

edge of X(2) is coloured c by ∆. We write N∆(v,X), or just N(v,X) when the

colouring ∆ in question is clear, for the set of new colours from v into X.

2.1. Proof of Theorem 1.2. Before we prove Theorem 1.2, we note that

Erickson’s argument showing that 2 ∈ F∆ can be generalised to give a quick

proof that ψ(k) = Ω(log k).

Lemma 2.1. Let ∆ : N(2) � [k] be a k-colouring and suppose l ∈ F∆ and

l < k. Then there is an m ∈ F∆ such that l + 1 ≤ m ≤ 2l.

Proof of Lemma 2.1. The collection of infinite l-coloured sets is non-

empty and so by Zorn’s lemma, there is a maximal infinite l-coloured set;

let X ⊂ N be such a set. As l < k, X 6= N. Pick v ∈ N \ X. Note that

N(v,X) 6= ∅ since otherwise X ∪ {v} is l-coloured, which contradicts the

maximality of X.

If |N(v,X)| ≤ l, then X ∪ {v} is m-coloured for some l + 1 ≤ m ≤ 2l. So

suppose |N(v,X)| ≥ l + 1. By the pigeonhole principle, there is an infinite

subset Y of X such that all the vertices of Y are connected to v by edges of a

single colour, say c.

We consider two cases. If c ∈ N(v,X), we pick l− 1 vertices from X which

are joined to v by edges coloured with l− 1 distinct colours from N(v,X) \ {c}.

If on the other hand c /∈ N(v,X), we pick l vertices from X which are joined

to v by edges coloured with l distinct colours from N(v,X). Call this set of

l − 1 or l vertices Z.
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In both cases, it is easy to check that Y ∪ Z ∪ {v} is m-coloured with

l + 1 ≤ m ≤ 2l since the number of colours appearing in Y ∪ Z is between 1

and l and v introduces precisely l new colours into this set. �

Note that Lemma 2.1, coupled with the fact that we always have 1 ∈ F∆,

implies that ψ(k) ≥ 1 + log2 k. By applying Lemma 2.1 to the largest element

of F∆ in [2n], we have the following corollary.

Corollary 2.2. If ∆ : N(2) � [k] is a k-colouring and n is a natural

number such that k ≥ 2n + 1, then F∆ ∩ ([2n+1] \ [2n]) 6= ∅. �

We shall show that for any k-colouring ∆ : N(2) � [k] with k ≥
(
n
2

)
+ 1

for some n, we can find n nested subsets A1 ( A2 ( · · · ( An of N such that

∆(A
(2)
1 ) ( ∆(A

(2)
2 ) ( · · · ( ∆(A

(2)
n ). To do this, we introduce the notion of

n-homogeneity on which our first structural result, Theorem 2.3, hinges.

For an ordered n-tuple X = (X1, X2, . . . , Xn), write X̂i for the set X1 ∪

X2 · · · ∪Xi. Given a colouring ∆, we call X = (X1, X2, . . . , Xn), with each Xi

a non-empty subset of N, n-homogeneous with respect to ∆ if the following

conditions are met:

(1) Xi ∩Xj = ∅ for i 6= j,

(2) X1 is infinite and 1-coloured,

(3) ∆(X̂
(2)
1 ) ( ∆(X̂

(2)
2 ) ( · · · ( (X̂

(2)
n ),

(4) for each Xi with 2 ≤ i ≤ n, every v ∈ Xi satisfies

N(v, X̂i−1) = ∆
(
X̂

(2)
i

)
\∆
(
X̂

(2)
i−1

)
, and

(5) γ(X̂n) ≤
(
n
2

)
+ 1.

Rather than proving Theorem 1.2, we prove the following stronger statement.

Theorem 2.3. Let ∆ : N(2) � [k] be a k-colouring and suppose n is a

natural number such that k ≥
(
n
2

)
+ 1. Then there exists an n-homogeneous

tuple with respect to ∆.
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Proof. We proceed by induction on n. The case n = 1 is Ramsey’s

Theorem. Suppose that k ≥
(
n+1

2

)
+ 1 and assume inductively that at least one

n-homogeneous tuple exists; let X = (X1, X2, . . . , Xn) be such a tuple. Note

that k ≥
(
n+1

2

)
+ 1 >

(
n
2

)
+ 1. Since ∆ is surjective and attains at most

(
n
2

)
+ 1

different values inside X̂n, clearly N \ X̂n 6= ∅. We consider two cases.

Case 1: N(v, X̂n) 6= ∅ for some v ∈ N \ X̂n. If |N(v, X̂n)| ≤ n, then it is

easy to check that (X1, X2, . . . , Xn, {v}) is an (n+ 1)-homogeneous tuple and

we are done. So, assume without loss of generality that |N(v, X̂n)| ≥ n+ 1.

Let j be the smallest index such that N(v, X̂j) 6= ∅. Since N(v, X̂n) 6= ∅,

this minimal index j exists. We now build our (n + 1)-homogeneous tuple

Y = (Y1, Y2, . . . , Yn+1) as follows.

Set Y1 = X1, Y2 = X2, . . . , Yj−1 = Xj−1. We define Yj as follows. First,

choose c ∈ N(v, X̂j); note that by the minimality of j, N(v, X̂j−1) = ∅ and so

all the edges between v and X̂j coloured c are actually edges between v and

Xj. Take Yj ⊂ Xj to be the (non-empty) set of vertices u ∈ Xj such that the

edge between v and u is either coloured c or with a colour from ∆(X̂
(2)
j ) (and

hence a colour not in N(v, X̂j)). Note that if j = 1, we can always choose c

such that Y1 is an infinite subset of X1.

Next, set Yj+1 = {v}. Now, note that the only colour from ∆(Ŷ
(2)
j+1) that

might possibly occur in N(v, X̂n) is c. So we can now choose v1, v2, . . . , vn−j

from Xn ∪Xn−1 · · · ∪Xj+1 ∪ (Xj \ Yj) such that these n− j vertices are joined

to v by edges which are all coloured by distinct elements of N(v, X̂n) \ {c}. Set

Yj+2 = {v1}, Yj+3 = {v2}, . . . , Yn+1 = {vn−j}.

We claim that Y is an (n+ 1)-homogeneous tuple. Indeed, conditions (1)

and (2) are obviously satisfied.

To check condition (3), first note that ∆(Ŷ
(2)

1 ) ( ∆(Ŷ
(2)

2 ) ( · · · ( ∆(Ŷ
(2)
j−1)

follows from the n-homogeneity of X since Yi = Xi for 1 ≤ i ≤ j − 1. Also,

∆(Ŷ
(2)
j−1) ( ∆(Ŷ

(2)
j ) since Yj is a non-empty subset of Xj. Next, ∆(Ŷ

(2)
j ) (

∆(Ŷ
(2)
j+1) since v is joined to at least one vertex of Yj by an edge coloured with
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Xn Xj+1 Xj X1
v

N(v, X̂j)

u
N(u, X̂j)

Figure 1. Inserting v into X.

c and we know that c is a new colour from v into Ŷj. Finally, ∆(Ŷ
(2)
j+1) (

∆(Ŷ
(2)
j+2) ( · · · ( ∆(Ŷ

(2)
n+1) because the vertices v1, v2, . . . , vn−j are all joined to

v by edges of distinct colours and none of these colours belong to ∆(X̂
(2)
n ). So

condition (3) is also satisfied.

Condition (4) for each of Y1, Y2, . . . , Yj is equivalent to the same condition

for X1, X2, . . . , Xj respectively. Furthermore, condition (4) is also satisfied by

each of Yj+1, Yj+2, . . . , Yn+1 since they each contain exactly one vertex.

Finally, we check condition (5). Clearly, ∆(Ŷ
(2)
n+1) is a subset of ∆(X̂

(2)
n )∪ T

for some subset T of N(v, X̂n) of size at most n. Hence, we see that γ(Ŷn+1) ≤(
n
2

)
+ 1 + n =

(
n+1

2

)
+ 1.

Case 2: N(v, X̂n) = ∅ for every v ∈ N \ X̂n. To deal with this case, we

will need the following lemma.

Lemma 2.4. Let X be an n-homogeneous tuple and suppose N(v, X̂n) = ∅

for some v ∈ N\ X̂n. Then, there either exists an (n+ 1)-homogeneous tuple Y,

or an n-homogeneous tuple Z such that Zj = Xj ∪ {v} for some j ∈ [n], and

Zi = Xi for each 1 ≤ i ≤ n with i 6= j.

Proof. If N(v, X̂i) = ∅ for 1 ≤ i ≤ n, then (X1 ∪ {v}, X2, . . . , Xn) is

n-homogeneous and we have Z as required. Hence, let j < n be the largest

index such that N(v, X̂j) 6= ∅. So by the definition of j, N(v, X̂i) = ∅

for j < i ≤ n. Let Z = (X1, X2, . . . , Xj, Xj+1 ∪ {v}, Xj+2, . . . , Xn) and let

Y = (X1, X2, . . . , Xj, {v}, Xj+1, Xj+2, . . . , Xn); we claim that either Z is n-

homogeneous or Y is (n+ 1)-homogeneous.
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Consider a colour c that belongs to N(v, X̂j). Since N(v, X̂j+1) = ∅, this

means that c must occur in ∆(X̂
(2)
j+1) \∆(X̂

(2)
j ). But, by condition (4), for each

u ∈ Xj+1, N(u, X̂j) = ∆(X̂
(2)
j+1) \ ∆(X̂

(2)
j ). Hence, N(v, X̂j) ⊂ N(u, X̂j) for

u ∈ Xj+1.

We first show that if N(v, X̂j) = N(u, X̂j) for u ∈ Xj+1, then Z is n-

homogeneous. Conditions (1) and (2) are clearly satisfied by Z. To see that

conditions (3) and (4) hold, first note that these conditions hold for all the Zi

with 1 ≤ i ≤ j since Zi = Xi for 1 ≤ i ≤ j. Both conditions hold for Zj+1 since

we have assumed that N(v, X̂j) = N(u, X̂j) for u ∈ Xj+1. Next, observe that

since N(v, X̂i) = ∅ for j < i ≤ n, we have N(u, X̂i−1) = N(u, X̂i−1 ∪ {v}) for

each u ∈ Xi with j + 1 < i ≤ n. From this observation, it follows that both

conditions hold for all the Zi with j + 1 < i ≤ n. Finally, condition (5) holds

since N(v, X̂n) = ∅.

If we instead have N(v, X̂j) ( N(u, X̂j) for u ∈ Xj+1, then we claim that

Y is (n+ 1)-homogeneous.

Clearly, conditions (1) and (2) are satisfied by Y. To check conditions

(3) and (4), we proceed as we did previously for Z. First note that these

conditions hold for all the Yi such that 1 ≤ i ≤ j since Yi = Xi for 1 ≤ i ≤ j.

Both conditions hold for the Yj+1 since Yj+1 consists of a single vertex v

and since N(v, X̂j) 6= ∅. To see that condition (3) holds for Yj+2, note that

∆(Ŷ
(2)
j+1) ( ∆(Ŷ

(2)
j+2) since N(v, X̂j) ( N(u, X̂j) for u ∈ Xj+1. We know that

N(v, X̂j+1) = ∅. Hence, condition (4) also holds for Yj+2 since for any vertex

u ∈ Yj+2 = Xj+1, we see that N(u, Ŷj+1) = N(u, X̂j) \ N(v, X̂j) = ∆(Ŷ
(2)
j+2) \

∆(Ŷ
(2)
j+1). Finally, both conditions also hold for all Yi with j + 2 < i ≤ n + 1.

This follows from the fact that N(u, X̂i−1 ∪ {v}) = N(u, X̂i−1) 6= ∅ for each

u ∈ Xi with j + 1 < i ≤ n. Finally, it is easy to see that condition (5) holds

since N(v, X̂n) = ∅. �
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We have assumed that N(v, X̂n) = ∅ for each v ∈ N \ X̂n. Now, ∆ is

surjective, so there must exist two vertices v1 and v2 in N \ X̂n such that the

edge joining v1 and v2 is coloured with a colour c not in ∆(X̂
(2)
n ).

We apply Lemma 2.4 to X and v1. If we find an (n + 1)-homogeneous

tuple Y, we are done. So suppose that the lemma yields n-homogeneous

tuple Z. Then clearly N(v2, Ẑn) = {c}. Thus, (Z1, Z2, . . . , Zn, {v2}) is an

(n+ 1)-homogeneous tuple. This completes the proof of the theorem. �

3. Upper bounds

Erdős proved in [45] that for a natural number n, the set Pn = {ab : a, b ≤ n}

has size o(n2). We base the proof of Theorem 1.3 on the observation that Pn is

exactly the set of sizes of all induced subgraphs of a complete bipartite graph

between two equal vertex classes of size n.

Let H(x, y, z) be the number of natural numbers n ≤ x having a divisor in

the interval (y, z]. Tenenbaum [105] showed that

H(x, y, z) = (1 + o(1))x if log y = o(log z), z ≤
√
x. (1)

Ford [56] proved that

H(x, y, 2y) = Θ

(
x

(log y)δ(log log y)3/2

)
if 3 ≤ y ≤

√
x, (2)

where δ = 1 − 1+log log 2
log 2

. Armed with these two facts, we can now prove

Theorem 1.3.

Proof of Theorem 1.3. We shall take

A = {k : ∃ a, b ∈ N with k − 1 = ab and log k ≤ a ≤ b}.

It follows from (1) that H(x, log x,
√
x) = (1 + o(1))x; as an easy consequence,

A has asymptotic density one. Now, for a fixed k ∈ A with k− 1 = ab, consider

a surjective k-colouring ∆ of the complete graph on N which colours all the

edges of the complete bipartite graph between [a] and [b + a] \ [a] with ab
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distinct colours and all the other edges with the one colour not used so far. It

is easy to then see that

F∆ = {a′b′ + 1 : 1 ≤ a′ ≤ a, 1 ≤ b′ ≤ b} ∪ {1}.

Now, for any element a′b′ + 1 ∈ F∆, a/2i+1 < a′ ≤ a/2i for some i ≥ 0 and

so a′b′ ≤ ab/2i. Thus,

|F∆| ≤ 1 +
∑
i≥0

H

(
ab

2i
,
a

2i+1
,
a

2i

)
.

Using Ford’s estimate (2) for H(x, y, 2y) and the fact that a ≥ log k, we obtain

that

ψ(k) = O

(
k

(log log k)δ(log log log k)3/2

)
for all k ∈ A. �

4. Concluding remarks

We suspect that something much stronger than Corollary 2.2 is true.

Conjecture 4.1. Let ∆ : N(2) � [k] be a k-colouring and suppose n ≥ 2 is

a natural number such that k ≥
(
n
2

)
+ 2. Then F∆∩ ([

(
n+1

2

)
+ 1]\ [

(
n
2

)
+ 1]) 6= ∅.

We return to this conjecture in the next chapter. There, we shall prove this

conjecture and we shall also study some generalisations of this conjecture to

uniform hypergraphs.

We strongly suspect that the function ψ studied in this chapter quite far from

being monotone. We have shown that ψ(
(
n
2

)
+ 1) = n and ψ(

(
n+1

2

)
+ 1) = n+ 1,

and it is an easy consequence of our results that ψ(
(
n
2

)
+ 2) = n+ 1. It would

appear that even ψ(
(
n
2

)
+ 3) is much bigger than n.

Conjecture 4.2. There is an absolute constant c > 0 such that ψ(
(
n
2

)
+3) >

(1 + c)n for all natural numbers n ≥ 2.

The problem of determining ψ completely is of course still open. We cannot

answer even the following question in its full generality.
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Problem 4.3. Is ψ(k) = o(k) for all k ∈ N?
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CHAPTER 4

Approximations to infinite m-coloured complete

hypergraphs

Joint work with Teeradej Kittipassorn.

1. Introduction

In the last chapter, we mentioned in passing that Stacey and Weidl, partially

resolving a conjecture of Erickson, showed that there exists, for every fixed

natural number m > 2 and all sufficiently large k ∈ N, a k-colouring of the

complete graph on N with no infinite m-coloured complete subgraph. In

the light of this result, we study how close we can get to finding an infinite

m-coloured complete subgraph (and more generally, an infinite m-coloured

complete subhypergraph) in this chapter.

We briefly describe how the notations and definitions of the previous two

chapters extend to the setting of hypergraphs. For a set X, we write X(r) for

the family of all subsets of X of cardinality r; equivalently, X(r) is the complete

r-uniform hypergraph on the vertex set X. By a colouring of a hypergraph, we

mean a colouring of the edges of the hypergraph.

Let ∆ : N(r) � [k] be a surjective k-colouring of the edges of the complete

r-uniform hypergraph on the natural numbers. As before, we say that a subset

X ⊂ N is (exactly) m-coloured if ∆(X(r)), the set of values attained by ∆ on

the edges induced by X, has size exactly m. Let γ∆(X), or γ(X) in short,

denote the size of the set ∆(X(r)); in other words, every set X is γ(X)-coloured.

In this chapter, we shall study for fixed r and large k, the set of values m

for which there exists an infinite m-coloured set with respect to a k-colouring
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∆ : N(r) � [k]. As before, let us define

F∆ = {γ∆(X) : X ⊂ N such that X is infinite}.

In the case of graphs, i.e., when r = 2, Stacey and Weidl [104], partially

resolving a previously discussed conjecture of Erickson [52], showed using a

probabilistic construction that for every m > 2, there is a constant Cm such

that if k > Cm, then there is a k-colouring ∆ of N(2) such that m /∈ F∆. Since

an infinite m-coloured complete subgraph is not guaranteed to exist, we are

naturally led to the question of whether we can find, given m, an infinite

m̂-coloured complete subgraph for some m̂ close to m. In this chapter, we

establish the following result.

Theorem 1.1. For any k-colouring ∆ : N(r) � [k] and any natural number

m ≤ k, there exists an m̂ ∈ F∆ such that

|m− m̂| ≤ crm
1−1/r +O(m1−2/r)

where cr = r/(2(r!)1/r).

Theorem 1.1 is tight up to the O(m1−2/r) term. To see this, let k =
(
n
r

)
+ 1

for some n ∈ N. We consider the ‘small-rainbow colouring’ ∆ which colours

all the edges induced by [n] with
(
n
r

)
distinct colours and all the remaining

edges with the one colour that has not been used so far. In this case, we see

that F∆ = {
(
i
r

)
+ 1 : i ≤ n}. Now let m be the positive integer closest to

(
(
l
r

)
+
(
l+1
r

)
+ 2)/2 for some natural number l such that l < n. It follows that

|m− m̂| ≥
(

l
r−1

)
/2− 1 for each m̂ ∈ F∆; furthermore, it is easy to check that(

l
r−1

)
/2 = (cr − o(1))m1−1/r.

In the case of graphs where r = 2, Theorem 1.1 tells us that for any

finite colouring of the edges of the complete graph on N with m or more

colours, there is an infinite m̂-coloured complete subgraph for some m̂ satisfying

|m− m̂| ≤
√
m/2 +O(1); a careful analysis of the proof of Theorem 1.1 in this

case allows us to replace the O(1) term with an explicit constant, 1/2.
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We know from Theorem 1.1 that F∆ cannot contain very large gaps. Another

natural question we are led to ask is if there are any sets, and in particular,

intervals, that F∆ is guaranteed to intersect. More precisely, it was conjectured

(see [91] and also, the previous chapter) that the small-rainbow colouring

described above is extremal for graphs in the following sense.

Conjecture 1.2. Let ∆ : N(2) � [k] be a k-colouring of the complete

graph on N and suppose n is a natural number such that k >
(
n
2

)
+ 1. Then

F∆ ∩ (
(
n
2

)
+ 1,

(
n+1

2

)
+ 1] 6= ∅.

In this chapter, we shall prove this conjecture. There are two natural

generalisations of this conjecture to r-uniform hypergraphs which are equivalent

to Conjecture 1.2 in the case of graphs.

The first comes from considering small-rainbow colourings; indeed we can

ask whether F∆ ∩ Ir,n 6= ∅ when k >
(
n
r

)
+ 1, where Ir,n is the interval

(
(
n
r

)
+ 1,

(
n+1
r

)
+ 1].

The second comes from considering a different family of colourings which

we call ‘small-set colourings’. Let k =
∑r

i=0

(
n
i

)
and consider the surjective

k-colouring ∆ of N(r) defined by ∆(e) = e ∩ [n]. Note that in this case,

F∆ = {
∑r

i=0

(
j
i

)
: j ≤ n}. Consequently, we can ask whether F∆ ∩ Jr,n 6= ∅

when k >
∑r

i=0

(
n−1
i

)
, where Jr,n is the interval (

∑r
i=0

(
n−1
i

)
,
∑r

i=0

(
n
i

)
].

Note that both these questions are identical when r = 2. Indeed
(
n
2

)
+
(
n
1

)
+(

n
0

)
=
(
n+1

2

)
+ 1 and so I2,n = J2,n. When r ≥ 3, we see that Jr,n is longer than

Ir,n; furthermore, for any fixed r ≥ 3 and all sufficiently large n, we note that

Jr,n always intersects, and lies to the right of, Ir,n.

We shall demonstrate that the correct generalisation is the former. We shall

first prove that the answer to the first question is in the affirmative, provided

n is sufficiently large.

Theorem 1.3. For every r ≥ 2, there exists a natural number nr ≥ r − 1

such that for any natural number n ≥ nr and any k-colouring ∆ : N(r) � [k]

with k >
(
n
r

)
+ 1, F∆ ∩ Ir,n 6= ∅.
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Using a result of Baranyai [21] on factorisations of uniform hypergraphs, we

shall exhibit an infinite family of colourings that answer the second question

negatively for every r ≥ 3.

Theorem 1.4. For every r ≥ 3, there exist infinitely many values of n for

which there exists a k-colouring ∆ : N(r) � [k] with k >
∑r

i=0

(
n−1
i

)
such that

F∆ ∩ Jr,n = ∅.

The rest of this chapter is organised as follows. In the next section, we shall

prove Theorems 1.1, 1.3 and 1.4 and deduce Conjecture 1.2 from the proof of

Theorem 1.3. We then conclude by mentioning some open problems.

2. Proofs of the main results

We start with the following lemma which we shall later use to prove both

Theorems 1.1 and 1.3.

Lemma 2.1. Let m ≥ 2 be an element of F∆. Then there exists a natural

number a = a(m,∆) such that

(1)
∑r

i=0

(
a
i

)
≥ m, and

(2) F∆ ∩ [m−min(
∑r−1

i=0

(
a−1
i

)
, r(m− 1)/a),m) 6= ∅.

Futhermore, if

m =
r∑

i=t+1

(
a

i

)
+ s+ 1

for some s ≥ 0 and 0 ≤ t+ 1 ≤ r, then

F∆ ∩

[
r∑

i=t+1

(
a− 1

i

)
+

(
1− t

a

)
s+ 1,m

)
6= ∅.

Proof. We start by establishing the following claim.

Claim 2.2. There is an infinite m-coloured set X ⊂ N with a finite subset

A ⊂ X such that

(1) the colour of every edge of X is determined by its intersection with A,

i.e., if e1 ∩ A = e2 ∩ A, then ∆(e1) = ∆(e2), and
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(2) γ(X \ {v}) < m for all v ∈ A.

Proof. To see this, let W ⊂ N be an infinite m-coloured set. For each

colour c ∈ ∆(W (r)), pick an edge ec in W of colour c and let A =
⋃
c ec be

the set of vertices incident to these edges. So A ⊂ W is a finite m-coloured

set. Let A1, A2, . . . , Al be an enumeration of the subsets of A of size at most

r. Note that this is the complete list of possible intersections of an edge with

A. We now define a descending sequence of infinite sets B0 ⊃ B1 ⊃ · · · ⊃ Bl

as follows. Let B0 = W \ A. Having defined the infinite set Bi−1, we induce

a colouring of the (r − |Ai|)-tuples T of Bi−1, by giving T the colour of the

edge Ai ∪ T . By Ramsey’s Theorem, there is an infinite monochromatic subset

Bi ⊂ Bi−1 with respect to this induced colouring, and so the edges of A ∪Bi

whose intersection with A is Ai have the same colour.

Hence, X = A ∪ Bl is an infinite m-coloured set satisfying property (1).

Now, if we have a vertex v ∈ A such that γ(X \ {v}) = m, we delete v from A.

We repeat this until we are left with an m-coloured set X satisfying (1) and

(2). �

Let X and A be as guaranteed by Claim 2.2. Note that A is nonempty since

m ≥ 2. We shall prove the lemma with a(m,∆) = |A|. From the structure of

X and A, we note that
∑r

i=0

(
a
i

)
≥ m. That

F∆ ∩

[
m−min

(
r−1∑
i=0

(
a− 1

i

)
,
r(m− 1)

a

)
,m

)
6= ∅

is a consequence of the following claim.

Claim 2.3. There exist infinite sets X1, X2 ⊂ X for which we have m −∑r−1
i=0

(
a−1
i

)
≤ γ(X1) < m and m− r(m− 1)/a ≤ γ(X2) < m.

Proof. Let X1 = X \ {v} for any v ∈ A. We know from Claim 2.2 that

γ(X1) < m. We shall now prove that γ(X1) ≥ m −
∑r−1

i=0

(
a−1
i

)
; that is, the

number of colours lost by removing v from X is at most
∑r−1

i=0

(
a−1
i

)
. Since

the colour of an edge is determined by its intersection with A, the number of
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colours lost is at most the numbers of subsets of A containing v of size at most

r, which is precisely
∑r−1

i=0

(
a−1
i

)
.

Next, we shall prove that there is a subset X2 ⊂ X such that m− r(m−

1)/a ≤ γ(X2) < m. Let A = {v1, v2, . . . , va} and let

Ci = ∆
(
X(r)

)
\∆
(
(X \ {vi})(r)

)
be the set of colours lost by removing vi from X; since γ(X \ {vi}) < m for all

vi ∈ A, it follows that Ci 6= ∅. For each colour c ∈ ∆(X(r)), pick an edge ec

of colour c, and let Ac = ec ∩ A; in particular, we take Ac∅ = ∅, where c∅ is

the colour corresponding to an empty intersection with A. Since every edge

of colour c ∈ Ci contains vi, we double count the number of times a colour is

counted in the sum
∑a

i=1 |Ci| to obtain

a∑
i=1

|Ci| ≤
∑
c 6=c∅

|Ac| ≤ r(m− 1),

and so there exists an i such that 0 < |Ci| ≤ r(m− 1)/a; the claim follows by

taking X2 = X \ {vi}. �

We finish the proof of the lemma by establishing the following claim.

Claim 2.4. If we can write m =
∑r

i=t+1

(
a
i

)
+ s+ 1, then

F∆ ∩

[
r∑

i=t+1

(
a− 1

i

)
+

(
1− t

a

)
s+ 1,m

)
6= ∅.

Proof. As in the proof of Claim 2.3, for each colour c ∈ ∆(X(r)), pick

an edge ec of colour c, and let Ac = ec ∩ A; in particular, let Ac∅ = ∅. We

know from Claim 2.2 that edges of X of distinct colours cannot have the same

intersection with A. Consequently, all the Ac are distinct subsets of A, each of

size at most r. Hence,

∑
c6=c∅

|Ac| ≤
r∑

i=t+1

i

(
a

i

)
+ ts.
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Arguing as in the proof of Claim 2.3, we conclude that there exists a vertex

v ∈ A such that the number of colours lost by removing v from X is at most

(
∑r

i=t+1 i
(
a
i

)
+ ts)/a. Therefore

γ(X \ {v}) ≥ m− 1

a

(
r∑

i=t+1

i

(
a

i

)
+ ts

)

= m−

(
r∑

i=t+1

(
a− 1

i− 1

)
+
ts

a

)

=
r∑

i=t+1

(
a− 1

i

)
+

(
1− t

a

)
s+ 1,

and so

F∆ ∩

[
r∑

i=t+1

(
a− 1

i

)
+

(
1− t

a

)
s+ 1,m

)
6= ∅. �

The lemma follows from Claims 2.2, 2.3 and 2.4. We are done. �

Having established Lemma 2.1, it is easy to deduce both Theorem 1.1

and 1.3 from the lemma.

Proof of Theorem 1.1. Let t = m + crm
1−1/r. We may assume that

m > rr/r! since otherwise m = O(1) and there is nothing to prove. Also, if

t ≥ k, then the result follows easily by taking m̂ = k so we may assume that

t < k. Let t̂ be the smallest element of F∆ greater than t. Applying Lemma 2.1

to t̂, we find an m̂ ∈ F∆ such that m̂ ≤ t and

m̂ ≥ t̂−min

(
r−1∑
i=0

(
a− 1

i

)
,
r(t̂− 1)

a

)

for some natural number a. Now if a ≥ (r!m)1/r > r, then

m̂ ≥ t̂− r(t̂− 1)

a
≥ t̂
(

1− r

a

)
≥ t
(

1− r

a

)
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and so it follows that m̂ ≥ m− crm1−1/r −O(m1−2/r). If a < (r!m)1/r on the

other hand, then using the fact that

m̂ ≥ t̂−
r−1∑
i=0

(
a− 1

i

)
≥ t− ar−1

(r − 1)!
−O(ar−2)

≥ t− (r!m)1−1/r

(r − 1)!
−O(m1−2/r),

it follows once again that m̂ ≥ m− crm1−1/r −O(m1−2/r). �

Proof of Theorem 1.3. If k ≤
(
n+1
r

)
+ 1, we are done since k ∈ F∆. So

suppose that k >
(
n+1
r

)
+ 1. Let m be the smallest element of F∆ such that

m >
(
n+1
r

)
+ 1; hence, F∆ ∩ (

(
n+1
r

)
+ 1,m) = ∅. Now, since m ≥ 2, there exists

by Lemma 2.1, a natural number a such that

F∆ ∩
[
m− r(m− 1)

a
,

(
n+ 1

r

)
+ 1

]
6= ∅.

To prove the theorem, it is sufficient to show that m− r(m− 1)/a >
(
n
r

)
+ 1.

We know from Lemma 2.1 that
∑r

i=0

(
a
i

)
≥ m >

(
n+1
r

)
+ 1. If n is sufficiently

large, we must have a ≥ n. Indeed, if a ≤ n− 1, then(
n+ 1

r

)
+ 1−

r∑
i=0

(
a

i

)
≥
(
n+ 1

r

)
−
(
n− 1

r

)
−
(
n− 1

r − 1

)
−

r−2∑
i=1

(
n− 1

i

)

=

(
n

r − 1

)
−

r−2∑
i=1

(
n− 1

i

)
> 0,

where the last inequality holds for all sufficiently large n since coefficient of the

highest power of n in the expression is positive; this is a contradiction.

If a ≥ n+ 1, then

m− r(m− 1)

a
= (m− 1)

(
1− r

a

)
+ 1

>

(
n+ 1

r

)(
1− r

n+ 1

)
+ 1
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=

(
n

r

)
+ 1

since m >
(
n+1
r

)
+ 1 and n ≥ r − 1.

We now deal with the case a = n. First, we write m =
(
n
r

)
+
(
n
r−1

)
+ s+ 1.

Since m >
(
n+1
r

)
+1 and

(
n
r

)
+
(
n
r−1

)
=
(
n+1
r

)
, we see that s > 0. By Lemma 2.1,

it follows that

F∆ ∩
[(
n

r

)
+

(
1− r − 2

n

)
s+ 1,m

)
6= ∅.

Since n ≥ r − 1 and s > 0, the result follows. �

A careful inspection of the proof of Theorem 1.3 shows that when r = 2,

the statement holds for all n ∈ N. Indeed, we only need n to be large enough

to ensure that
(
n
r−1

)
−
∑r−2

i=1

(
n−1
i

)
> 0; when r = 2, this holds for all n ∈ N.

We hence obtain a proof of Conjecture 1.2.

We now turn to the proof of Theorem 1.4. We require a result of Baranyai [21]

which states that the set of edges of the complete r-uniform hypergraph on l

vertices can be partitioned into perfect matchings when r | l.

Proof of Theorem 1.4. We shall show that if n is sufficiently large

and (r − 1) | (n + 1), then there is a surjective k-colouring ∆ of N(r) with

k >
∑r

i=0

(
n−1
i

)
and F∆ ∩ Jr,n = ∅. We shall define a colouring of N(r) such

that the colour of an edge e is determined by its intersection with a set A of

size n+ 1, say A = [n+ 1]. Let B be the family of all subsets of A of size at

most r. For B ∈ B, we denote the colour assigned to all the edges e such that

e ∩ A = B by cB.

To define our colouring, we shall construct a partition B = B1 ∪ B2 with

∅ ∈ B2. Then for every B ∈ B2, we set cB to be equal to c∅. Finally, we take

the colours cB for B ∈ B1 to all be distinct and different from c∅. Hence, the

number of colours used is k = |B1|+ 1. It remains to construct this partition

of B.
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Since (r − 1) | (n+ 1), by Baranyai’s theorem there exists an ordering

B1, B2, . . . , B(n+1
r−1)

of the subsets of A of size r − 1 such that for all 0 ≤ t ≤
(
n
r−2

)
, the family{

B(n+1
r−1 )t+1, B(n+1

r−1 )t+2, . . . , B(n+1
r−1 )(t+1)

}
is a perfect matching. Let B1 = {B1, B2, . . . , Bs} ∪ {B ∈ B : |B| = r}, where

s =
r∑
i=0

(
n

i

)
−
(
n+ 1

r

)
=

r−2∑
i=0

(
n

i

)
.

Our colouring is well defined because 0 ≤ s ≤
(
n+1
r−1

)
for all sufficiently large n;

here, the second inequality follows immediately by considering the coefficient

of the highest power of n. Observe that

k = |B1|+ 1 =

(
n+ 1

r

)
+ s+ 1 =

r∑
i=0

(
n

i

)
+ 1.

We shall show that the second largest element of F∆ is at most
∑r

i=0

(
n−1
i

)
.

Note that any X ⊂ N with γ(X) < k cannot contain A. As before, let Ci be

the set of colours lost by removing i ∈ A from N, i.e.,

Ci = ∆
(
N(r)

)
\∆
(
(N \ {i})(r)

)
.

We shall complete the proof by showing that k − |Ci| ≤
∑r

i=0

(
n−1
i

)
for all

i ∈ A.

Note that our construction ensures that ||Ci| − |Cj|| ≤ 1 for all i, j ∈ A.

Now, observe that

n+1∑
i=1

|Ci| =
∑
B∈B1

|B| = r

(
n+ 1

r

)
+ (r − 1)s,

and so |Ci| ≥ (r
(
n+1
r

)
+ (r − 1)s)/(n+ 1)− 1 for all i ∈ A. Hence,

k − |Ci| ≤
((

n+ 1

r

)
+ s+ 1

)
− 1

n+ 1

(
r

(
n+ 1

r

)
+ (r − 1)s

)
+ 1

48



=

(
n

r

)
+

(
1− r − 1

n+ 1

)
s+ 2

=

(
n

r

)
+

(
1− r − 1

n+ 1

)( r∑
i=0

(
n

i

)
−
(
n+ 1

r

))
+ 2

≤
r∑
i=0

(
n− 1

i

)
,

where the last inequality holds when r ≥ 4 for all sufficiently large n. To see

this, we note that verifying the last inequality reduces to checking that(
1− r − 1

n+ 1

)( r−2∑
i=0

(
n

i

))
+ 2 ≤

r−2∑
i=0

(
n− 1

i

)
.

To check this, we first note that for each 0 ≤ i ≤ r − 3, we have(
1− r − 1

n+ 1

)(
n

i

)
=

n(n+ 2− r)
(n+ 1)(n− i)

(
n− 1

i

)
≤
(
n− 1

i

)
.

and that furthermore, we have(
n− 1

r − 2

)
−
(

1− r − 1

n+ 1

)(
n

r − 2

)
=

1

n+ 1

(
n− 1

r − 2

)
> 2

for all sufficiently large n since r ≥ 4.

When r = 3, it is easy to check that s = n + 1 and so s is divisible by

(n+ 1)/(r − 1) = (n+ 1)/2. Consequently, in this case, |Ci| = |Cj| for i, j ∈ A.

Hence,

k − |Ci| ≤
((

n+ 1

3

)
+ s+ 1

)
− 1

n+ 1

(
r

(
n+ 1

3

)
+ 2s

)
=

(
n

3

)
+

(
1− 2

n+ 1

)
(n+ 1) + 1

=
3∑
i=0

(
n− 1

i

)
.

This completes the proof. �
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3. Concluding remarks

We conclude by mentioning two open problems. We proved that for any

k-colouring ∆ : N(r) � [k] and every sufficiently large natural number n,

F∆ ∩ Ir,n 6= ∅ provided k >
(
n
r

)
+ 1. A careful analysis of our proof shows that

the result holds when n ≥ (5/2 + o(1))r; we chose not to give details to keep

the presentation simple. However, we suspect that the result should hold as

long as n ≥ r − 1 but a proof eludes us.

To state the next problem, let us define

ψr(k) = min
∆:N(r)�[k]

|F∆|.

A consequence of Theorem 1.3 is that ψr(k) ≥ (1− o(1))(r!k)1/r. Turning to

the question of upper bounds for ψr, the small-rainbow colouring shows that

the lower bound that we get from Theorem 1.3 is tight infinitely often, i.e.,

when k is of the form
(
n
r

)
+ 1 for some n ∈ N. However, when k is not of this

form, the obvious generalisations of the small-rainbow colouring fail to give us

good upper bounds for ψr(k). We saw in the previous chapter that

ψ2(k) = O

(
k

(log log k)δ(log log log k)3/2

)
for almost all natural numbers k and some absolute constant δ > 0. For every

r ≥ 2, by colouring a copy of N(2) in N(r) (corresponding to all the r-element

subsets of N containing some fixed (r − 2)-element set) as in the previous

chapter, and all the other edges of N(r) with a different colour, we see that

ψr(k) = o(k) almost all natural numbers k. It would be very interesting to

decide if, in fact, ψr(k) = o(k) for all k ∈ N.
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Part 2

Probabilistic combinatorics





CHAPTER 5

Transference for the Erdős–Ko–Rado theorem, I

Joint work with Béla Bollobás and Andrei Raigorodskii.

1. Introduction

In this chapter, our aim is to investigate the stability of a central result in

extremal set theory due to Erdős, Ko and Rado [46] about uniform intersecting

families of sets. A family of sets A is said to be intersecting if A ∩B 6= ∅ for

all A,B ∈ A. We are interested in intersecting families where all the sets have

the same size; writing [n] for the set {1, 2, . . . , n} and [n](r) for the family of

all the subsets of [n] of cardinality r, the Erdős–Ko–Rado theorem asserts that

if A ⊂ [n](r) is intersecting and n ≥ 2r, then |A| ≤
(
n−1
r−1

)
and that equality is

only achieved, if n > 2r, when A is a star ; for x ∈ [n], the star centred at x

is the family of all the r-element subsets of [n] containing x. Extending this

result, Hilton and Milner [68] determined, when n > 2r, the largest size of a

uniform intersecting family not contained entirely in a star. Many extensions

of the Erdős–Ko–Rado theorem and the Hilton–Milner theorem have since

been proved; furthermore, very general stability results about the structure of

intersecting families have been proved by Friedgut [58], Dinur and Friedgut [43],

and Keevash and Mubayi [74].

Here, we shall investigate a different notion of stability and prove a ‘sparse

random’ analogue of the Erdős–Ko–Rado theorem which strengthens the Erdős–

Ko–Rado theorem significantly when r is small compared to n.

To translate the Erdős–Ko–Rado theorem to the random setting, it will be

helpful to reformulate the theorem as a statement about Kneser graphs. For
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natural numbers n, r ∈ N with n ≥ r, the Kneser graph K(n, r) is the graph

whose vertex set is [n](r) where two r-element sets A,B ∈ [n](r) are adjacent

if and only if A ∩B = ∅. Observe that a family A ⊂ [n](r) is an intersecting

family if and only if A is an independent set in K(n, r). Writing α(G) for the

size of the largest independent set in a graph G, the Erdős–Ko–Rado theorem

asserts that α(K(n, r)) =
(
n−1
r−1

)
when n ≥ 2r; furthermore, when n > 2r, the

only independent sets of this size are stars.

Let us now randomly delete the edges of the Kneser graph K(n, r) retaining

them with some probability p, independently of each other. When is the

independence number of this random subgraph equal to
(
n−1
r−1

)
? It turns out

that when r is much smaller than n, an analogue of the Erdős–Ko–Rado

theorem continues to be true even after we delete practically all the edges of

the Kneser graph!

This kind of phenomenon, namely the validity of classical extremal results

for surprisingly sparse random structures, has received a lot of attention over

the past twenty five years.

Perhaps the first result of this kind in extremal graph theory was proved by

Babai, Simonovits, and Spencer [8] who showed that an analogue of Mantel’s

Theorem is true for certain random graphs. Mantel’s Theorem states that

the largest triangle free subgraph and the largest bipartite subgraph of Kn,

the complete graph on n vertices, have the same size. Babai, Simonovits, and

Spencer proved that the same holds for the Erdős-Rényi random graph G(n, p)

with high probability when p ≥ 1/2− δ for some absolute constant δ > 0. In

other words, they show that Mantel’s theorem is ‘stable’ in the sense that it

holds not only for the complete graph but that it holds exactly for random

subgraphs of the complete graph as well. Improving upon results of Brightwell,

Panagiotou and Steger [34], DeMarco and Kahn [41] have recently shown that

this phenomenon continues to hold even when the random graph G(n, p) is

very sparse; they show in particular that it suffices to take p ≥ C(log n/n)1/2
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for some absolute constant C > 0, and that this is best possible up to the value

of the absolute constant.

The first such transference results in Ramsey theory were proved by Rödl

and Ruciński [97, 98] and there have been many related Ramsey theoretic

results since; see, for example, [59, 99, 79].

Phenomena of this kind have also been observed in additive combinatorics.

Roth’s theorem [101], a central result in additive combinatorics, states that for

every δ > 0 and all sufficiently large n, every subset of [n] = {1, 2, . . . , n} of

density δ contains a three-term arithmetic progression. Kohayakawa, Rödl and

 Luczak [78] proved a random analogue, showing that such a statement holds

not only for [n] but also, with high probability, for random subsets of [n] of

density at least Cn−1/2, where C > 0 is an absolute constant.

Another classical result in additive combinatorics, due to Diananda and

Yap [42], is that the largest sum-free subset of Z2n is the set of odd numbers.

Balogh, Morris and Samotij [20] proved that the same is true of random subsets

of Z2n of density at least (1 + ε)(log n/3n)1/2 with high probability (for any

fixed ε > 0 and n sufficiently large), and also that this no longer the case when

the density is less than (1− ε)(log n/3n)1/2. Thus, there is a sharp threshold at

(log n/3n)1/2 for the stability of this extremal result; an extension of this sharp

threshold result to all even-order Abelian groups has recently been proved by

Bushaw, Collares Neto, Morris and Smith [35].

Perhaps the most striking application of such transference principles in

additive combinatorics is the Green–Tao theorem [66] on primes in arithmetic

progressions.

These results constitute a tiny sample of the large number of beautiful results

which have been proved in this setting. Very general transference theorems have

been proved by Conlon and Gowers [40] and Schacht [103], and more recently,

by Balogh, Morris and Samotij [19] and Saxton and Thomason [102]. We refer

the interested reader to the surveys of  Luczak [87] and Rödl and Schacht [100]

for a more detailed account of such results.
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Returning to the question at hand, our aim in this chapter, as we remarked

before, is to investigate the independence number of random subgraphs of

K(n, r); for related work on the independence number of random induced

subgraphs of K(n, r), see the paper of Balogh, Bohman and Mubayi [13]. Let

Kp(n, r) denote the random subgraph of K(n, r) obtained by retaining each

edge of K(n, r) independently with probability p. The main question of interest

is the following.

Problem 1.1. For what p > 0 is α(Kp(n, r)) =
(
n−1
r−1

)
with high probability?

For constant r and n sufficiently large, a partial answer was provided by

Bogolyubskiy, Gusev, Pyaderkin and Raigorodskii [25, 24]: they studied random

subgraphs of K(n, r, s), where K(n, r, s) is the graph whose vertex set is [n](r)

where two r-element sets A,B ∈ [n](r) are adjacent if and only if |A ∩B| = s;

in the case s = 0 (which corresponds to the Kneser graph), they established

that α(K1/2(n, r)) = (1 + o(1))
(
n−1
r−1

)
with high probability.

We shall do much more and answer Question 1.1 exactly when r is small

compared to n (more precisely, when r = o(n1/3)). To state our result, it will

be convenient to define the threshold function

pc(n, r) =
(r + 1) log n− r log r(

n−1
r−1

) . (3)

As we shall see, this is the threshold density at which one expects to find a

vertex in Kp(n, r) which has no edges to a maximal independent set of the

original Kneser graph K(n, r). With this definition in place, we can now state

our main result.

Theorem 1.2. Fix a real number ε > 0 and let r = r(n) be a natural

number such that 2 ≤ r(n) = o(n1/3). Then as n→∞,

P
(
α(Kp(n, r)) =

(
n− 1

r − 1

))
→

1 if p ≥ (1 + ε)pc(n, r)

0 if p ≤ (1− ε)pc(n, r).
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Furthermore, when p ≥ (1 + ε)pc, with high probability, the only independent

sets of size
(
n−1
r−1

)
in Kp(n, r) are the trivial ones, namely, stars.

The rest of this chapter is organised as follows. We establish some notation

and collect together some standard facts in Section 2. Most of the work involved

in proving Theorem 1.2 is in establishing the upper bound on the critical density;

we do this in Section 3. We complete the proof of Theorem 1.2 by proving

a matching lower bound in Section 4. We conclude with some discussion in

Section 5.

2. Preliminaries

2.1. Notation. Given x ∈ [n] and A ⊂ [n](r), we write Sx for the star

centred at x, and Ax for the subfamily of A consisting of those sets (of A) that

contain x, i.e., Ax = A∩ Sx. The maximum degree d(A) of a family A ⊂ [n](r)

is defined to be the maximum cardinality, over all x ∈ [n], of the subfamily Ax,

and we write e(A) for the number of edges induced by A in K(n, r). Since any

pair of intersecting sets A,B ∈ A both belong to at least one subfamily Ax, we

get the following estimate for e(A) which is useful when the maximum degree

of A is small.

Proposition 2.1. For any A ⊂ [n](r),

e(A) ≥
(
|A|
2

)
−
∑
x∈[n]

(
|Ax|

2

)
. �

To ease the notational burden, in the rest of this chapter, we shall write

V =
(
n
r

)
for the size of [n](r), and N =

(
n−1
r−1

)
for the size of a star. Also, given

x ∈ [n] and a set A ∈ [n](r) not containing x, we shall write M =
(
n−r−1
r−1

)
for

the number of sets of Sx disjoint from A.

A word on asymptotic notation; we use the standard o(1) notation to denote

any function that tends to zero as n tends to infinity. Here and elsewhere,

the variable tending to infinity will always be n unless we explicitly specify

otherwise.
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2.2. Estimates. Next, we collect some standard estimates that we shall

use repeatedly; for ease of reference, we list them as propositions below. We

refer the reader to Chapter 1 of [27] for the proofs of these claims.

Let us start with a weak form of Stirling’s approximation for the factorial

function.

Proposition 2.2. For all n ∈ N,

√
2πn

(n
e

)n
≤ n! ≤ e1/12n

√
2πn

(n
e

)n
. �

In fact, the following crude bounds for the binomial coefficients will often

be sufficient for our purposes.

Proposition 2.3. For all n, r ∈ N,(n
r

)r
≤
(
n

r

)
≤ nr

r!
≤
(en
r

)r
. �

Also, we will need the following standard inequality concerning the expo-

nential function.

Proposition 2.4. For every x ∈ R such that |x| ≤ 1/2,

ex−x
2 ≤ 1 + x ≤ ex. �

Although our last proposition is also very simple, we prove it here for the

sake of completeness. Recall that N =
(
n−1
r−1

)
and M =

(
n−r−1
r−1

)
.

Proposition 2.5. If r = r(n) = o(n1/2), then N−M = o(N). Furthermore,

if r = o(n1/3), then N−M = o(N/r).

Proof. Both claims follow from the observation that

N−M =

(
n− 1

r − 1

)
−
(
n− r − 1

r − 1

)
=

r∑
i=1

(
n− i
r − 1

)
−
(
n− i− 1

r − 1

)
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=
r∑
i=1

(
n− i− 1

r − 2

)
≤ r

(
n− 2

r − 2

)
=
r(r − 1)

n− 1
N. �

3. Upper bound for the critical threshold

We now turn to our proof of Theorem 1.2. In this section, we shall bound

the critical threshold from above, i.e., we shall prove that a random analogue

of the Erdős–Ko–Rado theorem holds if p > (1 + ε)pc(n, r) where pc(n, r) is

given by (3).

Let us remind the reader before we begin that for us, a star in the Kneser

graph is a maximal trivial intersecting family of sets (and this should not be

confused with the graph-theoretic notion of a star).

Proof of the upper bound in Theorem 1.2. Let 0 < ε < 1/2 and

set p = p(n) = (1 + ε)pc(n, r). We shall prove that with high probability,

the independence number of Kp(n, r) is N, and that furthermore, the only

independent sets of size N in Kp(n, r) are stars. Since we are working with

monotone properties, it suffices to prove this result for ε small enough and so

we lose nothing by assuming 0 < ε < 1/2.

For each i ≥ 1, let Xi be the number of families A ⊂ [n](r) inducing an

independent set in Kp(n, r) such that |A| = N and d(A) = N− i. Also, let Y

be the number of independent families A ⊂ [n](r) such that |A| = N + 1 and

d(A) = N; in other words, independent families of size N + 1 which contain an

entire star.

Our aim is to show that with high probability, the random variables defined

above are all equal to zero. This then implies the lower bound on the critical

threshold; since every Xi is equal to zero, every independent set in Kp(n, r) of

cardinality at least N must contain an entire star, and since Y is also equal to

zero, the only independent sets of cardinality at least N are stars.

59



We start by computing E[Y ]. We know that for any star S, any A ∈ [n](r)\S

is disjoint from M elements of S, and so,

E[Y ] =

(
n

1

)(
V −N

1

)
(1− p)M. (4)

When r = o(n1/3) (indeed, when r = o(n1/2)), we know from Proposition 2.5

that M = (1 + o(1))N. Since p = (1 + ε)((r+ 1) log n− r log r)/N, we see that

E[Y ] ≤ nV(1− p)(1+o(1))N

≤ n
(en
r

)r
exp ((−1 + o(1))pN)

≤ n
(en
r

)r
exp ((1 + ε+ o(1))(r log r − (r + 1) log n))

≤
(er
n

)(ε+o(1))r

≤ n−(ε+o(1))2r/3 = o(1).

By Markov’s inequality, we know that P(Y > 0) ≤ E[Y ] and it follows that

Y is zero with high probability.

We now turn our attention to the Xi. To keep our argument simple, we

distinguish three cases: we first deal with small values of i where the Xi count

families of very large maximum degree, then we consider families of large (but

not huge) maximum degree, and in the final case, we deal with families of small

maximum degree.

Case 1: Very large maximum degree. Unfortunately, when i is small,

it is not true that E[Xi] goes to zero as n grows. For constant i, E[Xi] ≥

n
(
N
i

)(
V−N
i

)
(1− p)(i+o(1))N. When r = 3 and i = 2 for example, it follows that

E[X2] ≥ n

((n−1
2

)
2

)((n
3

)
−
(
n−1

2

)
2

)
(1− p)(2+o(1))N

≥ no(1) n11

n8(1+ε)
≥ n3−8ε+o(1),

which grows with n when ε is small enough. However, if we compute Var [X2],

we are encouraged to find that Var [X2]/E[X2]
2 is bounded away from zero;
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indeed, we observe similar behaviour for any fixed value of i and larger r as

well. We therefore adopt a different strategy to bound P(Xi > 0) for small i.

For j ≥ i, let Xi,j be the number of families A ⊂ [n](r) inducing a maximal

independent set in Kp(n, r) such that d(A) = N− i and |A| = N + j − i. If

Xi > 0, then clearly Xi,j > 0 for some j ≥ i. To compute E[Xi,j], we note

that any family A counted by Xi,j can be described by specifying a star S, a

subfamily A1 ⊂ S of i sets missing from S, and another family A2 of cardinality

j disjoint from S such that

(1) all the edges between S \ A1 and A2 in K(n, r) are absent in Kp(n, r)

(since A is independent), and

(2) each set in A1 is adjacent to at least one set in A2 in Kp(n, r) (because

A is a maximal independent set).

The number of edges between S \ A1 and A2 is at least j(M− i) since any

set not in a star is adjacent to precisely M sets in the star in K(n, r). Also,

the probability that a set in A1 has a neighbour in A2 in Kp(n, r) is at most

jp. Therefore, we have

E[Xi,j] ≤ n

(
N

i

)(
V

j

)
(1− p)j(M−i)(jp)i.

We look at the ratio of the upper bounds for E[Xi,j+1] and E[Xi,j] above

and note that this ratio is at most

V(1− p)M−i(1 + 1/j)i.

When 1 ≤ i ≤ εN/2 and j ≥ i, we see, using the fact that M = (1 + o(1))N,

that

V(1− p)M−i(1 + 1/j)i ≤ e
(en
r

)r
exp

(
−(1 + ε/2− ε2/2 + o(1))pc(n, r)N

)
≤ er+1

( r
n

)εr/5
= o(1).
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Consequently, we have

P[Xi > 0] ≤
∑
j≥i

E[Xi,j] ≤ 2n

(
N

i

)(
V

i

)
(1− p)i(M−i)(ip)i

≤ 2n

(
eN

i

)i(
eV

i

)i
exp (−i(1 + ε/5)pc(n, r)N)

(
i(r + 1) log n

N

)i
≤ 2e2in((r + 1) log n)i

(
V

i

)i
exp (−i(1 + ε/5)pc(n, r)N)

≤ 2

(
er+2(r + 1) log n

i

( r
n

)εr/5)i
≤ 2

(
er+2(r + 1) log n

( r
n

)εr/5)i
.

Summing this estimate for i ≤ εN/2, we get

εN/2∑
i=1

P(Xi > 0) ≤
εN/2∑
i=1

2

(
er+2(r + 1) log n

( r
n

)εr/5)i
≤ 4

(
er+2(r + 1) log n

( r
n

)εr/5)
= o(1),

and so by the union bound, with high probability, for each 1 ≤ i ≤ εN/2, the

random variable Xi is zero.

Case 2: Large maximum degree. Next, we consider the Xi with

εN/2 < i ≤ N

(
1− 1− ε/2

r + 1

)
.

As noted earlier, for any star S, the number of edges in K(n, r) between

a set A ∈ [n](r) \ S and a family A ⊂ S is at least |A| − (N−M). We know

from Proposition 2.5 that N−M = o(N/r) when r = o(n1/3); consequently,

it follows that if A ⊂ [n](r) has cardinality N and d(A) ≥ (1− ε/2)N/(r + 1),

then e(A) ≥ (1 + o(1))d(A)(N− d(A)).

To simplify calculations, let us define α by setting i = αN = αrV/n where

ε/2 < α ≤ (r + ε/2)/(r + 1).

In this range, we see that

E[Xi] ≤ n

(
N

i

)(
V

i

)
(1− p)(1+o(1))i(N−i)
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≤ n
( e
α

)αN(en
rα

)αN
exp

(
−(1 + ε+ o(1))α(1− α)pc(n, r)N

2
)

≤ n

(
nr(1+ε+o(1))(1−α)r

rn(1+ε+o(1))(1−α)(r+1)

)αN
≤ n

( r
n

)(ε2/4−ε3/4+o(1))N

.

The last two inequalities above are obtained by first collecting the O(1) terms

in the bound into the o(1) terms in the exponent, and by then using the bounds

on α. It follows that

(2r+ε)N
2(r+1)∑
i=εN/2

P(Xi > 0) ≤ nN
( r
n

)(ε2/4−ε3/4+o(1))N

= o(1),

and so with high probability, for each εN/2 < i ≤ (r + ε/2)N/(r + 1), the

random variable Xi is zero.

Case 3: Small maximum degree. We shall complete the proof of the

lower bound by showing that ∑
i>

(2r+ε)N
2(r+1)

E[Xi] = o(1).

It turns out that in this range of i, somewhat surprisingly, it is significantly

easier to deal with the case where r tends to infinity with n as opposed to the

case where r is small.

Suppose first that r ≥ log n. Then

(1− ε/2)

r + 1
<

1

r + 4

for all large enough n. Observe that subgraph of K(n, r) induced by a family

A of cardinality N has minimum degree at least N− rd(A) and consequently,

if d(A) < N/(r + 4), then

e(A) ≥ N

2

(
N− rN

r + 4

)
=

2N2

r + 4
.
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In this case, it follows that∑
i>

(2r+ε)N
2(r+1)

E[Xi] ≤
(

V

N

)
(1− p)2N2/(r+4)

≤
(en
r

)N( r
n

)2rN/(r+4)

≤
(er
n

)(1+o(1))N

= o(1)

which completes the proof when r ≥ log n.

Next, suppose that r ≤ log n. When r ≤ log n, it is not necessarily true

(if r = O(1) and ε is sufficiently small, for instance) that (1− ε/2)/(r + 1) <

1/(r + 4). It turns out that in this case, we need a more careful estimate.

For a family A ⊂ [n](r) and each x ∈ [n], define αx = |Ax|/N. Note that∑n
x=1 αx = r. Recall that Proposition 2.1 tells us that

e(A) ≥
(
|A|
2

)
−
∑
x∈[n]

(
|Ax|

2

)
≥
(

N

2

)(
1−

∑
x∈[n]

α2
x

)
.

Let A ⊂ [n](r) be such that |A| = N and d(A) < (1− ε/2)N/(r + 1). For

such a family A, let D = DA be the set of x ∈ [n] such that αx ≥ (log n)−2.

Since
∑n

x=1 αx = r, we see that |D| ≤ r(log n)2 ≤ (log n)3.

Lemma 3.1. Fix D = DA and the values of |Ax| for x ∈ D. Subject to these

restrictions, the expected number of families A ⊂ [n](r) of maximum degree at

most (1− ε/2)N/(r + 1) which induce independent sets in Kp(n, r) is at most

(r/n)(3/10+o(1))N.

Proof. Since
∑n

x=1 αx = r, it follows (by convexity, for example) that∑
x∈[n]\D α

2
x is at most r(log n)−2 ≤ (log n)−1 = o(1). Consequently,

e(A) ≥ N2

2

(
1 + o(1)−

∑
x∈[n]

α2
x

)
≥ N2

2

(
1 + o(1)−

∑
x∈D

α2
x

)
,
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and so the probability that a family A as in the statement of the lemma induces

an independent set is at most

(1− p)e(A) ≤ exp

(
− pN2

2

(
1 + o(1)−

∑
x∈D

α2
x

))

≤

(
r(1+o(1))r

n(1+o(1))(r+1)

∏
x∈D

(
nr+1

rr

)α2
x

)N/2

. (5)

Next, we bound the number of ways in which we can choose A as in

Lemma 3.1. Using the fact that r ≤ log n and |D| ≤ (log n)3, we first note that

N ≥
∣∣∣⋃
x∈D

Ax
∣∣∣ ≥∑

x∈D

|Ax| −
∑
x,y∈D
x<y

|Ax ∩ Ay|

≥
∑
x∈D

|Ax| − |D|2
(
n− 2

r − 2

)

≥

(∑
x∈D

αx −
|D|2r
n

)
N ≥

(∑
x∈D

αx + o(1)

)
N.

It follows that ∑
x∈D

αx ≤ 1 + o(1) < 1 + 1/10 (6)

and

|A \ (∪x∈DAx)| < N

(
1 + 1/5−

∑
x∈D

αx

)
.

(Here, the choice of the constants 1/10 and 1/5 was arbitrary; any two sufficiently

small constants would have sufficed.) Hence, the number of ways to choose A

is at most(
V

N(6/5−
∑

x∈D αx)

)∏
x∈D

(
N

αxN

)
≤
(

10en

r

)N(6/5−
∑
x∈D αx) ∏

x∈D

(
e

αx

)αxN
≤ 100N

(n
r

)6N/5 ∏
x∈D

(
r

αxn

)αxN
≤
(n
r

)(6/5+o(1))N ∏
x∈D

(
r

αxn

)αxN
. (7)
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From (5) and (7), we conclude that the expected number of independent

families A as in the lemma is at most(
r(1+o(1))r/2−6/5

n(1+o(1))(r+1)/2−6/5

)N ∏
x∈D

((
r

αxn

)(
nr+1

rr

)αx/2)αxN

Now, note that(r/αn)(nr+1/rr)α/2 < 1 whenever (log n)−2 ≤ α < (1 −

ε/2)/(r + 1). Indeed, observe that the function f defined on the positive reals

by

f(α) =
α((r + 1) log n− r log r)

2
− logα + log (r/n)

is convex; so to check that f(α) < 0 when (log n)−2 ≤ α ≤ (1− ε/2)/(r+ 1), it

suffices to check that f((log n)−2) < 0 and f((1− ε/2)/(r + 1)) < 0 and both

conditions hold for all sufficiently large n when r ≤ log n.

Therefore, we conclude that the expected number of independent families

A as in the lemma is at most(
r(1+o(1))r/2−6/5

n(1+o(1))(r+1)/2−6/5

)N

≤
(
r(1+o(1))(r+1)/2−6/5

n(1+o(1))(r+1)/2−6/5

)N

≤
( r
n

)(3/10+o(1))N

,

where the last inequality above follows from the fact that (r+1)/2−6/5 ≥ 3/10

for all r ≥ 2. This completes the proof of Lemma 3.1. �

Recall that if r ≤ log n and d(A) < (1−ε/2)N/(r+1), then |DA| ≤ (log n)3.

So the number of choices for the set DA is clearly at most

(logn)3∑
j=0

(
n

j

)
≤ (log n)3

(
n

(log n)3

)
. (8)

We know from (6) that the values |Ax| for x ∈ DA satisfy∑
x∈D

|Ax| ≤ 11N/10

and so, the number of ways of selecting the values of |Ax| is at most(
11N/10 + (log n)3 + 1

(log n)3

)
≤ (2N)(logn)3 . (9)
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From Lemma 3.1, we conclude using (8) and (9) that∑
i>

(2r+ε)N
2(r+1)

E[Xi] ≤ (log n)3n(logn)3(2N)(logn)3
( r
n

)(3/10+o(1))N

. (10)

It is easy to check that the right-hand side of (10) is o(1) for every 2 ≤ r ≤ log n.

Hence, with high probability, for each i > (r + ε/2)N/(r + 1), the random

variable Xi is zero; this completes the proof of the lower bound. �

4. Lower bound for the critical threshold

As in the previous section, let Y be the number of independent families in

Kp(n, r) of size N + 1 which contain an entire star.

Proof of the lower bound in Theorem 1.2. Turning to the lower

bound, we shall assume that p = (1 − ε)pc(n, r) for some fixed real number

ε > 0 and we show using a simple second moment calculation that Y > 0 with

high probability; consequently, the independence number of Kp(n, r) is at least

N + 1.

Recall (4) which says that

E[Y ] =

(
n

1

)(
V −N

1

)
(1− p)M.

Note that N = o(V) when r = o(n1/3); it follows that

E[Y ] ≥ (1 + o(1))nV(1− p)N

≥ (1 + o(1))
nr+1

r!
exp

(
−(p+ p2)N

)
≥ nr+1

r!
exp ((1− ε+ o(1))(r log r − (r + 1) log n))

≥
(n
r

)(ε+o(1))r

,

and so E[Y ]→∞ when p = (1− ε)pc(n, r).
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Therefore, to show that Y > 0 with high probability, it suffices to show

that Var[Y ] = o(E[Y ]2) or equivalently, that E[(Y )2] = (1 + o(1))E[Y ]2, where

E[(Y )2] = E[Y (Y − 1)] is the second factorial moment of Y .

Note that

E[(Y )2] =
∑

x,y,A,B

P(Sx ∪ {A} andSy ∪ {B} are independent),

the sum being over ordered 4-tuples (x, y, A,B) with x, y ∈ [n], A ∈ [n](r) \ Sx
and B ∈ [n](r) \ Sy such that (x,A) 6= (y,B). Now, observe that∑
x 6=y

P(Sx ∪ {A} andSy ∪ {B} are independent) ≤ (n2)(V −N)2(1− p)(2−o(1))M

= (1 + o(1))E[Y ]2,

and∑
x=y,A6=B

P(Sx ∪ {A} andSy ∪ {B} are independent) ≤ n(V −N)2(1− p)2M

= o(E[Y ]2).

By Chebyshev’s inequality, we conclude that Y > 0 with high probability

and so, the independence number of Kp(n, r) is at least N + 1. �

5. Concluding remarks

The condition r = o(n1/3) in our results seems somewhat artificial; we would

expect the same formula for the critical threshold to hold for much larger r as

well. We suspect that this formula in fact gives the exact value of the critical

threshold when r = o(n) but we are unable to prove this presently.

The size of the critical window also merits study. Our proof (for large r)

works even when we are a factor of (1 + 6/r) away from the critical threshold;

it is possible that the critical window is much smaller and it is an interesting

problem to determine the size of the critical window precisely.
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Of course, one would be interested to know what happens for larger r as

well. When r/n is bounded away from 1/2, we suspect it should be possible

to demonstrate stability of the Erdős–Ko–Rado theorem at p = 1/2, say. We

return to this question in the next chapter.
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CHAPTER 6

Transference for the Erdős–Ko–Rado theorem, II

Joint work with József Balogh and Béla Bollobás.

1. Introduction

In this chapter, we shall continue the work begun in the last chapter and

once again, our objective will be a transference result the Erdős–Ko–Rado

theorem. Recall that for natural numbers n, r ∈ N with n ≥ r, the Kneser

graph K(n, r) is the graph whose vertex set is [n](r) where two r-element sets

A,B ∈ [n](r) are adjacent if and only if A ∩ B = ∅. Observe that a family

A ⊂ [n](r) is an intersecting family if and only if A induces an independent set

in K(n, r). Writing α(G) for the size of the largest independent set in a graph

G, the Erdős–Ko–Rado theorem asserts that α(K(n, r)) =
(
n−1
r−1

)
when n ≥ 2r

and furthermore, when n > 2r, the only independent sets of this size are stars.

Let Kp(n, r) denote the random subgraph of K(n, r) obtained by retaining

each edge of K(n, r) independently with probability p. In the previous chapter,

we asked the following natural question: is α(Kp(n, r)) =
(
n−1
r−1

)
? We proved,

when r = r(n) = o(n1/3), that the answer to this question is in the affirmative

even after practically all the edges of the Kneser graph have been deleted.

More precisely, we showed that in this range, there exists a (very small) critical

probability pc(n, r) with the following property: as n→∞, if p/pc > 1 then

with high probability, α(Kp(n, r)) =
(
n−1
r−1

)
and the only independent sets of this

size in Kp(n, r) are stars, while if p/pc < 1, then α(Kp(n, r)) >
(
n−1
r−1

)
with high

probability. In this chapter, we shall prove a transference theorem that holds

for much bigger values of r = r(n); however, unlike in the previous chapter, we

are unable to establish a sharp threshold. Our main result is the following.
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Theorem 1.1. For every ε > 0, there exist constants c = c(ε) > 0 and

c′ = c′(ε) > 0 with c < c′ such that for all n, r ∈ N with r ≤ (1/2− ε)n,

P
(
α(Kp(n, r)) =

(
n− 1

r − 1

))
→

1 if p ≥
(
n−1
r−1

)−c
0 if p ≤

(
n−1
r−1

)−c′
as n→∞. In particular, with high probability, α(K1/2(n, r)) =

(
n−1
r−1

)
.

All the work in proving Theorem 1.1 is in showing that c(ε) exists. The

existence of c′(ε), on the other hand, is an easy exercise. Indeed, a second

moment calculation identical to that in Section 4 of Chapter 5 shows that

if p ≤
(
n−r−1
r−1

)−1
, then with high probability, there exists a star and an r-set

not contained in the star all the edges between which are absent in Kp(n, r).

We can then check that if r ≤ (1/2− ε)n, then there exists a c′ = c′(ε) such

that
(
n−r−1
r−1

)
≥
(
n−1
r−1

)c′
. Indeed, using Stirling’s approximation, this reduces

to verifying that (n− r) log(r/(n− r))/n log(r/n) is uniformly bounded away

from zero when r ≤ (1/2 − ε)n; this is straightforward because the function

decreases with r. Hence, if p ≤
(
n−1
r−1

)−c′
, then α(Kp(n, r)) ≥

(
n−1
r−1

)
+ 1 with

high probability.

Let us briefly describe some of the ideas that go into the proof of Theorem 1.1.

We shall prove two results which, taken together, show that a large family

A ⊂ [n](r) without a large intersecting subfamily must necessarily contain many

pairs of disjoint sets, or in other words, must induce many edges in K(n, r);

we do this in Section 3. We put together the pieces and give the proof of

Theorem 1.1 in Section 4. In Section 5, we briefly describe some approaches

to improving the dependence of c(ε) on ε in Theorem 1.1. We conclude with

some discussion in Section 6.

2. Preliminaries

Henceforth, a ‘family’ will be a uniform family on [n] unless we specify

otherwise. To ease the notational burden, we adopt the following notational
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convention: when n and r are clear from the context, we write V =
(
n
r

)
,

N =
(
n−1
r−1

)
, M =

(
n−r−1
r−1

)
and R =

(
2r
r

)
.

We need a few results from extremal set theory, some classical and some

more recent. The first result that we will need, due to Hilton and Milner [68],

bounds the cardinality of a nontrivial uniform intersecting family. Writing Ax
for the subfamily of a family A that consists of those sets containing x, we

have the following.

Theorem 2.1. Let n, r ∈ N and suppose that n > 2r. If A ⊂ [n](r) is an

intersecting family with |A| ≥ N −M + 2, then there exists an x ∈ [n] such

that A = Ax. �

The next result we shall require, due to Friedgut [58], is a quantitative

extension of the Hilton–Milner theorem which says that any sufficiently large

uniform intersecting family must resemble a star.

Theorem 2.2. For every ε > 0, there exists a C = C(ε) > 0 such that for

all n, r ∈ N with εn ≤ r ≤ (1/2− ε)n, the following holds: if A ⊂ [n](r) is an

intersecting family and |A| = N − k, then there exists an x ∈ [n] for which

|Ax| ≥ N− Ck. �

We will also need the following well-known inequality for cross-intersecting

families due to Bollobás [26].

Theorem 2.3. Let (A1, B1), . . . , (Am, Bm) be pairs of disjoint r-element

sets such that Ai ∩Bj 6= ∅ for i, j ∈ [m] whenever i 6= j. Then m ≤ R. �

Finally, we shall require a theorem of Kruskal [80] and Katona [72]. For

a family A ⊂ [n](r), its shadow in [n](k), denoted ∂(k)A, is the family of those

k-sets contained in some member of A. For x ∈ R and r ∈ N, we define the

generalised binomial coefficient
(
x
r

)
by setting(

x

r

)
=
x(x− 1) . . . (x− r + 1)

r!
.
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The following convenient formulation of the Kruskal–Katona theorem is due to

Lovász [86].

Theorem 2.4. Let n, r, k ∈ N and suppose that k ≤ r ≤ n. If the cardinality

of A ⊂ [n](r) is
(
x
r

)
for some real number x ≥ r, then |∂(k)A| ≥

(
x
k

)
. �

To avoid clutter, we omit floors and ceilings when they are not crucial. We

use the standard o(1) notation to denote any function that tends to zero as

n tends to infinity; the variable tending to infinity will always be n unless we

explicitly specify otherwise.

3. The number of disjoint pairs

Given a family A, we write e(A) for the number of disjoint pairs of sets in

A; equivalently, e(A) is the number of edges in the subgraph of the Kneser

graph induced by A. In this section, we give some bounds for e(A).

We denote by A∗ the largest intersecting subfamily of a family A; if this

subfamily is not unique, we take any subfamily of maximum cardinality. We

write `(A) = |A| − |A∗| for the difference between the cardinality of A and the

largest intersecting subfamily of A.

Trivially, we have e(A) ≥ `(A). Our first lemma says that we can do much

better than this trivial bound when `(A) is large.

Lemma 3.1. Let n, r ∈ N. For any A ⊂ [n](r),

e(A) ≥ `(A)2

2R
.

To prove this lemma, we need the notion of an induced matching. An

induced matching of size m in a graph G is a set of 2m vertices inducing a

subgraph consisting of m independent edges; equivalently, we refer to these m

edges as an induced matching of size m. The induced-matching number of G,

in notation, m(G), is the maximal size of an induced matching in G.
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Proposition 3.2. Let G = (V,E) be a graph with m(G) = m ≥ 1. Then

|E| ≥ k2

4m

where k = |V | − α(G).

Proof. Let us choose X = {x1, . . . , xm} and Y = {y1, . . . , ym} so that the

edges x1y1, . . . , xmym constitute an induced matching. Let Z = Γ(X∪Y ) be the

set of neighbours of the vertices in X ∪ Y ; thus X ∪ Y ⊂ Z. Since m(G) = m,

the set V (G) \ Z is independent, and so |Z| ≥ k. Since some vertex in X ∪ Y

has at least |Z|/2m neighbours, we conclude that ∆(G) ≥ |Z|/2m ≥ k/2m

where ∆(G) is the maximum degree of G.

Now define a sequence of graphs G = G0 ⊃ G1 ⊃ · · · ⊃ Gk and a sequence

of vertices x0, x1, . . . , xk by taking xi to be a vertex of Gi of maximal degree and

Gi+1 to be the graph obtained from Gi by deleting xi. We know from our earlier

arguments that ∆(Gi) ≥ (k − i)/2m, and so |E| ≥
∑k

i=0 ∆(Gi) ≥ k2/4m. �

To apply the previous proposition, we need the following corollary of

Theorem 2.3 the proof of which is implicit in [18]; we include the short proof

here for completeness.

Proposition 3.3. For n ≥ 2r, the induced-matching number of K(n, r) is

m(K(n, r)) =

(
2r − 1

r − 1

)
=

R

2
.

Proof. Let A1B1, . . . , AmBm be an induced matching in K(n, r). For

m+ 1 ≤ i ≤ 2m, we set Ai = Bi−m and Bi = Ai−m. We apply Theorem 2.3 to

the pairs (A1, B1), . . . , (A2m, B2m) and conclude that 2m ≤ R.

The R/2 partitions of [2r] into disjoint r-sets form an induced matching,

and so m(K(n, r)) = R/2, as claimed. �

Proof of Lemma 3.1. The lemma follows by applying Proposition 3.2

to GA, the subgraph of the Kneser graph K(n, r) induced by A. �
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Note that Lemma 3.1 is only effective when `(A) ≥ 2R. The next, somewhat

technical, lemma complements Lemma 3.1 by giving a better bound when `(A)

is small provided the size of A is large.

Lemma 3.4. For every ε, η > 0, there exist constants δ = δ(ε, η) > 0 and

C = C(ε) > 0 with the following property: for all n, r ∈ N with εn ≤ r ≤

(1/2− ε)n, we have

e(A) ≥ `(A)1+δ − C`(A)

for any family A ⊂ [n](r) with |A| = N and `(A) ≤ N1−η.

To clarify, the C(ε) in the statement of the lemma above is the same as the

C(ε) guaranteed by Theorem 2.2.

Proof of Lemma 3.4. First, let us note that since we always have e(A) ≥

`(A), it suffices to prove the lemma under the assumption that n is sufficiently

large; indeed, the lemma would then follow for all n ∈ N with an appropriately

smaller value of δ.

Let ` = `(A). We start by observing that most of A must be contained in

a star. Indeed, as before, let A∗ denote the largest intersecting subfamily of A;

by definition, |A∗| = N− `. Since we have assumed that εn ≤ r ≤ (1/2− ε)n,

we may assume, by Theorem 2.2, that |A∗n| ≥ N− C` where C = C(ε) is as

guaranteed by Theorem 2.2. Hence, |An| ≥ |A∗n| ≥ N− C`.

We also know that |An| ≤ |A∗| ≤ N − `; let B be a subset of A \ An of

cardinality exactly `. We shall bound e(A) by counting the number of edges

between B and An in K(n, r).

Let us define

A′ = {A \ {n} : A ∈ An} ⊂ [n− 1](r−1)

and

B′ = {[n− 1] \B : B ∈ B} ⊂ [n− 1](n−r−1).

76



Clearly, to count the number of edges between An and B in K(n, r), it suffices

to count the number of pairs (A′, B′) in A′×B′ with A′ ⊂ B′. This quantity is

obviously bounded below by the number of sets A′ ∈ A′ contained in at least

one B′ ∈ B′.

Since A′ ⊂ [n − 1](r−1) and |A′| ≥ N − C`, the number of sets A′ ∈ A′

contained in some B′ ∈ B′ is at least |∂(r−1)B′| − C`. Consequently,

e(A) ≥ |∂(r−1)B′| − C`.

We shall show that there exists a δ = δ(ε, η) > 0 such that, under the conditions

of the lemma, |∂(r−1)B′| ≥ `1+δ.

We deduce the existence of such a δ from Theorem 2.4, the Kruskal–Katona

theorem. We may assume that

` = |B′| =
(

x

n− r − 1

)
for some real number x ≥ n− r − 1. It follows from Theorem 2.4 that

|∂(r−1)B′| ≥
(

x

r − 1

)
.

Let us put r = (1/2− β)n and x = ϑn. We now calculate what values β and ϑ

can take. We know that ε ≤ β ≤ 1/2− ε. Since x ≥ n− r − 1, we also know

that ϑ ≥ 1/2 + β − 1/n ≥ 1/2 + β/2. On the other hand, since(
ϑn

(1/2 + β)n

)
= ` ≤ N1−η =

(
n− 1

r − 1

)1−η

≤
(
n

r

)1−η

=

(
n

(1/2− β)n

)1−η

,

it follows from Stirling’s approximation for the factorial function that there

exists some δ′(ε, η) > 0 such that ϑ ≤ 1− δ′.

Hence it suffices to check that there exists a δ = δ(ε, η) > 0 for which the

inequality (
ϑn

(1/2− β)n− 1

)
≥
(

ϑn

(1/2 + β)n− 1

)1+δ

holds for all β ∈ [ε, 1/2 − ε] and ϑ ∈ [1/2 + β/2, 1 − δ′] as long as n is

sufficiently large. This is easily checked using Stirling’s formula. Indeed, let
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H(x) = −x log2(x)− (1− x) log2(1− x) be the binary entropy function. We

know from Stirling’s approximation that(
ϑn

(1/2− β)n− 1

)
= exp

(
(ϑ+ o(1))H

(
1/2− β

ϑ

)
n

)
,

and similarly that(
ϑn

(1/2 + β)n− 1

)
= exp

(
(ϑ+ o(1))H

(
1/2 + β

ϑ

)
n

)
.

Hence, it suffices to show that there exists a δ = δ(ε, δ′) such that H((1/2−

β)/ϑ) > (1+δ)H((1/2+β)/ϑ) for all β ∈ [ε, 1/2−ε] and ϑ ∈ [1/2+β/2, 1−δ′].

This follows easily from the fact that H is a concave function attaining its

maximum at 1/2 and the fact that H(x) = H(1− x). �

4. Proof of the main result

Armed with Lemmas 3.1 and 3.4, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us fix ε > 0 and assume that r ≤ (1/2−ε)n.

Clearly, it is enough to prove Theorem 1.1 for all sufficiently small ε; it will

be convenient to assume that ε < 1/10. As mentioned earlier, Bollobás,

Narayanan and Raigorodskii have proved Theorem 1.1 in a much stronger form

when r = o(n1/3). So to avoid having to distinguish too many cases, we shall

assume that r grows with n; for concreteness, let us suppose that r ≥ n1/4. A

consequence of these assumptions is that in this range, V, N and M all grow

much faster than any polynomial in n.

Recall that Kp(n, r) is the random subgraph of the Kneser graph K(n, r)

where we retain each edge of K(n, r) independently with probability p. For

each ` ≥ 1, let X` denote the (random) number of independent sets A ⊂ [n](r)

in Kp(n, r) with |A| = N and `(A) = `.

To prove Theorem 1.1, it clearly suffices to show that for some c = c(ε) > 0,

all of the X` are zero with high probability provided p ≥ N−c. We shall
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prove this by distinguishing three cases depending on which of Theorem 2.1,

Lemma 3.1 and Lemma 3.4 is to be used.

Let C = C(ε) be as in Theorem 2.2. Note that since r ≤ (1/2 − ε)n, it

is easy to check using Stirling’s approximation that we can choose positive

constants cm = cm(ε) and cr = cr(ε) such that M ≥ Ncm and R ≤ N1−cr .

We now set Lm = Ncm/2 and Lr = N1−cr/4 and distinguish the following

three cases.

Case 1: ` ≤ Lm . Let A ⊂ [n](r) be a family of cardinality N with `(A) = `.

Since

` ≤ Lm = Ncm/2 ≤M− 2,

we see that A∗, the largest intersecting subfamily of A, satisfies

|A∗| = N− ` ≥ N−M + 2.

It follows from Theorem 2.1 that there is an x ∈ [n] for which A∗ is contained

in the star centred at x. Consider the ` sets in A \A∗. Any such set is disjoint

from exactly M members of the star centred at x and hence from at least M−`

members of A∗. This tells us that e(A) ≥ `(M− `). Since ` ≤M/2, it follows

that

E[X`] ≤ n

(
N

`

)(
V

`

)
(1− p)`(M−`)

≤ n

(
2n

`

)2

exp(−p`M/2)

≤ exp(2n`− p`M/2).

Hence, if c ≤ cm/2 so that p ≥ N−cm/2, it is clear that

Lm∑
`=1

E[X`] ≤
Lm∑
`=1

exp

(
2n`− `Ncm/2

2

)
= o(1).

So with high probability, for each 1 ≤ ` ≤ Lm, the random variable X` is zero.
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Case 2: ` ≥ Lr. Again, let A ⊂ [n](r) be a family of cardinality N with

`(A) = `. We know from Lemma 3.1 that

e(A) ≥ `2

2R
≥ N2−cr/2

2N1−cr
=

N1+cr/2

2
.

So it follows that∑
l≥Lr

E[X`] ≤
(

V

N

)
exp

(
−pN1+cr/2

2

)
≤ exp

(
nN− pN1+cr/2

2

)
.

Hence if c ≤ cr/4 so that p ≥ N−cr/4, we have∑
l≥Lr

E[X`] ≤ exp

(
nN− N1+cr/4

2

)
= o(1).

So once again, with high probability, the sum
∑

`≥Lr X` is zero.

Before we proceed further, let us first show that that we may now assume

without loss of generality that r ≥ εn. This is because one can check that

the arguments in Cases 1 and 2 together prove Theorem 1.1 when r ≤ εn for

all sufficiently small ε. It is easy to check using Stirling’s formula that if ε is

sufficiently small, indeed if ε < 1/10 for example, then it is possible to choose

positive constants c′m(ε) and c′r(ε) so that for all r ≤ εn, we have M ≥ Nc′m ,

R ≤ N1−c′r and Nc′m/2 ≥ N1−c′r/4. So the arguments above yield a proof of

Theorem 1.1 when r ≤ εn. Therefore, in the following, we assume that r ≥ εn.

Case 3: Lm ≤ ` ≤ Lr. As before, consider any family A ⊂ [n](r) of

cardinality N with `(A) = `. First note that since εn ≤ r ≤ (1/2 − εn) and

` ≤ Lr = N1−cr/4 where cr is a constant depending only on ε, by Lemma 3.4,

there exists a δ = δ(ε) such that

e(A) ≥ `1+δ − C`.

Since ` ≥ Lm = Ncm/2, it follows that

e(A) ≥ `1+δ − C` ≥ `1+δ/2

for all sufficiently large n.
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Next, consider A∗, the largest intersecting subfamily of A, of cardinality

N − `. We know from Theorem 2.2 that there exists an x ∈ [n] such that

|A∗x| ≥ N− C` and so |Ax| ≥ N− C`. It is then easy to see that

E[X`] ≤ n

(
N

C`

)(
V

C`

)
(1− p)`1+δ/2

≤ exp
(
`
(
2Cn− p`δ/2

))
.

Hence, if c ≤ cmδ/4 so that p ≥ N−cmδ/4, it follows that

Lr∑
`=Lm

E[X`] ≤
Lr∑

`=Lm

exp
(
`
(
2Cn−Ncmδ/4/2

))
= o(1)

and so with high probability, for each Lm ≤ ` ≤ Lr, the random variable X` is

zero.

Putting the different parts of our argument together, we find that if 0 <

ε < 1/10,

c = c(ε) = min

(
cm(ε)

2
,
c′m(ε)

2
,
cr(ε)

4
,
c′r(ε)

4
,
cm(ε)δ(ε)

2

)
and p ≥ N−c, then for all r = r(n) ≤ (1/2− ε)n, we have

P
(
α(Kp(n, r)) =

(
n− 1

r − 1

))
→ 1

as n→∞. This completes the proof of Theorem 1.1. �

5. Avenues for improvement

We briefly discuss how one might tighten up the arguments in Theorem 1.1

so as to improve the dependence of c(ε) on ε in the result. However, since it

seems unlikely to us that these methods will be sufficient to determine the

precise critical threshold at which Theorem 1.1 ceases to hold, we shall keep

the discussion in this section largely informal.
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5.1. Containers for sparse sets in the Kneser graph. The first ap-

proach we sketch involves using ideas from the theory of ‘graph containers’ to

count large sparse sets in the Kneser graph more efficiently.

The theory of graph containers was originally developed to efficiently count

the number of independent sets in a graph satisfying some kind of ‘supersatu-

ration’ condition. The basic principle used to construct containers for graphs

can be traced back to the work of Kleitman and Winston [77]. A great deal of

work has since gone into refining and generalising their ideas, culminating in

the results of Balogh, Morris and Samotij [19] and Saxton and Thomason [102];

these papers also give a detailed account of the history behind these ideas and

we refer the interested reader there for details about how the general method-

ology was developed. Here we shall content ourselves with a brief discussion

of how these ideas might be used to improve the dependence of c(ε) on ε in

Theorem 1.1.

Let us write Ym = Ym(n, r) for the number of families A ⊂ [n](r) with

|A| = N and e(A) = m. Clearly, to show that α(Kp(n, r)) = N with high

probability, it suffices to show that
∑

m≥1 Ym(1− p)m = o(1). Hence, it would

be useful to have good estimates for Ym. We shall derive some bounds for Ym;

see Theorem 5.2 below. These bounds are not strong enough (especially for

small values of m) to prove Theorem 1.1. However, note that in our proof of

Theorem 1.1, we use the somewhat cavalier bound of
(
V
N

)
for the number of

families A of size N for which `(A) is equal to some prescribed value (in Case 2

of the proof); we can instead use Theorem 5.2 to count more efficiently.

To prove an effective container theorem, one needs to first establish a

suitable supersaturation property. Lovász [85] determined the second largest

eigenvalue of the Kneser graph; by combining Lovász’s result with the expander

mixing lemma, Balogh, Das, Delcout, Liu and Sharifzadeh [18] (see also [62])

proved the following supersaturation theorem for the Kneser graph.

Proposition 5.1. Let n, r, k ∈ N and suppose that n > 2r and k ≤ V−N.

If A ⊂ [n](r) has cardinality N + k, then e(A) ≥ kM/2. �
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Using Proposition 5.1, we prove the following container theorem for the

Kneser graph.

Theorem 5.2. For every ε > 0, there exists a Ĉ = Ĉ(ε) > 0 such that for

every β > 0 and all n, r,m ∈ N with εn ≤ r ≤ (1/2− ε)n and m ≤ V
(
n−r
r

)
/2,

the following holds: writing

k1 = Ĉ

(
N

βM
+

(
mN

βM

)1/2
)

and

k2 = k1 + ĈβN,

there exist, for 1 ≤ i ≤
∑k1

j=0

(
V
j

)
, families Bi ⊂ [n](r) each of cardinality at

most N + k2 with the property that each A ⊂ [n](r) with e(A) ≤ m is contained

in one of these families.

The advantage of this formulation of Theorem 5.2 in terms of k1, k2 and β

is that we can apply the theorem with a value of β > 0 suitably chosen for the

application at hand.

It is easy to check from Theorem 5.2 that Ym = Ym(n, r), the number of

families A ⊂ [n](r) with |A| = N and e(A) = m, satisfies

Ym(n, r) ≤

(
k1∑
j=0

(
V

j

))(
N + k2

N

)
= 2

(
V

k1

)(
N + k2

k2

)
≤ 2

(
V

k1

)(
V

k2

)

≤ 2 exp

(
Ĉn

(
βN +

2N

βM
+

(
4mN

βM

)1/2
))

for all β > 0 such that k1 ≤ V/2. (Indeed, there are
∑k1

j=0

(
V
j

)
ways of choosing

a container B, and there are at most
(
N+k2
N

)
sets of size N in B.) We can then

optimise this bound by choosing β depending on how large m is in comparison

to M and N.

Proof of Theorem 5.2. We start by proving a lemma whose proof is

loosely based on the methods of Saxton and Thomason [102]. Before we

state the lemma, let us have some notation. Given a graph G = (V,E) and
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U ⊂ V (G), we write

µ(U) =
|E(G[U ])|
|V |

;

in other words, µ(U) is the number of edges induced by U divided by the

number of vertices of G. Also, we write P(X) for the collection of all subsets

of a set X.

Lemma 5.3. Let G = (V,E) be a graph with average degree d and maximum

degree ∆. For every a ≥ 0 and b > 0, there is a map C : P(V )→ P(V ) with

the following property: for every U ⊂ V with µ(U) ≤ a, there is a subset T ⊂ V

such that

(1) T ⊂ U ⊂ C(T ),

(2) |T | ≤ 2|V |(a/bd)1/2 + |V |/bd, and

(3) µ(C(T )) ≤ 2∆(a/bd)1/2 + ∆/bd+ bd.

Proof. We shall describe an algorithm that constructs T given U . The

algorithm will also construct C(T ) in parallel; it will be clear from the algorithm

that C(T ) is entirely determined by T and in no way depends on U .

Fix a linear ordering of the vertex set V of G. If u and v are adjacent and u

precedes v in our ordering, we call v a forward neighbour of u and u a backward

neighbour of v. For a vertex v ∈ V , we write F (v) for the set of its forward

neighbours.

We begin by setting T = ∅ and A = V . We shall iterate through V in the

order we have fixed and add vertices to T and remove vertices from A as we go

along; at any stage, we write Γ(T ) to denote the set of those vertices which,

at that stage, have k or more backward neighbours in T where k is the least

integer strictly greater than (abd)1/2.

As we iterate through the vertices of V in order, we do the following when

considering a vertex v.

(1) If v ∈ Γ(T ), we remove v from A; if it is also the case that v ∈ U , then

we add v to T .
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(2) If v /∈ Γ(T ), we consider the size of S = F (v) \ Γ(T ).

(a) If |S| ≥ bd, we remove v from A; if it is also the case that v ∈ U ,

then we add v to T .

(b) If |S| < bd, we do nothing.

The algorithm outputs T and A when it terminates; we then set C(T ) =

A ∪ T . It is clear from the algorithm that C(T ) is uniquely determined by

T and that T ⊂ U ⊂ C(T ). To see this, note that the decision to remove

a vertex v from A depends only on which vertices preceding v belong to T .

Therefore, we can reconstruct A, and hence C(T ), using only the set T without

any knowledge of the set U .

We first show that |T | ≤ 2|V |(a/bd)1/2 + |V |/bd. Consider the partition

T = T1 ∪ T2 where T1 consists of those vertices which were added to T on

account of condition (1) and T2 of those vertices which were added to T when

considering condition (2a). The upper bound for |T | follows from the following

two claims.

Claim 5.4. |T1| ≤ |E(G[U ])|/k.

Proof. Clearly, each vertex of T1 has at least k backward neighbours in

T ⊂ U . Hence, k|T1| ≤ |E(G[U ])|. �

Claim 5.5. |T2| ≤ k|V |/bd.

Proof. Let us mark all the edges from v to F (v) \ Γ(T ) when a vertex v

gets added to T on account of condition (2a). The number of marked edges is

clearly at least bd|T2| since the left end of each marked edge is in T2 (by the

definition of T2) and each such left end contributes at least bd marked edges.

On the other hand, by the definition of Γ(T ), each vertex in G is joined to at

most k of its backward neighbours by a marked edge. Hence, bd|T2| ≤ k|V |. �

Consequently, since (abd)1/2 < k ≤ (abd)1/2 + 1, we have

|T | ≤ |T1|+ |T2| ≤
a|V |
k

+
k|V |
bd
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≤ a|V |
(abd)1/2

+
((abd)1/2 + 1)|V |

bd
≤ |V |

(
2
( a
bd

)1/2

+
1

bd

)
.

It remains to show that µ(C) ≤ 2∆(a/bd)1/2 + ∆/bd + bd. To see this, recall

that C(T ) = A ∪ T and notice that

|E(G[C(T )])| ≤ ∆|T |+ |E(G[A])| ≤ ∆|T |+ bd|V |.

To see the last inequality, i.e., |E(G[A])| ≤ bd|V |, note that a vertex v is

removed from A by our algorithm unless we have |F (v) \ Γ(T )| < bd at the

stage where we consider v. Since each member of Γ(T ) is (eventually) removed

from A, we see that each vertex of A has at most bd forward neighbours in A

and the inequality follows. The claimed bound for µ(C) then follows from our

previously established upper bound for |T |. �

To prove Theorem 5.2, we now combine Lemma 5.3 with Proposition 5.1.

First note that the Kneser graph K(n, r) has V = nN/r vertices and is

(n− r)M/r regular.

Let us take Ĉ(ε) = 20/ε2. It is easy to check that given β > 0 and a family

A ⊂ [n](r) with e(A) ≤ m, we can apply Lemma 5.3 with a = m/V and b = β

to get families T ⊂ [n](r) and C(T ) ⊂ [n](r) such that T ⊂ A ⊂ C(T ),

|T | ≤ 2V

(
rm

β(n− r)VM

)1/2

+
rV

(n− r)M

≤ 2

(
nmN

β(n− r)M

)1/2

+
nN

(n− r)M
≤ k1,

and

e(C(T )) ≤ Vµ(C(T )) ≤ 2

(
(n− r)mVM

rβ

)1/2

+
V

β
+

(n− r)βVM

r

≤M

(
2

(
n(n− r)mN

r2βM

)1/2

+
nN

rβM
+
n(n− r)βN

r2

)
≤ k2M/2,

where in the last inequality, we use the fact that n(n− r)/r2 ≤ 1/2ε2.
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Hence, by Proposition 5.1, we see that |C(T )| ≤ N + k2. The theorem then

follows by taking the families C(T ) for every T ⊂ [n](r) with |T | ≤ k1. �

5.2. Stability for the Kruskal–Katona theorem. An important ingre-

dient in our proof of Theorem 1.1 is Lemma 3.4 which gives a uniform lower

bound, using Theorem 2.2 and the Kruskal–Katona theorem, for e(A) in terms

of `(A) when the size of A is large.

However, there is a price to be paid for proving such a uniform bound: the

bound is quite poor for most families to which the lemma can be applied. Indeed,

the families which are extremal for the argument in the proof of Lemma 3.4

must possess a great deal of structure. Instead of the Kruskal–Katona theorem,

one should be able to use a stability version of the Kruskal–Katona theorem,

as proved by Keevash [73] for example, to prove a more general result that

accounts for the structure of the family under consideration.

6. Concluding remarks

Several problems related to the question considered here remain. First of

all, it would be good to determine the largest possible value of c(ε) with which

Theorem 1.1 holds. It is likely that one needs new ideas to resolve this problem.

Second, one would also like to know what happens when r is very close

to n/2. Perhaps most interesting is the case when n = 2r + 1; one would

like to know the values of p for which we have α(Kp(2r + 1, r)) =
(

2r
r−1

)
with

high probability. A simple calculation shows that p = 3/4 is the threshold at

which we are likely to find a star and an r-set not in the star all the edges

between which are missing in Kp(2r + 1, r) which suggests that the critical

threshold should be 3/4. However, it would even be interesting to show that

α(Kp(2r + 1, r)) =
(

2r
r−1

)
with high probability for, say, all p ≥ 0.999.
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CHAPTER 7

Line percolation

Joint work with Paul Balister, Béla Bollobás and Jonathan Lee.

1. Introduction

Bootstrap percolation models and arguments have been used to study a

range of phenomena in various areas, ranging from crack formation, clustering

phenomena, the dynamics of glasses and sandpiles to neural nets and economics;

see [84, 6, 53] for a small sample of such applications. In this chapter, we

shall study a new geometric bootstrap percolation model defined on the d-

dimensional grid [n]d with infection parameter r ∈ N which we call r-neighbour

line percolation. Given v ∈ [n]d, write L(v) for the set of d axis parallel lines

through v and let

L([n]d) =
⋃
v∈[n]d

L(v)

be the set of all axis parallel lines that pass through the lattice points of [n]d.

In line percolation, infection spreads from a subset A ⊂ [n]d of initially infected

lattice points as follows: if there is a line L ∈ L([n]d) with r or more infected

lattice points on it, then every lattice point of [n]d on L gets infected. In other

words, we have a sequence A = A(0) ⊂ A(1) ⊂ . . . A(t) ⊂ . . . of subsets of [n]d

such that

A(t+1) = A(t) ∪
{
v ∈ [n]d : ∃L ∈ L(v) such that |L ∩ A(t)| ≥ r

}
.

The closure of A is the set [A] =
⋃
t≥0A

(t) of eventually infected points. We

say that the process terminates when no more newly infected points are added,
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i.e., when A(t) = [A]. If all the points of [n]d are infected when the process

terminates, i.e., if [A] = [n]d, then we say that A percolates.

The classical model of r-neighbour bootstrap percolation on a graph was

introduced by Chalupa, Leath and Reich [37] in the context of disordered

magnetic systems and has since been extensively studied not only by mathe-

maticians but also by physicists and sociologists; for a small sample of papers,

see, for instance, [1, 55, 64, 107]. In this model, a vertex of the graph gets

infected if it has at least r previously infected neighbours in the graph. The

model is usually studied in the random setting, where the main question is to

determine the critical threshold at which percolation occurs. If the elements

of the initially infected set are chosen independently at random, each with

probability p, then one aims to determine the value pc at which percolation

becomes likely. In this regard, the r-neighbour bootstrap percolation model on

[n]d, with edges induced by the integer lattice Zd, has been the subject of large

body of work; see [70, 15, 14], and the references therein.

On account of its inherent geometric structure, it is possible to construct

other interesting bootstrap percolation models on the d-dimensional grid. In

the past, this has involved endowing the grid with a graph structure other than

the one induced by the integer lattice (a Cartesian product of paths).

In this direction, Holroyd, Liggett and Romik [71] considered r-neighbour

bootstrap percolation on [n]2 where the neighbourhood of a lattice point v is

taken to be a ‘cross’ centred at v, consisting of r − 1 points in each of the four

axis directions. Sharp thresholds for a model with an anisotropic variant of

these cross neighbourhoods were obtained recently by Duminil-Copin and van

Enter [44]. Gravner, Hoffman, Pfeiffer and Sivakoff [65] studied the r-neighbour

bootstrap percolation model on [n]d with the edges induced by the Hamming

torus where u, v ∈ [n]d are adjacent if and only if u− v has exactly one nonzero

coordinate; the Hamming torus, in other words, is the Cartesian product of

complete graphs, which is perhaps the second most natural graph structure

on [n]d after the grid. They obtained bounds on the critical exponents (i.e.,
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logn(pc)) which are tight in the case d = 2 and for small values of the infection

parameter when d = 3.

The line percolation model we consider is a natural variant of the bootstrap

percolation model on the Hamming torus studied by Gravner, Hoffman, Pfeiffer

and Sivakoff. However, we should note that while all the other models mentioned

above are r-neighbour bootstrap percolation models on some underlying graph,

the line percolation model is not.

Morally, line percolation is better thought of as coming from the very

general neighbourhood family percolation model introduced by Bollobás, Smith

and Uzzell [31]. In the neighbourhood family percolation model, one starts by

specifying a homogeneous, finite collection of subsets of the grid for each point

of the grid; a point of the grid becomes infected if all the points of some set in

the collection associated with the point are previously infected. In their paper,

Bollobás, Smith and Uzzell prove a classification theorem for two-dimensional

neighbourhood family models and show that every such model is of one of

three types: supercritical, critical or subcritical. In particular, they show that

a model is supercritical if and only if there exist finite sets from which the

infection can spread to the whole lattice. While line percolation cannot be

described by associating a finite family of neighbourhoods with each point of

the lattice, there do exist, as we shall see, finite sets from which the infection

can spread to the whole lattice in the line percolation model, and our results

about the critical probabilities of the line percolation model are in agreement

with the general bounds for the critical probabilities of supercritical models

proved in [31]. For some related work concerning subcritical models, see the

paper of Balister, Bollobás, Przykucki and Smith [12].

2. Our results

In this chapter, our main aim is to investigate what happens in the line

percolation model when the initial set A = Ap ⊂ [n]d of infected points is

determined by randomly selecting points from [n]d, each independently with
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probability p. It would be natural to determine the values of p for which

percolation is likely to occur. Let ϑp(n, r, d) denote the probability that such a

randomly chosen initial set Ap percolates. We note that ϑp(n, r, d) increases

with p and define the critical probability pc(n, r, d) by setting

pc(n, r, d) = inf{p : ϑp(n, r, d) ≥ 1/2}.

The primary question of interest is to determine the asymptotic behaviour of

pc(n, r, d) as n→∞ for every d, r ∈ N. Note that when the infection parameter

equals one, a set A of initially infected lattice points percolates if and only if

|A| > 0 which implies that pc(n, 1, d) = Θ(n−d); we restrict our attention to

r ≥ 2.

Before we state our results, a few remarks about asymptotic notation are

in order. We shall make use of standard asymptotic notation; the variable

tending to infinity will always be n unless we explicitly specify otherwise. When

convenient, we shall also make use of some notation (of Vinogradov) that might

be considered non-standard: given functions f(n) and g(n), we write f � g

if f = O(g), f � g if g = O(f), and f ∼ g if f = (1 + o(1))g. Constants

suppressed by the asymptotic notation are allowed to depend on the fixed

infection parameter r, but of course, not on n or p.

In two dimensions, we are able to estimate the probability of percolation

ϑp(n, r, 2) up to constant factors for all 0 ≤ p ≤ 1. We also determine pc(n, r, 2)

up to a factor of 1 + o(1) as n→∞.

Theorem 2.1. Fix r, s ∈ N, with r ≥ 2 and 0 ≤ s ≤ r − 1. Then as

n→∞,

ϑp(n, r, 2) = Θ
(
n2s+1(np)r(2s+1)−s(s+1)

)
(11)

when n−1− 1
r−s−1 � p � n−1− 1

r−s , with the convention that n−1− 1
r−s−1 is zero

when s = r − 1. Also, ϑp(n, r, 2) = Θ(1) when p� n−1− 1
r . Furthermore,

pc(n, r, 2) ∼ λn−1− 1
r
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A(0) A(1) A(2)

Figure 1. The spread of infection from A = [3]2 in the 3-
neighbour line percolation process on [8]2.

where λ is the unique positive real number satisfying exp(−2λr/r!) = 1/2.

The techniques used to obtain the above formula for ϑp(n, r, 2) allow us to

prove the following result about the critical probability in three dimensions,

which is the main result of this chapter.

Theorem 2.2. Fix r ∈ N, with r ≥ 2, and let s = b
√
r + 1/4− 1/2c. Then

as n→∞,

pc(n, r, 3) = Θ
(
n−1− 1

r−γ

)
where γ = (r + s2 + s)/2(s+ 1).

The nature of the threshold at the critical probability is also worth investi-

gating. We say that the model exhibits a sharp threshold at pc = pc(n, r, d) if

for any fixed ε > 0, ϑ(1+ε)pc(n, r, d) = 1 − o(1) and ϑ(1−ε)pc(n, r, d) = o(1). It

is not difficult to see from our proofs of Theorems 2.1 and 2.2 that in stark

contrast to the classical r-neighbour bootstrap percolation model on the grid,

there is no sharp threshold at pc when d = 2, 3. We expect similar behaviour

in higher dimensions but we do not have a proof of such an assertion.

It is also an interesting question to determine the size of a minimal percolat-

ing set for r-neighbour line percolation on [n]d for any d, r ∈ N and n ≥ r. It is

easy to check that the set [r]d percolates (see Figure 1). We shall demonstrate

that this is in fact optimal.
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Theorem 2.3. Let d, r, n ∈ N, with n ≥ r. Then the minimum size of a

percolating set in the r-neighbour line percolation process on [n]d is rd.

Establishing this fact turns out to be harder than it appears at first glance.

The result is trivial when d = 1. When d = 2, it is not hard to demonstrate that

any percolating set has size at least r2. Consider a generalised two-dimensional

line percolation model on [n]2 where the infection thresholds for horizontal

and vertical lines are rh and rv respectively; we recover the r-neighbour line

percolation model when rh = rv = r. Let M(rh, rv) denote the size of a

minimal percolating set in this generalised model. Consider the first line L to

be infected: if L is horizontal, then L must contain rh initially infected points

and furthermore, if the set of initially infected points is a percolating set, then

the set of initially infected points not on L must constitute a percolating set for

the generalised process with infection parameters rh and rv − 1. An analogous

statement holds if L is vertical. It follows that

M(rh, rv) ≥ min(rv +M(rh − 1, rv), rh +M(rh, rv − 1)).

We obtain by induction that M(rh, rv) ≥ rhrv which implies in particular that

M(r, r) ≥ r2. The argument described above depends crucially on the fact

that a line has codimension one in a two-dimensional space. The incidence

geometry of a collection of lines in the plane is essentially straightforward; this

is no longer the case in higher dimensions and we need more delicate arguments

to prove Theorem 2.3.

The rest of this chapter is organised as follows. We collect together some

useful facts about binomial random variables in Section 3. We consider line

percolation in two dimensions in Section 4, and prove Theorem 2.1. In Section 5,

we turn to line percolation in three dimensions and prove Theorem 2.2, thus

obtaining an estimate for the critical probability which is tight up to multiplica-

tive constants. In Section 6, we determine the size of minimal percolating sets

for r-neighbour line percolation on [n]d and prove Theorem 2.3. We conclude

the chapter in Section 7 with some discussion.
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3. Probabilistic preliminaries

We will need some standard facts about binomial random variables. We

collect these here for the sake of convenience. As is usual, for a random variable

with distribution Bin(N, p), we write µ = Np for its mean.

The first proposition we shall require is an easy consequence of the fact

that e−2x ≤ 1− x ≤ e−x for all 0 ≤ x ≤ 1/2.

Proposition 3.1. Let X be a random variable with distribution Bin(N, p),

with p ≤ 1/2. Then for any 1 ≤ k ≤ n,

exp(−2µ)(µ/k)k ≤ P(X = k) ≤ exp(−µ)(2eµ/k)k.

Also, exp(−2µ) ≤ P(X = 0) ≤ exp(−µ).

Proof. We have P(X = k) =
(
N
k

)
pk(1 − p)N−k. The required bounds

follow from the fact that exp(−2p) ≤ 1− p ≤ exp(−p) for 0 ≤ p ≤ 1/2 and the

fact that (N/k)k ≤
(
N
k

)
≤ (eN/k) for all k ≥ 1. �

The following proposition is an immediate corollary of Proposition 3.1.

Proposition 3.2. Let X be a random variable with distribution Bin(N, p).

Then for any fixed k ≥ 0, as N →∞,

P(X ≥ k) =

Θ(P(X = k)) = Θ(µk) if µ� 1,

Θ(1) if µ� 1.

where µ = Np is the mean of X.

We shall also make use of the following standard concentration result; see

Appendix A of [5] for example.

Proposition 3.3. Let X be a random variable with distribution Bin(N, p).

Then for any 0 < δ < 1,

P(|X − µ| > δµ) ≤ exp

(
−δ2µ

3

)
. �
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Finally, we shall also need the following simple consequence of Harris’s

Lemma. Given a set A ⊂ [n], we say that E ⊂ {0, 1}[n] is decreasing on A if

ω ∈ E implies that ω′ ∈ E for all ω′ ∈ {0, 1}[n] such that ω′x ≤ ωx for x ∈ A

and ω′x = ωx for all x /∈ A.

Proposition 3.4. Let A ⊂ [n] and let P be a product measure on {0, 1}[n].

Then for any increasing event F which depends only on the coordinates in A

and any event E which is decreasing on A, we have P(F |E) ≤ P(F ).

Proof. For v ∈ {0, 1}[n]\A, denote by Iv the event that the coordinates in

[n] \ A are given by v. Then, since E is decreasing on A and F is increasing

on A, we see by applying Harris’s Lemma to the induced product measure on

{0, 1}A that P(E ∩ F | Iv) ≤ P(E | Iv)P(F | Iv) for every v ∈ {0, 1}[n]\A. Since

F does not depend on the coordinates in [n] \A, we also have P(F | Iv) = P(F )

for every v ∈ {0, 1}[n]\A. Therefore, by summing over all v ∈ {0, 1}[n]\A, we see

that

P(E ∩ F ) =
∑
v

P(Iv)P(E ∩ F | Iv)

≤
∑
v

P(Iv)P(E | Iv)P(F | Iv)

=
∑
v

P(Iv)P(E | Iv)P(F ) = P(E)P(F )

and the proposition follows. �

4. Line percolation in two dimensions

The proof of the following proposition is essentially identical to the proof

of Theorem 2.1 in [65]; we reproduce it here for completeness.

Proposition 4.1. Fix r ∈ N, with r ≥ 2, and let C > 0 be a positive

constant. If p ∼ Cn−1−1/r, then

ϑp(n, r, 2) ∼ 1− exp (−2Cr/r!).
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Proof. The probability that a given line has r+1 or more initially infected

points on it is bounded above by
(
n
r+1

)
pr+1 which implies that the probability

that any line has r + 1 or more initially infected points on it is bounded above

by

2n

(
n

r + 1

)
pr+1 = O

(
nr+2pr+1

)
= O

(
n−1/r

)
.

Consequently, with high probability, no line has r + 1 or more initially infected

points on it.

Let Eh denote the event that some horizontal line contains r initially infected

points and define Ev analogously. Clearly, the process terminates on the first

step if neither Eh nor Ev hold; so ϑp ≤ P(Eh ∪ Ev).

The number of horizontal lines with r initially infected points is binomially

distributed (since the events corresponding to distinct horizontal lines are

independent) and it is easily seen to converge in distribution to a Poisson

random variable with mean Cr/r! since the expected number of such horizontal

lines is n
(
n
r

)
pr(1 − p)n−r ∼ Cr/r!. Thus P(Eh) ∼ 1 − exp(−Cr/r!); similarly,

P(Ev) ∼ 1− exp(−Cr/r!).

We now estimate P(Eh ∩ Ev). Let Eh ◦ Ev denote the event that Eh and

Ev occur disjointly. Now, Eh and Ev are increasing events, and so it follows

from Harris’s Lemma and the BK inequality that P(Eh ∩Ev) ≥ P(Eh)P(Ev) ≥

P(Eh ◦ Ev). Observe that (Eh ∩ Ev) \ (Eh ◦ Ev) happens only if some lattice

point v is initially infected and each of the two axis parallel lines through v

contain r − 1 initially infected points. It follows that

P((Eh ∩ Ev) \ (Eh ◦ Ev)) = O
(
n2p(np)2r−2

)
= O

(
n−1+1/r

)
and so P((Eh∩Ev)\ (Eh ◦Ev)) = o(1). Consequently, we see that P(Eh∩Ev) ∼

P(Eh)P(Ev). Hence,

P(Eh ∪ Ev) ∼ P(Eh) + P(Ev)− P(Eh)P(Ev) ∼ 1− exp (−2Cr/r!)

and so ϑp ≤ 1− exp (−2Cr/r!) + o(1).
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To bound ϑp from below, we generate the initial configuration in two

rounds, first by sprinkling infected points with density p′ = p(1− 1/ log n) and

then (independently) with density p′′ = p/ log n; clearly, this configuration is

dominated by an initial configuration where points are infected independently

with density p, and so it suffices to lower bound the probability of percolation

starting from this configuration.

Let E ′ be the event that some line contains r initially infected points from

the first sprinkling of points. It is easy to check from the argument above that

P(E ′) ∼ 1− exp(−2Cr/r!).

Let us now condition on E ′ and suppose that some line L has r infected

points on it from the first sprinkling. The probability that a particular line

perpendicular to L has r− 1 initially infected points from the second sprinkling

of points (none of which are on L) is Θ(((n−1)p′′)r−1) = Θ(n−1+1/r(log n)−r+1).

Thus, the number of such lines is a binomial random variable with mean

µ = Ω(n1/r(log n)−r). Since µ → ∞ as n → ∞, by Proposition 3.3, the

probability that there exist at least r such lines in the second sprinkling is

1 − o(1). Hence conditional on E ′, the probability of percolating using the

points infected in the second round is 1− o(1). Hence

ϑp ≥ (1− o(1))P(E ′) = 1− exp (−2Cr/r!)− o(1)

and the result follows. �

We shall now prove Theorem 2.1.

Proof of Theorem 2.1. It follows from Proposition 4.1 that pc(n, r, 2) ∼

λn−1−1/r where λ is the unique positive real number satisfying exp(−2λr/r!) =

1/2. So we know that ϑp(n, r, 2) = Θ(1) when p� n−1−1/r.

Let us now suppose that p � n−1−1/r. We fix s ∈ {0, 1, . . . , r − 1} to be

the least natural number for which n(np)r−(s+1) � 1; hence n(np)r−i � 1 for

each 0 ≤ i ≤ s.
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We first bound ϑp(n, r, 2) from below. To do so, we set p′ = p/(2s + 2)

and generate our initial configuration by sprinkling infected points in 2s+ 2

rounds where we infect points independently with probability p′ in each of these

rounds; such a configuration is clearly dominated by a configuration where we

infect each point independently with probability p, so a lower bound for the

probability of percolating from such a configuration is also a lower bound for

ϑp.

Let us estimate the probability that we can find distinct lines L1, . . . ,L2s+1

such that

(1) For 0 ≤ j ≤ s, the line L2j+1 is a horizontal line containing r − j

infected points from the sprinkling in round 2j + 1, none of which lie

on L2,L4, . . . ,L2j, and

(2) for 1 ≤ j ≤ s, the line L2j is a vertical line containing r − j in-

fected points from the sprinkling in round 2j, none of which lie on

L1,L3, . . . ,L2j−1.

Indeed, conditional on finding L1, . . . ,L2j in the first 2j rounds, the prob-

ability that a given horizontal line has r − j infected points on it from the

sprinkling in round 2j + 1, none of which lie on L2,L4, . . . ,L2j is clearly

Θ(((n − j)p′)r−j) = Θ((np)r−j). Since j ≤ s, we have n(np)r−j � 1, so the

probability that we can find a suitable horizontal line L2j+1 distinct from

L1, . . . ,L2j−1 in round 2j+ 1 is Θ((n− j+ 1)(np)r−j) = Θ(n(np)r−j) by Propo-

sition 3.2. The probability that we can find L2j as required conditional on

finding L1, . . . ,L2j−1 is similarly seen to be Θ(n(np)r−j).

So the probability that we can find L1, . . . ,L2s+1 as required in the first

2s+ 1 rounds is thus, up to constant factors, at least

n(np)r × n(np)r−1 × · · · × n(np)r−s × n(np)r−s = n2s+1(np)r(2s+1)−s(s+1).

Conditional on finding L1, . . . ,L2s+1, we claim that with probability Θ(1),

there are at least r vertical lines distinct from L2, . . . ,L2s each containing
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r − s− 1 infected points from the sprinkling in round 2s+ 2, none of which lie

on L1,L3, . . . ,L2s+1. Indeed, the number of such lines is binomially distributed

with mean µ = Ω(n(np)r−s−1), and we know that µ� 1 by the definition of s,

so we are done by Proposition 3.2.

Such a configuration clearly percolates. Indeed, first the line L1 gets infected,

then the line L2, and so on, until all of L1, . . . ,L2s+1 are infected. At this point,

the r vertical lines distinct from L2, . . . ,L2s each containing r − s− 1 infected

points none of which lie on L1,L3, . . . ,L2s+1 get infected. Of course, once we

have r parallel fully infected lines, every point gets infected. Thus, we deduce

from this sprinkling argument that ϑp = Ω(n2s+1(np)r(2s+1)−s(s+1)).

We now give a matching upper bound for ϑp(n, r, 2). To do so, it will be

convenient to work with a modified two-dimensional line percolation process

Ap = G(0) ⊂ G(1) ⊂ . . . G(t) ⊂ . . .

where G(2t+1) is obtained from G(2t) by spreading the infection (only) along

horizontal lines and G(2t+2) is obtained from G(2t+1) by spreading the infection

along vertical lines. Since G(t) ⊂ A(t) and A(t) ⊂ G(2t), percolation occurs in

the original process if and only if it occurs in the modified process.

Note that Ap percolates if and only if some G(t) contains r or more fully

infected lines; indeed, in this case G(t+2) = [n]2. In particular, since s+ 1 ≤ r,

if Ap percolates, then some G(t) contains s + 1 parallel fully infected lines.

Let us stop the modified process as soon it produces s + 1 or more parallel

fully infected lines (or reaches termination). Note that we necessarily stop the

process in at most 2s+ 2 ≤ 2r steps.

Let us clarify what we mean by a ‘fully infected line’. Formally, a line

becomes fully infected when we examine its direction and find that there are r

or more infected points on the line, and hence infect the rest of the line. Note

that, unlikely as it might be, all the points on a line could become infected

before we inspect the direction corresponding to the line; in this case, we declare

the line to be fully infected only after we examine its direction.
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Figure 2. The conditioning argument.

Let E∗ denote the event that we stop the process because it generated s+ 1

parallel fully infected lines; clearly ϑp ≤ P(E∗).

The following lemma will allow us to bound P(E∗) from above.

Lemma 4.2. Let t, h, v ∈ N and suppose that t is odd and that (n(np)r−h)�

1. Let E be the event that the numbers of fully infected horizontal and vertical

lines after the first t steps are h and v respectively and F denote the event that

the process generates v′ or more vertical lines on step t+ 1. Then

P(F |E) = O

((
n(np)r−h

)v′)
.

Proof. We prove this with a conditioning argument. Consider any set

H of h horizontal lines and any set V of v vertical lines and fix a partition

H = H1 ∪ H3 ∪ · · · ∪ Ht and V = V2 ∪ V4 ∪ · · · ∪ Vt−1. Let E be the event

that the lines infected in the first t steps of the process are precisely those in

H1,V2, . . . ,Ht. Since E is the disjoint union of such events E, it suffices to

show that P(F |E) = O((n(np)r−h)v
′
) for every such event E.

Let S denote the subgrid consisting of those points not on any of the lines in

H∪V . Let F denote the event that there are v′ or more vertical lines in S with

r−h or more initially infected points on them. Note that conditional on E, the
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event F occurs if and only if F occurs; clearly, P(F |E) = P(F |E). Note that

F is an increasing event and P(F ) = O((n(np)r−h)v
′
) since (n(np)r−h)� 1.

If E were a decreasing event, we could conclude immediately from the

Harris’s Lemma that P(F |E) ≤ P(F ). Though E is in itself not decreasing,

we claim that E is decreasing on S.

Let ω ∈ {0, 1}[n]2 be an initial configuration that belongs to E and let

ω′ ∈ {0, 1}[n]2 be such that ω′x ≤ ωx for x ∈ S and ω′x = ωx for x /∈ S. We now

check that ω′ ∈ E. We first note that since the percolation process is monotone

and ω′ ≤ ω, the set of fully infected lines at any stage when we start from ω′ is

a subset of the set of fully infected lines at that stage when we start from ω.

Next, note that since ω ∈ E, when we start the line percolation process from

ω, none of the lines through any of the points in S are infected after the first t

steps; in other words, none of these points participate in the spread of infection

during the first t steps. Therefore, since ω′x = ωx for all x /∈ S, it follows that

the set of fully infected lines after the first t steps when we start from ω′ is

actually identical to the set of fully infected lines after the first t steps when

we start from ω. Thus, ω′ ∈ E and it follows that E is decreasing on S.

It follows by Proposition 3.4 that P(F |E) ≤ P(F ); the lemma follows. �

Let ht and vt be the numbers of horizontal and vertical lines infected when

going from G(2t) and G(2t+1) and from G(2t+1) to G(2t+2) respectively; the pair

(h = (ht)t≥0,v = (vt)t≥0) is called the line-count of the modified percolation

process.

Given two sequences h = (ht)
k
t=0 and v = (vt)

k
t=0 of positive integers with

k ≤ s+ 1, we say that (h,v) is a vertical line-count if (h,v) is the line-count of

a process which generates s+ 1 fully infected vertical lines before it generates

s+ 1 fully infected horizontal lines, and does so in exactly 2k+ 2 steps; in other

words, if

(1)
∑

t<k vt ≤ s,

(2)
∑

t≤k ht ≤ s, and
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(3)
∑

t≤k vt ≥ s+ 1.

The definition of a horizontal line-count (h = (ht)
k+1
t=0 ,v = (vt)

k
t=0) is

analogous. Given a vertical line-count (h = (ht)
k
t=0,v = (vt)

k
t=0), let us define

its (vertical) preface to be the pair (h,v′) where v′ = (vt)
k−1
t=0 . Similarly, the

(horizontal) preface of a horizontal line-count (h = (ht)
k+1
t=0 ,v = (vt)

k
t=0) is the

pair (h′,v) where h′ = (ht)
k
t=0.

Given a vertical preface (h,v′), let Ev(h,v
′) be the event that the process

generates s+1 fully infected vertical lines before it generates s+1 fully infected

horizontal lines and furthermore, the (vertical) line-count of the process has

preface (h,v′). For a horizontal preface (h′,v), define Eh(h
′,v) analogously.

We then note that

P(E∗) =
∑

(h,v′)

P(Ev(h,v
′)) +

∑
(h′,v)

P(Eh(h
′,v))

where the two sums are over all valid vertical and horizontal prefaces respec-

tively.

To specify a valid preface, we need to specify at most 2(s + 1) distinct

positive integers, each of which is at most s+1. So the number of valid prefaces

is at most r2r; consequently, to estimate P(E∗) up to constant factors, it suffices

to estimate the largest of the probabilities P(Ev(h,v
′)) and P(Eh(h

′,v)).

We see by repeatedly applying Lemma 4.2 that P(Ev(h,v
′)), up to constant

factors, is bounded above by

(n(np)r)h0 × (n(np)r−h0)v0 × (n(np)r−v0)h1 × . . .

· · · × (n(np)r−
∑
t<k vt)hk × (n(np)r−

∑
t≤k ht)s+1−

∑
t<k vt

which, on algebraic simplification, is seen to be ns+1+h(np)r(s+1)+(r−s−1)h where

h =
∑

t≤k ht. To see this, set vk = s+ 1−
∑

t<k vt and note that the exponent

of n in the expression above (not including those factors of n coming from the
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powers of np) is ∑
t≤k

ht +
∑
t≤k

vt = h+ s+ 1

and the exponent of np is

r

(∑
t≤k

ht +
∑
t≤k

vt

)
−
∑
t′,t′′≤k

ht′vt′′ = r(s+ 1 + h)−

(∑
t≤k

ht

)(∑
t≤k

vt

)

= r(s+ 1 + h)− (s+ 1)h

= r(s+ 1) + (r − s− 1)h

as required. Since n(np)r−s−1 � 1, this upper bound increases with h, and

since h ≤ s, it is maximised when h = s. Thus, we see that

P(Ev(h,v
′)) = O

(
n2s+1(np)r(2s+1)−s(s+1)

)
for any valid vertical preface. The same bound applies for each horizontal

preface, and it follows that ϑp ≤ P(E∗) = O(n2s+1(np)r(2s+1)−s(s+1)). �

5. The critical probability in three dimensions

We now turn our attention to the line percolation process in three dimensions.

We shall now prove Theorem 2.2.

Proof of Theorem 2.2. We prove the upper and lower bounds sepa-

rately. Suppose that points are initially infected independently with probability

p and set C = C(n) = p/n−1−1/(r−γ). We distinguish two cases.

Case 1: C � 1. Unsurprisingly, it is easier to show that percolation

occurs than to demonstrate otherwise. We start by bounding pc from above by

showing that percolation occurs with probability at least 1/2 if C is greater

than some sufficiently large constant. Note that s = b
√
r + 1/4 − 1/2c, as

defined in the statement of Theorem 2.2, is the greatest natural number such

that s(s+ 1) ≤ r. Since s(s+ 1) ≤ r and (s+ 1)(s+ 2) > r, it is not hard to
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check that γ = (r + s2 + s)/(2s+ 2) satisfies

r − s− 1 ≤ γ ≤ r − s

and hence

n−1− 1
r−s−1 � n−1− 1

r−γ � n−1− 1
r−s , (12)

and so it follows from Theorem 2.1 that

ϑp(n, r, 2) = Θ
(
n2s+1(np)r(2s+1)−s(s+1)

)
= Θ

(
Cr(2s+1)−s(s+1)n−1

)
.

We say that a plane P is internally spanned if A(0) ∩ P percolates in the

line percolation process restricted to P. Choose any direction and consider

the n (parallel) planes perpendicular to this direction. The number of such

planes which are internally spanned is a binomial random variable with mean

µ = Ω(Cr(2s+1)−s(s+1)). Since µ→∞ as C →∞, we see from Proposition 3.3

that there exist r parallel internally spanned planes with probability at least

1/2 if C is greater than some sufficiently large constant. So it follows that

pc(n, r, 3) = O(n−1−1/(r−γ)).

Case 2: C � 1. We claim that the probability of percolation is at most

1/2, provided C is less than some sufficiently small constant.

We shall demonstrate that the probability of percolation is at most 1/2 by

proving something much stronger. We shall track, as the infection spreads,

the number of planes with k or more parallel fully infected lines for each

1 ≤ k ≤ s+ 1 and show that, with probability at least 1/2, these numbers are

not too large when the process terminates; in particular, we shall show that

there are no planes with s + 1 or more parallel fully infected lines when the

process reaches termination and consequently, that there is no percolation.

As we did in the two-dimensional case, we shall work with a modified

three-dimensional line percolation process in which the infection spreads along

a single direction at each step. More precisely, denoting the standard basis for
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R3 by {e0, e1, e2}, in the modified process, we have a sequence

Ap = H(0) ⊂ H(1) ⊂ · · · ⊂ H(t) ⊂ . . .

of subsets of [n]3 where H(t+1) is obtained from H(t) by spreading the infection

(only) along lines parallel to ei where i ≡ t (mod 3). Clearly, H(t) ⊂ A(t) ⊂

H(3t) and so Ap percolates in the original process if and only if it percolates in

this modified process.

We run the modified three-dimensional process starting from Ap and we

stop the process after step t if either

(A) the number of planes containing k or more parallel fully infected lines now

exceeds n1−kγ/(r−γ) for some 1 ≤ k ≤ s+ 1, or

(B) the process has terminated, i.e., H(t) = [Ap].

Let EA be the event that we the stop the modified process on account of

condition (A).

Lemma 5.1. In the modified process,

P(EA) = O

( ∑
1≤k≤s

Crk + Cr(2s+1)−s(s+1)

)
.

Let us fix a plane P. For concreteness, we shall assume that P contains

lines parallel to e0 and e1, and that e2 is perpendicular to P. We shall prove

Lemma 5.1 by estimating the probability that P contains k or more parallel

fully infected lines when we stop the process.

The spread of infection within P resembles the two-dimensional line per-

colation process, with the key distinction that some points in P also become

infected during the process by virtue of lying on a fully infected line perpendic-

ular to P . However, since we are interested in estimating the probability that

k or more parallel lines in P get infected before we stop the process, we shall

not have to worry about there being too many such points.

106



For 1 ≤ k ≤ s + 1, let Ek denote the event that k or more parallel lines

in P get infected before we stop the process. We shall prove Lemma 5.1 by

bounding P(Ek) from above.

As before, we shall estimate the probability that k or more parallel lines

in P get infected before we stop the process by estimating the probability

that this happens according to a particular line-count. Note that unlike in the

two-dimensional process, a large number of steps may elapse before a new line

in P gets infected. Consequently, the precise notion of a line-count that we use

here differs slightly from the notion used previously.

We call a step of the modified three-dimensional process an epoch if a

non-empty subset of the lines in P (along a particular direction) get infected

on that step. A line-count ` = ((li, di))i≥0 is a sequence of pairs (li, di) such

that each li is a positive integer and each di ∈ {e0, e1} is a direction, with the

property that either

(1)
∑

i:di=e0
li ≥ k, or

(2)
∑

i:di=e1
li ≥ k.

Given a line-count ` = ((li, di))i≥0, we define its preface `∗ = ((li, di))
m
i=0 by

taking m to be largest index j such that

(1)
∑

i≤j:di=e0 li < k, and

(2)
∑

i≤j:di=e1 li < k.

Note that if Ek occurs, there is a line-count ` = ((li, di))i≥0 such that the

number and direction of the lines infected on the i-th epoch are given by li

and di respectively. Consequently, given a preface `∗, let us write Ek(`
∗) for

the event that Ek occurs and that the preface of the associated line-count is `∗.

Clearly,

P(Ek) =
∑
`∗

P(Ek(`
∗)),
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where the sum above is over all valid prefaces. Since the length of a valid

preface is at most 2k, the number of valid prefaces is at most (2k)2k. Therefore,

it suffices to bound the largest of the probabilities P(Ek(`
∗)).

The following lemma allows us to estimate P(Ek(`
∗)). We think of the lines

in P parallel to e0 as being horizontal, and the ones parallel to e1 as being

vertical.

Lemma 5.2. Let i, h, v ∈ N and suppose that n(np)r−h � 1. Let E be the

event that after the i-th epoch, the numbers of fully infected horizontal and

vertical lines in P are h and v respectively. Also, let F denote the event that v′

or more vertical lines in P get infected on the (i+ 1)-th epoch. Then

P(F |E) = O

((
n(np)r−h

)v′)
.

Proof. The proof is very similar to that of Lemma 4.2. However, we also

need to account for points that might not be infected initially but which get

infected at some stage before the (i+ 1)-th epoch. We call a point of P a boost

if the line perpendicular to P through that point is fully infected before the

(i+ 1)-th epoch.

Let L1,L2, . . . ,Li be disjoint non-empty sets of parallel lines in P such that

the numbers of horizontal and vertical lines in L1 ∪ L2 ∪ · · · ∪ Li are h and

v respectively. Let S denote the subgrid consisting of those points of P not

on any of the lines in L1 ∪ L2 ∪ · · · ∪ Li and let B be a subset of S. Let E

be the event that the lines infected in the first i epochs are precisely those in

L1,L2, . . . ,Li; also let E ′ denote the event that set of boosts in S is precisely

B. Since E is the disjoint union of such events E, it suffices to show that

P(F |E) = O((n(np)r−h)v
′
) for every such event E. We shall demonstrate the

stronger assertion that P(F |E ∩E ′) = O((n(np)r−h)v
′
) for every pair of events

E and E ′ as above.

Let Vj be the set of those vertical lines of S which meet B in j points and

let Nj = |Vj|.
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S

Figure 3. Boosts on a line in S.

By conditioning on E ′, we are assuming that there are at least Nj planes

with j or more parallel fully infected lines before the (i+1)-th epoch. Therefore,

if Nj > n1−jγ/(r−γ) for some 1 ≤ j ≤ s+ 1, then this implies that the modified

three-dimensional process gets stopped before the (i+ 1)-th epoch and so we

trivially have P(F |E ∩ E ′) = 0 in this case. Hence, we may assume that

Nj ≤ n1−jγ/(r−γ) for each 1 ≤ j ≤ s + 1. Observe that (s + 1)γ/(r − γ) > 1

since (s+ 1)(s+ 2) > r and so Nj = 0 for j ≥ s+ 1 since n1−(s+1)γ/(r−γ) < 1.

Let vj be the number of lines of Vj whose intersection with S \ B contains

r−h−j or more initially infected points. Let F be the event that
∑s

j=0 vj ≥ v′.

Note that a point of S which is infected before the (i+ 1)-th epoch is either

initially infected or belongs to B. Hence, P(F |E ∩ E ′) = P(F |E ∩ E ′). Note

that F is an increasing event that depends only on the points in S \ B.

We claim that E ∩E ′ is decreasing on S \B. Let ω ∈ {0, 1}[n]3 be an initial

configuration that belongs to E∩E ′ and let ω′ ∈ {0, 1}[n]3 be such that ω′x ≤ ωx

for x ∈ S \ B and ω′x = ωx for x /∈ S \ B. We now check that ω′ ∈ E ∩ E ′.

As before, we first note that since the percolation process is monotone and

ω′ ≤ ω, the set of fully infected lines (not just in P , but rather in all of [n]3) at

any stage when we start from ω′ is a subset of the set of fully infected lines

at that stage when we start from ω. Next, note that since ω ∈ E ∩ E ′, when

we start the line percolation process from ω, none of the lines through any of

the points in S \ B are infected before the (i + 1)-th epoch; in other words,
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none of these points participate in the spread of infection before the (i+ 1)-th

epoch. Therefore, since ω′x = ωx for all x /∈ S \B, it follows that the set of fully

infected lines at any stage before the (i+ 1)-th epoch when we start from ω′ is

actually the same as the set of fully infected lines at that stage when we start

from ω. Thus, ω′ ∈ E ∩ E ′ and it follows that E ∩ E ′ is decreasing on S \ B.

It follows from Proposition 3.4 that P(F |E ∩ E ′) ≤ P(F ). Therefore, it

suffices to show that P(F ) ≤ O((n(np)r−h)v
′
).

We first consider P(v0 ≥ l). The probability that there exist l or more

vertical lines in V0 which meet S \ B in r − h initially infected points is

O

((
N0

l

)(
(np)r−h

)l)
= O

((
n(np)r−h

)l)
since N0 ≤ n. On the other hand, for 1 ≤ j ≤ s, we have

P(vj ≥ l) = O

((
Nj

l

)(
(np)r−h−j

)l)
= O

((
n(np)r−h

)l(
n1−γ/(r−γ)p

)−jl)
= O

((
n(np)r−h

)l)
since Nj ≤ n1−jγ/(r−γ) and n1−γ/(r−γ)p = Cn−(γ+1)/(r−γ) = o(1) as γ ≥ 0. It

follows that

P(F ) = P

(
s∑
j=0

vj ≥ v′

)
≤

∑
x0,x1,...,xs

P(v0 ≥ x0, v1 ≥ x1, . . . , vs ≥ xs),

where the sum above is over all non-negative integer solutions to the equation

x0 + x1 + · · ·+ xs = v′. First, note that the number of such solutions is at most

(v′ + 1)s. Next, note that since the sets Vj are disjoint, we have

P(v0 ≥ x0, v1 ≥ x1, . . . , vs ≥ xs) =
s∏
j=0

P(vi ≥ xi) = O

((
n(np)r−h

)∑s
j=0 xj

)
.

It follows that P(F ) ≤ O((n(np)r−h)v
′
) and this completes the proof of

Lemma 5.2. �
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Given a preface `∗ = ((li, di))
m
i=0, we shall mimic the proof of Theorem 2.1

to bound P(Ek(`
∗)). Let us write h =

∑
i≤m:di=e0

li and v =
∑

i≤m:di=e1
li; note

that h, v < k since `∗ is a preface. Recall that s is the greatest natural number

such that s(s + 1) ≤ r and that p = Cn−1−1/(r−γ) satisfies n(np)r−s � 1 and

n(np)r−s−1 � 1. Hence, by applying Lemma 5.2 repeatedly, we see that the

probability of Ek(`
∗), up to constant factors, is bounded above by

(n(np)r)l0 × · · · ×
(
n(np)

r−
∑
j<i:dj 6=di

lj
)li

. . .

· · · ×
(
n(np)

r−
∑
j<m:dj 6=dm

lj
)lm
×max

(
(n(np)r−h)k−v, (n(np)r−v)k−h

)
,

where the last term accounts for the two possible directions in which we might

generate the k parallel fully infected lines on the last epoch. By collecting

together consecutive terms that correspond to adding lines along the same

direction, we may assume without loss of generality that the directions alternate

in the expression above. Then, an algebraic simplification analogous to the one

in the proof of Theorem 2.1 yields

P(Ek(`
∗)) = O

(
max

(
nk+h(np)rk+rh−kh, nk+v(np)rk+rv−kv

))
.

This implies that for any preface `∗, we have

P(Ek(`
∗)) = O

(
max
0≤l<k

nk+l(np)rk+rl−kl
)

= O

(
max
0≤l<k

nk(np)rk
(
n(np)r−k

)l)
. (13)

When k ≤ s, we see that the estimate for the probability of Ek(`
∗) in (13)

is maximised by taking l = 0, from which we conclude that

P(Ek) = O
(

(n(np)r)
k
)

= O
(
Crkn−

kγ
r−γ

)
.

On the other hand, when k = s+ 1, the estimate for the probability of Ek(`
∗)

in (13) is maximised by taking l = s, from which we conclude that

P(Es+1) = O
(
n2s+1(np)r(2s+1)−s(s+1)

)
= O

(
Cr(2s+1)−s(s+1)n−1

)
.
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We have therefore established the following.

Corollary 5.3. For 1 ≤ k ≤ s, we have

P(Ek) = O
(
Crkn−kγ/(r−γ)

)
,

and

P(Es+1) = O
(
Cr(2s+1)−s(s+1)n−1

)
. �

We are now in a position to prove Lemma 5.1.

Proof of Lemma 5.1. Recall that EA is the event that we stop modified

three-dimensional process on account of the number of planes containing k

parallel fully infected lines exceeding n1−kγ/(r−γ) for some 1 ≤ k ≤ s+ 1.

From Corollary 5.3, we see that expected number of planes with k parallel

fully infected lines when we stop the modified process in three dimensions is

O(Crkn1−kγ/(r−γ)) when 1 ≤ k ≤ s and O(Cr(2s+1)−s(s+1)) when k = s+ 1. By

Markov’s inequality, the probability that the number of planes containing k

parallel fully infected lines exceeds n1−kγ/(r−γ) is O(Crk) when 1 ≤ k ≤ s and

O(Cr(2s+1)−s(s+1)) when k = s + 1 since bn1−(s+1)γ/(r−γ)c = 0. Applying the

union bound, we get

P(EA) = O

( ∑
1≤k≤s

C(rk + Cr(2s+1)−s(s+1)

)
. �

The required lower bound on pc follows immediately from Lemma 5.1. The

lemma implies that P(EA) → 0 as C → 0 for all r ≥ 2. Hence, if C is less

than a suitably small constant, the probability that the three-dimensional

r-neighbour line percolation process with p = Cn−1−1/(r−γ) generates a plane

with s+ 1 parallel fully infected lines before reaching termination is less than

1/2. Consequently, the probability of percolation is also less than 1/2. This

implies that pc(n, r, 3) = Ω(n−1−1/(r−γ)) as required. This completes the proof

of Theorem 2.2. �
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6. Minimal percolating sets

In this section, we prove Theorem 2.3 which tells us the size of a minimal

percolating set. We shall make use of the polynomial method which has had

many unexpected applications in combinatorics; see [67] for a survey of many of

these surprising applications. While linear algebraic techniques have previously

been used to study bootstrap percolation processes (see [16]), we believe that

this application of the polynomial method is new to the field.

Let us begin with two simple facts about polynomials.

Proposition 6.1. If A ⊂ Rd is a finite set with |A| < rd, then there exists

a non-zero polynomial PA ∈ R[x1, x2, . . . , xd] of degree at most r − 1 in each

variable which vanishes on A.

Proof. Let V ⊂ R[x1, x2, . . . , xd] be the vector space of real polynomials

in d variables of degree at most r − 1 in each variable. The dimension of

V is clearly rd. Consider the evaluation map from V to R|A| which sends a

polynomial P to (P (v))v∈A. Clearly, this map is linear. Since we assumed that

|A| < rd, this map has a non-trivial kernel. The existence of PA follows. �

The next proposition is from [2]; see Theorem 1.2.

Proposition 6.2. Let P = P (x1, x2, . . . , xd) be a polynomial in d variables

over R. Suppose that the degree of P as a polynomial in xi is at most ki for

1 ≤ i ≤ d, and let Si ⊂ R be a set of at least ki + 1 distinct elements of R.

If P (u1, u2, . . . , ud) = 0 for every d-tuple (u1, u2, . . . , ud) ∈ S1 × S2 × · · · × Sd,

then P is identically zero. �

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Suppose for the sake of contradiction that there

is a set A ⊂ [n]d which percolates with |A| < rd. We shall derive a contradiction

using the polynomial method. Let PA ∈ R[x1, x2, . . . , xd] be a polynomial of
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degree at most r − 1 in each variable which vanishes on A; that PA exists

follows from Proposition 6.1. We shall use PA to follow the spread of infection.

We claim that the polynomial PA vanishes on A(t) for every t ≥ 0. We prove

this claim by induction on t. The claim is true when t = 0 since A(0) = A. Now,

assume PA vanishes on A(t) and consider a line L which gets infected when

going from A(t) to A(t+1). It must be the case that |L ∩ A(t)| ≥ r. Since PA

vanishes on A(t), the restriction of PA to L vanishes on L∩A(t). If the direction

of L is i ∈ [d], then the restriction of PA to L is a univariate polynomial in the

variable xi of degree at most r − 1. Since a non-zero univariate polynomial of

degree at most r − 1 has at most r − 1 roots, the restriction of PA to L has

to be identically zero. Consequently, PA vanishes on A(t+1) and the claim is

proved.

Since A percolates, we conclude that PA vanishes on [n]d. It follows from

Proposition 6.2 that PA is zero and we have a contradiction. This proves the

theorem. �

7. Concluding remarks

There remain many challenging and attractive open problems, chief amongst

which is the determination of pc(n, r, d) for all d, r ∈ N. To determine pc(n, r, 3),

we used a careful estimate for ϑp(n, r, 2) which is valid for all 0 ≤ p ≤ 1. This

estimate for ϑp(n, r, 2) depends crucially on the fact that the two-dimensional

process reaches termination in a constant (depending on r, but not on n)

number of steps. We believe that to determine pc(n, r, 4), one will need to

determine ϑp(n, r, 3) for all 0 ≤ p ≤ 1 but since it is not at all obvious that the

three-dimensional process reaches termination in a constant number of steps

with high probability, we suspect different methods will be necessary.
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Extremal graph theory





CHAPTER 8

Disjoint induced subgraphs of the same order and size

Joint work with Béla Bollobás, Teeradej Kittipassorn and Alex Scott.

1. Introduction

Given a graph G, can we guarantee that G contains two large, vertex-disjoint

copies of the same graph? It follows from Ramsey’s theorem that any graph

on n vertices contains two vertex-disjoint isomorphic induced subgraphs on

Ω(log n) vertices; by considering a random graph on n vertices, it is easy to

check that this is also best possible up to constant factors.

What if, rather than asking for two isomorphic subgraphs, we ask for two

subgraphs that are the same with respect to one or more graph parameters?

Caro and Yuster [36] considered the question of finding two vertex-disjoint

subgraphs of a given graph of the same order which induce the same number of

edges. For a graph G, let f(G) be the largest integer k such that there are two

vertex-disjoint induced subgraphs of G each on k vertices, both inducing the

same number of edges and let f(n) be the minimum value of f(G) taken over

all graphs on n vertices. Trivially, f(n) ≤ bn/2c; also, as shown by Ben-Eliezer

and Krivelevich [23], equality holds (with high probability) for the Erdős–Rényi

random graphs G(n, p) for all 0 ≤ p ≤ 1.

There was a large gap between the best known upper and lower bounds

for f(n). From below, one can easily show using the pigeonhole principle that

f(n) = Ω(n1/3). As observed by Caro and Yuster, it is possible to improve

this to f(n) = Ω(n1/2) using a well known result of Lovász determining the

chromatic number of Kneser graphs. By considering a carefully constructed
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disjoint union of cliques, each on an odd number of vertices, Caro and Yuster

showed that f(n) ≤ n/2− Ω(log log n).

As expected, one can say more about f(G) when G belongs to certain

special graph classes. For example, Axenovich, Martin and Ueckerdt [7] showed

that f(G) ≥ dn/2e−1 when G is a forest; this is clearly best possible. Indeed, it

is possible to get quite close to the trivial upper bound of n/2 when we restrict

our attention to sparse graphs. In their paper, Caro and Yuster showed, for any

fixed α > 0, that if G is a graph on n vertices, then f(G) ≥ n/2−o(n) provided

G has at most n2−α edges (or non-edges). Axenovich, Martin and Ueckerdt [7]

later showed that the same holds for graphs with at most o(n2/(log n)2) edges.

Our main aim in this chapter is to narrow considerably the gap between the

best known upper and lower bounds for f(n), and thereby answer a question

of Caro and Yuster [36].

Theorem 1.1. For every ε > 0, there exists a natural number N = N(ε)

such that for any graph G on n > N vertices, f(G) ≥ n/2− εn. Consequently,

n/2− o(n) ≤ f(n) ≤ n/2− Ω(log log n).

We remark that much research has been done on the family of induced

subgraphs of a graph. For example, call a graph k-universal if it contains every

graph of order k as an induced subgraph. Very crudely, if G is a k-universal

graph with n vertices, then (
n

k

)
≥ 2(k2)

k!
,

and so n ≥ 2(k−1)/2. As remarked in [32], almost all graphs with k22k/2 vertices

are k-universal, and the Paley graphs come close to providing examples which

are almost as good. Hajnal conjectured that if a graph only has a ‘small’

number of distinct (non-isomorphic) induced subgraphs, then it contains a

trivial (complete or empty) subgraph with linearly many vertices. This was

proved, shortly after the conjecture was made, by Alon and Bollobás [3], and

Erdős and Hajnal [48], the latter in a stronger form. In [3] only a few parameters,
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like order, size and maximal degree, were used to distinguish non-isomorphic

graphs.

Erdős and Hajnal [49] then went much further: they realised that forbidding

a single graph as an induced subgraph severely constrains the structure of a

graph. More precisely, they made the major conjecture that for every graph

H, there is a positive constant γ(H) such that if a graph of order n does not

contain H as an induced subgraph, then the graph contains a trivial subgraph

with at least nγ(H) vertices. In spite of all the work on this conjecture (for a

small sample, see [38, 57, 94]) we are very far from the desired bound.

Let us finally mention another interesting line of research about finding dis-

joint isomorphic (not necessarily induced) subgraphs. Jacobson and Schönheim

(see [50, 83]) independently raised the question of finding edge-disjoint iso-

morphic subgraphs. Improving on results of Erdős, Pyber and Pach [50], Lee,

Loh and Sudakov [83] showed that every graph on m edges contains a pair

of edge-disjoint isomorphic subgraphs with at least Ω((m logm)2/3) edges and

that this is best possible up to a multiplicative constant.

The rest of this chapter is organised as follows. We give an overview of our

approach in Section 3, and then fill in the details and prove Theorem 1.1 in

Section 4. There are many natural questions about induced subgraphs which

are close to Theorem 1.1 in spirit; we conclude in Section 5 by mentioning some

of these.

2. Preliminaries

Our objective in this section is to establish some notational conveniences

and collect together, for easy reference, some simple propositions that we shall

make use of when proving our main result.

2.1. Notation. A pair (x, y) will always mean an unordered pair with

x 6= y, and a collection of pairs P will always mean a set of disjoint pairs; for

example, P = {(1, 2), (3, 4)} is a collection of pairs, but Q = {(1, 2), (2, 3)} is
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not. For a collection of pairs denoted by P , we shall write P for the underlying

ground set of elements, i.e., P =
⋃

(x,y)∈P{x, y}; in other words, we reserve

the corresponding upper case letter for the ground set. We shall say that

two collections of pairs P and Q are disjoint if P ∩Q = ∅; for example, the

collections P1 = {(1, 2), (3, 4)} and Q1 = {(5, 6), (7, 8)} are disjoint, while the

collections P2 = {(1, 2), (3, 4)} and Q2 = {(1, 3), (2, 4)} are not.

As usual, given a graph G = (V,E), we write deg(v) and Γ(v) respectively

for the degree and for the neighbourhood of a vertex v in G. For a subset

U ⊂ V , we write G[U ] for the subgraph induced by U , e(U) for the number of

edges of G[U ], and deg(U) for the sum of the degrees (in G) of the vertices of

U . Given two disjoint subsets A,B ⊂ V , we write e(A,B) for the number of

edges with one endpoint each in A and B.

We shall also use the following less common terminology and notation. For

any two vertices x, y ∈ V , we write δ(x, y) for the degree difference between

x and y, namely the quantity | deg(x)− deg(y)|. We say that two vertices x

and y disagree on a vertex v 6= x, y if v is adjacent to exactly one of x and y;

otherwise x and y agree on v. For any two vertices x, y ∈ V , the difference

neighbourhood Γ(x, y) of x and y is the set of vertices v 6= x, y on which x and

y disagree; we write ∆(x, y) for the size of the difference neighbourhood, so

that δ(x, y) ≤ ∆(x, y). If two vertices x and y agree on every vertex v 6= x, y,

we say that the pair (x, y) is a clone pair. When the graph G in question is

not clear from the context, we shall, for example, write δ(x, y,G) to denote the

degree difference between x and y in G.

We say that a graph G is splittable if there is a partition V = A ∪ B of

its vertex set into two sets A and B of equal size with e(A) = e(B); in this

case, we call (A,B) a splitting of G. Note that e(A) = e(B) if and only if

deg(A) = deg(B), since deg(A) = 2e(A) + e(A,B).

Our conventions for asymptotic notation are largely standard; in particular,

we we write ok→∞(1) to denote a function (of k) that goes to 0 as k →∞, and

that when we write, say Ωk(.), we mean that the constant suppressed by the
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asymptotic notation is allowed to depend on (but is completely determined by)

the parameter k. For the sake of clarity of presentation, we systematically omit

floors and ceilings whenever they are not crucial.

2.2. Preliminary observations. We shall make use of the following sim-

ple observation repeatedly when constructing a splitting.

Proposition 2.1. Given positive real numbers x1, x2, . . . , xt in the interval

[a, b] with 0 ≤ a ≤ b and y ∈ [−ta, ta], we may choose signs ζi ∈ {−1,+1} such

that |y +
∑
ζixi| ≤ b.

Proof. We may assume without loss of generality that y ≥ 0. Let j be

the largest index such that y >
∑j

i=1 xi; since y ≤ ta, we must have j < t.

Set ζi = −1 for 1 ≤ i ≤ j. Now, clearly y −
∑j

i=1 xi ∈ [−b, b]. Given a real

number z ∈ [−b, b] and a positive real x ≤ b, one of z + x or z − x always lies

in [−b, b]. Consequently, we may choose the signs of xj+1, . . . , xt one-by-one,

always ensuring that the partial sum is in the interval [−b, b], thus proving the

claim. �

The following first moment bound will prove useful; it is easily checked that

the bound is the best possible.

Proposition 2.2. Let X be a random variable such that X ≤ N and

E[X] ≥ Np. Then

P
(
X ≥ E[X]

2

)
≥ p

2− p
.

Proof. Let us write t = P(X ≥ E[X]/2). We know that E[X] ≤ tN +

(1− t)E[X]/2. This implies that t(N − E[X]/2) ≥ E[X]/2. The result follows

from the fact that E[X] ≥ Np. �

We will also need the following two easy propositions.

Proposition 2.3. Given x1, x2, . . . , xt in the interval [0, a], a positive real

b and a natural number N , it is possible to find bt/Nc − da/be disjoint subsets
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of {x1, x2, . . . , xt}, each of size N , such that |xi − xj| ≤ b for any xi and xj

belonging to the same subset.

Proof. Suppose that x1 ≤ x2 ≤ · · · ≤ xt. Let i0 = 1 and define ij to be the

smallest index such that xij > xij−1
+b with the convention that if no such index

exists, we set ij = t+1 and stop. Consider the sets Sj = {xij , xij+1, . . . , xij+1−1}.

Since x1 ≥ 0 and xt ≤ a, there are at most da/be such sets. Now, by discarding

at most N numbers from each Sj if necessary, we can assume that N divides

|Sj| for each j. We now partition each Sj into subsets of size N . Clearly,

|xi − xj| ≤ b for any xi and xj belonging to the same subset. The number of

elements we have discarded is at most Nda/be. So the number of subsets of

size N we are left with is at least bt/Nc − da/be. �

Remark. We shall often apply Proposition 2.3 to the degrees of a subset of

vertices of a graph; we consequently obtain disjoint groups of vertices such that

the degree difference of any two vertices in the same group is suitably bounded.

Proposition 2.4. Let x, y and z be three vertices and U some subset of

vertices of a graph G. Then some two of the vertices x, y and z disagree on at

most two thirds of the vertices of U .

Proof. Any vertex v ∈ U belongs to at most two of the three difference

neighbourhoods Γ(x, y), Γ(y, z) and Γ(z, x). The claim follows by averaging. �

2.3. Binomial random variables. We will need some easily proven state-

ments about binomial random variables. We collect these here. As usual, for a

random variable with distribution Bin(N, p), we write µ(= Np) for its mean

and σ2(= Np(1− p)) for its variance.

We begin by recalling the following proposition from the previous chapter.

Proposition 2.5. Let X be a random variable with distribution Bin(N, p),

with p ≤ 1/2. Then for any 1 ≤ k ≤ n,

exp(−2µ)(µ/k)k ≤ P(X = k) ≤ exp(−µ)(2eµ/k)k.
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Also, exp(−2µ) ≤ P(X = 0) ≤ exp(−µ). �

We shall make use of the following standard concentration result which first

appeared in a paper of Bernstein and was later rediscovered by Chernoff and

Hoeffding; see Appendix A of [5] for example.

Proposition 2.6. Let X be a random variable with distribution Bin(N, p).

Then

P(|X −Np| > t) ≤ exp

(
−t2

N/2 + 2t/3

)
. �

Proposition 2.7. Let X be a random variable with distribution Bin(N, p).

Then

P(X is even) =
1

2
(1 + (1− 2p)N). �

To prove the next two propositions, it will help to define θ(N, p) =

maxk P(X = k) where X has distribution Bin(N, p). It follows from Stirling’s

approximation, see [27], that θ(N, p) = O(1/
√
p(1− p)N).

Proposition 2.8. Let X1 and X2 be two independent random variables

both with distribution Bin(N, p). Then

P(X1 = X2) = oσ→∞(1).

In particular, when p ≤ 1/2, P(X1 = X2) = oµ→∞(1).

Proof. The proof follows simply by noting that

P(X1 = X2) =
∑
k

P(X1 = k)P(X2 = k)

≤ θ(N, p)
∑
k

P(X2 = k) = θ(N, p) = O(1/σ). �

Proposition 2.9. Let X1 and X2 be two independent random variables

with distributions Bin(N1, p) and Bin(N2, p) respectively, with p ≥ 1/2. Then

P(|X1 −X2| < |N1 −N2|1/3) = o|N1−N2|→∞(1).
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Proof. Assume, without loss of generality, that N2 ≥ N1 and write t =

N2 − N1 and q = 1 − p. If q ≥ t4/5/N2, then we proceed as follows. The

probability that X2 lies in an interval of size 2t1/3 + 1 is, independently of the

interval, at most

(2t1/3 + 1)θ(N2, p) = O

(
t1/3√
pqN2

)
= O(t−1/15) = o(1);

the claim follows immediately in this case. Hence, suppose that q < t4/5/N2. In

this case, we see from the standard Chernoff bound that P(X2 < N2 − 2t4/5) =

o(1). This implies that P(X2 < N1 + t1/3) = o(1); since X1 ≤ N1, the claim

follows. �

Proposition 2.10. Let X1 and X2 be two independent random variables

with distributions Bin(N1, p) and Bin(N2, p) respectively, with p ≥ 1/2. Suppose

N1 ≤ N , N2 ≤ N and |N1 −N2| ≤ cN1/2 for some absolute constant c. Then

P(|X1 −X2| > N2/3) = O

(
exp

(
−N1/3

5

))
.

Proof. If |X1 − X2| > N2/3, then since |N1 − N2| ≤ cN1/2, we must

necessarily have either |X1 − E[X1]| ≥ N2/3/3 or |X2 − E[X2]| ≥ N2/3/3

assuming N is sufficiently large. By the Chernoff bound, we have

P(|X1 − E[X1]| ≥ N2/3/3) ≤ exp

(
−N4/3/9

N1/2 + 2N2/3/9

)
≤ exp

(
−N1/3

5

)
,

where the last inequality holds for all large enough N since N1 ≤ N . We have

an analogous bound for P(|X2 − E[X2]| ≥ N2/3/3); the claim follows. �

3. Overview of our strategy

To prove Theorem 1.1, we need to show that if ε > 0 and n is sufficiently

large, then any graph G on n vertices contains two disjoint subsets of vertices

of the same size, each of cardinality at least (1/2− ε)n, which induce the same

number of edges. Equivalently, we need to show that it is possible to transform
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G into a splittable graph by deleting at most 2εn vertices from G. Recall that

a graph is splittable if and only if there is a partition of its vertex set into two

sets of equal size such that the sums of the degrees of the vertices in the two

sets are equal.

We shall show that there is a probability 0 < p ≤ ε (depending on G) such

that if we delete vertices from G with probability p, then the resulting graph

H is splittable with positive probability.

To show that this random subgraph H is splittable, we shall exhibit a large

collection of ‘gadgets’ in H. Given 0 ≤ a ≤ b, by an [a, b]-gadget, we mean a

pair of vertices (x, y) such that a ≤ δ(x, y) ≤ b; a gadget, in other words, is

just a pair of vertices whose degree difference we can control.

Once we have found sufficiently many suitable gadgets in H, we construct

a splitting of H as follows: we use Proposition 2.1 to decide, one-by-one for

each gadget, which way round to assign the vertices of the gadget to the sides

of the splitting. The following lemma makes this idea precise.

Lemma 3.1. Let H be a graph on an even number of vertices and suppose

that we can partition V (H) into disjoint collections of pairs P1,P2, . . . ,Pk such

that the pairs in Pi are [ai, bi]-gadgets, where 0 ≤ a1 ≤ b1 and 0 < ai ≤ bi for

2 ≤ i ≤ k. If bi−1 ≤ ai|Pi| for each 2 ≤ i ≤ k, then V (H) can be partitioned

into two sets A,B of the same size such that | deg(A) − deg(B)| ≤ bk. In

particular, if bk = 1, then H is splittable.

Proof. We show by induction on i that it is possible to partition the

vertices of the gadgets in P1, . . . ,Pi into two sets Ai and Bi of equal size such

that | deg(Ai) − deg(Bi)| ≤ bi. The lemma follows by taking A = Ak and

B = Bk.

We set b0 = 0 and A0 = B0 = ∅ and so the claim is trivially true when i = 0.

So suppose that i ≥ 1 and that we have constructed Ai−1 and Bi−1. Denote

the [ai, bi]-gadgets in Pi by (xj, yj), where deg(xj) ≥ deg(yj) for 1 ≤ j ≤ |Pi|.

Using the fact that bi−1 ≤ ai|Pi|, it follows from Proposition 2.1 that there is a
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choice of signs ζj ∈ {−1,+1} for 1 ≤ j ≤ |Pi| such that∣∣(deg(Ai−1)− deg(Bi−1)) +
∑
j

ζjδ(xj, yj)
∣∣ ≤ bi.

Given ζj as above, we construct Ai and Bi from Ai−1 and Bi−1 as follows: for

each 1 ≤ j ≤ |Pi|, we add xj to Ai−1 and yj to Bi−1 if ζj = 1, and yj to Ai−1

and xj to Bi−1 if ζj = −1. The claim follows.

If bk = 1, notice that we have a partition of V (H) into two sets A and B of

equal size such that | deg(A)− deg(B)| ≤ 1. As deg(A) + deg(B) is the sum of

all the vertex degrees, we conclude that deg(A) = deg(B) since deg(A)−deg(B)

must be even. �

Lemma 3.1 tells us that a graph is splittable if we can find the right gadgets

in the graph. The majority of the work in proving Theorem 1.1 is in showing

that it is possible to find a good collection of gadgets.

4. Proof of the main result

We now try and make the intuition presented in Section 3 precise. We shall

show that if ε > 0 and n is sufficiently large, it is possible to transform any

graph G on n vertices into a splittable graph by deleting at most 2εn vertices

from G. Before we begin, we remark that the various constants suppressed

by the asymptotic notation throughout the proof are allowed to depend on

ε. We shall use c1, c2, . . . to represent small constants depending on ε and

C1, C2, . . . for large constants depending on ε. All our estimates will hold when

n is sufficiently large.

Proof of Theorem 1.1. Let ε > 0 be fixed. By deleting an arbitrary

vertex of G if necessary, assume that n = |V (G)| is even. Let β = β(ε) be a

small constant whose value we shall fix at the end of the argument in Case 1.

Call a pair of vertices (x, y) a ‘large’ pair if δ(x, y) ∈ [n1/3, βn]. Let c1 = ε/2.

We distinguish two cases depending on how many disjoint large pairs we can
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find in G. We first deal with the case when G contains many disjoint large

pairs.

Case 1: G contains c1n disjoint large pairs of vertices. In this case,

we shall show that G either trivially has a large splittable induced subgraph or

that G has an induced subgraph H of even order on at least (1− 2ε)n vertices

that contains

(1) a collection SH of [1, 1]-gadgets of size Ω(n/ log n),

(2) a collection MH of [1, n2/3]-gadgets of size at least 2βn, and

(3) a collection LH of [n1/9, 2βn]-gadgets of size Ω(n)

such that the collections SH ,MH , and LH are disjoint. It is straightforward to

check that such a graph H is splittable using Lemma 3.1. Indeed, pair up the

vertices V (H)\(LH∪MH∪SH) arbitrarily; any such pair is a [0, n]-gadget and so

we have a partition of V (H) into disjoint collections of [0, n]-gadgets, [n1/9, 2βn]-

gadgets, [1, n2/3]-gadgets and [1, 1]-gadgets. The sizes of these collections satisfy

the conditions of Lemma 3.1 if n is sufficiently large and it follows that H is

splittable.

We shall now show that G does indeed contain such an induced subgraph

H. We shall construct H by deleting vertices from G at random.

To avoid notational clutter, in the rest of the argument in Case 1, we shall

write large-gadget for an [n1/9, 2βn]-gadget, medium-gadget for a [1, n2/3]-gadget

and one-gadget for a [1, 1]-gadget.

Let L be a collection of c1n large pairs of vertices of G. The pairs in L will

be the candidates for the large-gadgets we hope to find in H. Our next task is

to find a large collectionM of ‘medium’ pairs and a reasonably large collection

S of ‘small’ pairs; the collections M and S will provide the candidate pairs for

the medium-gadgets and one-gadgets that we would like to find in H.

Now, |V \ L| = (1 − 2c1)n; recall that in our notation, L denotes the

underlying ground set of L. If we find more than (1/2− ε)n disjoint clone pairs

(x, y) in G[V \ L], we are done. Indeed, we can delete all the other (≤ 2εn)
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vertices not in any of these clone pairs to get a splittable graph: we split this

graph by assigning different vertices of each clone pair to different halves of

the partition. So we may assume that we can find a set V ′ ⊂ V \ L of vertices

of G such that any two vertices of V ′ disagree on some vertex of V \ L and

|V ′| ≥ (2ε− 2c1)n ≥ εn.

Let C1 = 4/ε and let c2 = ε/12. We now apply Proposition 2.3 to the

degrees of the vertices of V ′; by our choice of C1 and c2, we see that we can

find c2n disjoint groups of three vertices from V ′ such that δ(x, y) ≤ C1 for any

two vertices x and y in the same group. By Proposition 2.4, from each of these

triples, we may choose a pair of vertices (x, y) such that ∆(x, y) ≤ 2n/3. Write

P for this collection of c2n pairs.

For 0 ≤ i ≤ log n− 1, let Pi be the collection of those pairs (x, y) in P such

that ∆(x, y) ∈ [2i, 2i+1). There are two possibilities that we need to consider. It

might be that no collection Pi contains too many pairs; we deal with this case

next. The case where one of these collections contains many pairs is easier; we

deal with this scenario later with a modification of the argument that follows.

Let C2 ≥ 4 be a (large) constant depending on ε; we shall fix the value of

C2 later in the proof at the end of Case 1A. Also, let c3 = c2/3C2 ≤ c2/12.

Case 1A: None of the collections P0,P1, . . . ,Plogn−1 contains c3n

pairs. It is clear that at least one of the collections P0,P1, . . . ,Plogn−1 contains

at least c2n/ log n pairs. Let k be the smallest index such that |Pk| ≥ c3n/ log n

and let us define our collection of small pairs S by setting S = Pk. We now

define our collection of medium pairs M by setting

M = Pk+C2 ∪ · · · ∪ Plogn−1.

Since k is minimal and c3 ≤ c2/12, we see that |M| ≥ c2n/2.

We shall now restrict our attention to the collections S, M and L; note

that they are disjoint. We shall make use of the following facts about these

collections.
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(1) S contains c3n/ log n pairs of vertices (x, y) such that δ(x, y) ≤ C1,

∆(x, y) ∈ [2k, 2k+1), and ∆(x, y) ≤ 2n/3.

(2) M contains c2n/2 pairs of vertices (x, y) such that δ(x, y) ≤ C1, and

∆(x, y) ≥ 2k+C2 .

(3) L contains c1n pairs of vertices (x, y) with δ(x, y) ∈ [n1/3, βn].

(4) For any pair of vertices (x, y) in S or M, there exists at least once

vertex in V \ L on which x and y disagree.

We are now in a position to describe how we intend to construct a splittable

graph from G. We shall delete vertices from G independently with a fixed

probability. We shall show that with positive probability, many of the small

pairs from S form one-gadgets in the resulting graph, many of the medium

pairs from M form medium-gadgets, and many of the large pairs from L form

large-gadgets in the resulting graph.

Fix p = min{ε, 2−k}. We now delete vertices from G independently with

probability p. Let H be the resulting graph. We shall show that with probability

Ω(1), the graph H is splittable and contains at least (1− 2ε)n vertices; this

clearly implies the result we are trying to prove.

Note that for a graph to be splittable, it must necessarily contain an even

number of vertices. With this in mind, let E be the event that an even number

of vertices have been deleted, in other words, E is the event that |V (H)| is even.

By Proposition 2.7, we see that P(E) ≥ 1/2. We now analyse what happens to

the degree differences of the pairs in S, M and L in the graph H.

One-gadgets. We first show that many of the pairs in S form one-gadgets

in H.

Lemma 4.1. For any pair (x, y) ∈ S,

P((x, y) is a one-gadget in H |E) ≥ f(ε) > 0.

The crucial fact about Lemma 4.1 is that the lower bound on the probability

is independent of C2.
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Proof of Lemma 4.1. Let A = Γ(x)\(Γ(y)∪{y}) and B = Γ(y)\(Γ(x)∪

{x}). Thus, δ(x, y) = ||A| − |B|| and ∆(x, y) = |A| + |B|. Note that since x

and y disagree on at least one vertex of V \ L, it cannot be the case that both

A and B are empty. Suppose without loss of generality that |A| ≥ |B| and

that in particular, A 6= ∅.

Let E1 be the event that both x and y are not deleted, E2 the event that

no vertices are deleted from B, E3 the event that exactly |δ(x, y)− 1| vertices

are deleted from A, and E4 the event that the number of vertices deleted from

V \ (A ∪B ∪ {x, y}) has the same parity as |δ(x, y)− 1|. It is obvious that the

family {E1, E2, E3, E4} is independent since these events correspond to disjoint

sets of vertices, and it is easy to check that

P((x, y) is a 1-gadget in H |E) ≥ P({(x, y) is a 1-gadget in H} ∩ E)

≥
4∏
i=1

P(Ei).

To complete our proof of the claim, we shall bound the factors on the right

one by one. Clearly, P(E1) ≥ (1− ε)2.

We trivially have |A|, |B| ≤ ∆(x, y) < 2k+1. Furthermore |A|, |B| ≥ 2k−1 −

C1/2, since 0 ≤ δ(x, y) ≤ C1. Also, we know that ε2−k ≤ p ≤ 2−k. To bound

P(E2), first note that p|B| ≤ 2. Now, P(E2) = P(Bin(|B|, p) = 0) and so, by

Proposition 2.5, P(E2) ≥ exp (−4).

We now bound P(E3). Clearly, p|A| ≤ 2. If 2k ≥ 2C1, then |A| ≥ 2k−2 and

so p|A| ≥ ε/4. If 2k ≤ 2C1, then p ≥ ε2−k ≥ ε/2C1 and so p|A| ≥ ε/2C1 since

|A| ≥ 1. Consequently,

min{ε/4, ε/2C1} ≤ p|A| ≤ 2.

Now, P(E3) = P(Bin(|A|, p) = |δ(x, y) − 1|). Using the above estimates for

p|A| and the fact that 0 ≤ δ(x, y) ≤ C1 in Proposition 2.5, we see that

P(E3) = Ωε,C1(1).
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Finally, since ∆(x, y) ≤ 2n/3, it follows that |V \ (A∪B)| ≥ n/3 and hence

by Proposition 2.7, P(E4) ≥ 1/6 for sufficiently large n. The claim follows. �

From Lemma 4.1 and Proposition 2.2 we see that, conditional on E, the

number of one-gadgets in H from S is Ω(n/ log n) with probability at least

f(ε)/2; furthermore, and crucially, we note that this lower bound on the

probability is independent of the choice of C2.

Medium-gadgets. We next shift our attention to the pairs in M.

Lemma 4.2. For any pair (x, y) ∈M,

P(1 ≤ δ(x, y,H) ≤ n2/3 |x, y ∈ V (H)) = 1− oC2→∞(1)− o(1).

Proof. Let N1 = |Γ(x) \ (Γ(y) ∪ {y})| and let N2 = |Γ(y) \ (Γ(x) ∪ {x})|

and suppose without loss of generality that N1 ≥ N2. Note that δ(x, y) =

|N1 − N2| ≤ C1. Let X1 and X2 be independent random variables with

distributions Bin(N1, 1 − p) and Bin(N2, 1 − p) respectively. Observe that

δ(x, y,H) has the same distribution as |X1 −X2|.

We condition on x, y ∈ V (H). Let E1 be the event that δ(x, y,H) = 0.

Clearly, P(E1) = P(X1 = X2). Let E2 denote the event that δ(x, y,H) ≥ n2/3.

It is enough to show that P(E1 ∪ E2) = oC2→∞(1) + o(1).

For any fixed values of p and N2, it is not hard to check that P(X1 = X2)

attains its maximum when N1 = N2; indeed, to see this, note that P(X1 =

X2) =
∑N2

i=0 P(X1 = i)P(X2 = i) and the required conclusion follows from

Cauchy–Schwarz inequality. Thus P(E1) is bounded above by the probability

of two independent random variables with the distribution Bin(N2, 1− p), or

equivalently Bin(N2, p), being equal. Now, N2 ≥ 2k+C2−1 −C1/2 and p ≥ ε2−k.

Recall that C1 = 4/ε; therefore, pN2 ≥ ε2C2−1 − 2−k+1 which, since k ≥ 0,

means that pN2 ≥ ε2C2−1 − 2. As ε is fixed, we note that pN2 can be made

arbitrarily large by choosing C2 large enough. Since p ≤ 1/2, by Proposition 2.8,

we see that P(E1) = oC2→∞(1).
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Clearly P(E2) = P(|X1−X2| ≥ n2/3). Applying Proposition 2.10 to X1 and

X2, we conclude that P(E2) = O(exp(−n1/3/5)). �

Let M′ be the collection of those pairs (x, y) ∈M such that both x and y

survive in H. Since the family of events {x, y ∈ V (H)} is a family of mutually

independent events for different pairs (x, y) ∈M and since P(x, y ∈ V (H)) ≥

(1 − ε)2, it follows from Proposition 2.6 that P(|M′| < (1 − ε)2|M|/2) =

exp(−Ω(n)).

From Lemma 4.2, it follows that for any pair (x, y) ∈M,

P
(

1 ≤ δ(x, y,H) ≤ n2/3
∣∣∣ (x, y) ∈M′

)
= 1− oC2→∞(1)− o(1).

Thus, by Markov’s inequality, the number of medium-gadgets in H fromM′ is at

least |M′|/2 with probability 1−oC2→∞(1)−o(1). Thus, the number of medium-

gadgets in H is at least (1− ε)2|M|/4 with probability 1− oC2→∞(1)− o(1).

Thus, conditional on the event E, the number of medium-gadgets in H from

M is Ω(n) with probability 1− oC2→∞(1)− o(1).

Large-gadgets. We finally consider the pairs of vertices in L. Recall

that every pair (x, y) ∈ L is such that δ(x, y) ∈ [n1/3, βn] where β is a (small)

constant whose value we have yet to fix. (Indeed, the value of β has so far

played no role in our calculations.)

Lemma 4.3. For any pair (x, y) ∈ L,

P(n1/9 ≤ δ(x, y,H) ≤ 2βn |x, y ∈ V (H)) = 1− o(1).

Proof. We condition on x, y ∈ V (H). Let E1 denote the event that

δ(x, y,H) < n1/9. Since δ(x, y) ≥ n1/3, it follows immediately from Proposi-

tion 2.9 that P(E1) = o(1).

Let E2 be the event that δ(x, y,H) > 2βn. Let A = Γ(x) \ (Γ(y)∪{y}) and

B = Γ(y) \ (Γ(x) ∪ {x}), and let X1 and X2 be random variables that denote

the the number of vertices from A and B respectively which survive in H.
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Clearly, the distributions of X1 and X2 are Bin(|A|, 1− p) and Bin(|B|, 1− p)

respectively.

If E2 were to occur, i.e., it were the case that |X1 − X2| > 2βn, then

this would imply that either |X1 − (1− p)|A|| ≥ βn/2 or |X2 − (1− p)|B|| ≥

βn/2, since (1 − p)||A| − |B|| ≤ δ(x, y) ≤ βn. It follows that P(E2) = o(1)

since the probability of either of the above two possibilities is exp (−Ω(n)) by

Proposition 2.6. �

Arguing as in the case of medium-gadgets, we see from Lemma 4.3 that

conditional on the event E, the number of large-gadgets in H from L is Ω(n)

with probability 1− o(1).

Constructing a splitting. We now have a reasonably clear picture of

what the degree differences in H of the pairs of vertices in S, M and L look

like. In summary, conditional on E, we have demonstrated that in H, we can

find

(1) a collection SH of Ω(n/ log n) one-gadgets with probability f(ε)/2,

(2) a collection MH of Ω(n) medium-gadgets with probability 1− o(1)−

oC2→∞(1), and

(3) a collection LH of Ω(n) large-gadgets with probability 1− o(1)

such that the collections SH ,MH and LH are disjoint.

Thus by choosing C2 to be a sufficiently large constant depending on ε, by

the union bound, we find all of the above with probability Ω(1) conditional

on E, provided n is sufficiently large. Also, the expected number of vertices

deleted is at most εn and so by Proposition 2.6, the probability that we have

deleted more than 2εn vertices is exp (−Ω(n)).

Consequently, we see that H, with probability Ω(1), has the aforementioned

collections of gadgets, and furthermore, also has an even number of vertices and

at least (1− 2ε)n vertices. We are done if we can guarantee that 2βn ≤ |MH |;

this is possible if we choose β = β(ε) to be a suitably small constant because

|MH | = Ω(n).
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We now consider the case where one of the sets Pi contains many pairs.

Case 1B: One of the sets P0,P1, . . . ,Plogn−1 contains c3n pairs. This

case is easier to deal with than the previous one We shall argue exactly as

before; however we shall have no need of medium-gadgets and it will suffice to

consider one-gadgets and large-gadgets alone.

Let k be any index such that |Pk| ≥ c3n (while we chose k to be minimal

previously, any index k such that |Pk| ≥ c3n will do in this case). As before, we

set p = min{ε, 2−k} and S = Pk. We now delete vertices from G independently

with probability p. Let H be the resulting graph; as before, we condition

on deleting an even number of vertices. We claim that H is splittable with

probability Ω(1).

It is not hard to check that Lemma 4.1 and Lemma 4.3 hold in this case as

well. We conclude that we can delete an even number of vertices from G to

obtain a graph H with |V (H)| ≥ (1− 2ε)n in such a way that in H, we can

find

(1) a collection SH of Ω(n) one-gadgets, and

(2) a collection LH of Ω(n) large-gadgets

such that SH and LH are disjoint. As before, it follows from Lemma 3.1 that

H is splittable when n is sufficiently large provided 2βn ≤ |SH |; this is possible

if we choose β = β(ε) to be a suitably small constant because |SH | = Ω(n).

Thus, for sufficiently small β (chosen so as to satisfy the conditions from

both Case 1A and 1B), we see that we are done if G contains many disjoint

large pairs. Note that we have now fixed the value of β. We now deal with the

case G does not contain many disjoint large pairs.

Case 2: G does not contain c1n disjoint large pairs. In this case,

we shall show that G has an induced subgraph H of even order on at least

(1− 2ε)n vertices such that V (H) may be partitioned into

(1) a collection SH of [1, 1]-gadgets of size Ω(n/ log n), and

(2) a collection MH of [0, n2/3]-gadgets.
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In the rest of the argument in Case 2, we shall, as before, call [1, 1]-gadgets

one-gadgets and we call [0, n2/3]-gadgets (as opposed to [1, n2/3]-gadgets as we

did earlier) medium-gadgets.

It is easily seen from Lemma 3.1 that any graph H as above is splittable

if n is sufficiently large. We construct our splitting by starting with the pairs

in MH - we can use these pairs to construct a partition such that sums of the

degrees of the vertices of the two halves of the partition differ by at most n2/3.

We then use the the pairs in SH to reduce the difference to at most one; we are

done by parity considerations.

We now show how to find such a subgraph H. We start by describing how

to find pairs of vertices which will be the candidates for the medium-gadgets

we hope to find in H.

Let L be a maximal collection of large pairs in G. Note that since L is

maximal, we have either δ(x, y) < n1/3 or δ(x, y) > βn for any two vertices

x, y ∈ V \ L. As βn > 2n1/3 for all sufficiently large n, there is a partition

V \L = K1 ∪K2 ∪ · · · ∪Km into ‘clumps’ Ki with m ≤ 1/β in such a way that

δ(x, y) < n1/3 for any x, y ∈ Ki and δ(x, y) > βn if x ∈ Ki and y ∈ Kj with

i 6= j.

We ignore the way in which vertices are originally paired in L and focus on

the ground set L. By Proposition 2.3, we can find from L, at least |L|/2− n1/2

disjoint pairs (x, y) such that δ(x, y) ≤ n1/2; call this collection of pairs Q.

Let F be the graph obtained from G as follows. Delete every vertex of

L \Q. Delete one vertex from every clump K which contains an odd number

of vertices. Having done this, delete a clump K (i.e., delete all the vertices of

K) if |K| ≤ n1/2.

Note that the vertex set of F consists of the surviving clumps, each of

which has even size and cardinality at least n1/2, and the (possibly empty) set

of pairs Q. Since we had at most 1/β clumps initially, we have deleted O(n1/2)

vertices in total from G to obtain F . Hence, for any two vertices x, y ∈ V (F ),
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K1 K2 K3 Km L

Figure 1. The graph F with small clumps removed and the
vertices in L re-paired.

|δ(x, y, F )− δ(x, y,G)| = O(n1/2). Hence, if either x and y both belong to the

same (surviving) clump or if the pair (x, y) is in Q, then δ(x, y, F ) = O(n1/2).

Let us say that two vertices x, y ∈ V (F ) are proximate if either both x and

y belong to the same clump in F or if (x, y) ∈ Q; these proximate pairs of

vertices will be our candidates for medium-gadgets in H.

We now show how to find pairs of vertices which will be the candidates for

the one-gadgets we hope to find in H. We shall henceforth work with F as

opposed to G. We shall write V for V (F ) and all degrees and degree differences,

unless specified otherwise, will be with respect to F .

Since |L| ≤ c1n = εn/2 and since we have only deleted O(n1/2) vertices so

far, note that |V \Q| ≥ (1− 3ε/2)n for n sufficiently large.

If we find at least (1/2 − ε)n disjoint clone pairs (x, y) in F [V \ Q], this

means that G trivially contains a large splittable induced subgraph we are

done. So we may assume that we can find a set V ′ ⊂ V \ Q of vertices of F

with |V ′| ≥ (2ε− 3ε/2)n = εn/2 such that any two vertices of V ′ disagree on

some vertex in V \Q.

We claim that if C3 is sufficiently large (as a function of β), then we can

find from any subset of C3 vertices of V ′, two vertices x and y such that for

each clump K, the number of vertices of K on which x and y disagree is at

most 2|K|/3. To see this, suppose that we have found C3 vertices such that

any two of them x and y disagree on more than two thirds of some clump Kx,y.

Applying Ramsey’s theorem (with 1/β colours) to the complete graph on these

136



C3 vertices where the edge between x and y is labelled by the clump Kx,y, we

see that we can find a monochromatic triangle provided C3 is large enough.

But by Proposition 2.4, out of any three vertices, at least two disagree on at

most two thirds of the vertices of K. We have a contradiction.

Choose C3 as described above and set C4 = 4C3/ε and c4 = β/2C4. By

Proposition 2.3, we can find from V ′, at least n/C4 disjoint groups of size C3

such that that δ(x, y) ≤ C4 for any two vertices x and y in the same group.

From each of these n/C4 groups of size C3, choose a pair of vertices (x, y)

such that x and y disagree on at most two thirds of every clump. Choose a

clump K∗ such that at least a β fraction of these pairs (x, y) are such that x

and y disagree on at least one vertex in K∗; this is possible because any two

vertices of V ′ disagree on V (F )\Q and consequently, on at least one clump and

furthermore, there are at most 1/β clumps. Let P be this collection of pairs

which all disagree on at least one vertex in K∗; clearly |P| ≥ βn/C4 = 2c4n.

We shall proceed as in Case 1 by pigeonholing the pairs in P into different

boxes based on the size of their difference neighbourhoods, but with one

important difference. Note that while any two vertices in the same clump have

a small (O(n1/2)) degree difference, we can only guarantee that two vertices of

Q have small (O(n1/2)) degree difference if the pair belongs to Q. Consequently,

when we later delete vertices at random, we shall either delete both vertices

of a pair in Q or retain both; hence we shall treat a pair of vertices in Q as

a single vertex when it comes to pigeonholing the pairs in P. This is made

precise below.

Let FQ be the multigraph without loops obtained from F by contracting

every pair (x, y) in Q (we ignore the loops that might arise). Note that there

are at most two parallel edges between any two vertices of FQ. In FQ, we say

that two vertices x and y disagree on a vertex v 6= x, y if the number of edges

between v and x is not equal to the number of edges between v and y. For

0 ≤ i ≤ log n− 1, let Pi be the collection of those pairs (x, y) in P such that
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∆(x, y, FQ) ∈ [2i, 2i+1) where ∆(x, y, FQ) is the number of vertices of FQ on

which x and y disagree.

As before, let k be any index such that |Pk| ≥ 2c4n/ log n; take S = Pk and

set p = min{ε, 2−k}.

In summary, S consists of pairs (x, y) such that

(1) x and y disagree on at most two thirds of every clump,

(2) x and y disagree on at least one vertex of K∗,

(3) δ(x, y) ≤ C4, and

(4) ∆(x, y, FQ) ∈ [2k, 2k+1).

Furthermore, since δ(x, y) ≤ C4 = o(n1/2) for any (x, y) ∈ S, both members of

any pair in S must belong to the same clump.

Consider the partition S = So ∪ Se where So is the set of those pairs

(x, y) ∈ S such that δ(x, y) is odd. Recall that |S| ≥ 2c4n/ log n and so one of

So or Se contains more than c4n/ log n pairs. At this point, we need slightly

different arguments depending on whether we have more pairs with odd degree

difference or even degree difference in S.

Case 2A: S contains many odd pairs. We first consider the case where

|So| ≥ c4n/ log n. We shall delete vertices from F as follows. We pick vertices

of FQ independently with probability p = min{ε, 2−k}. For every vertex of FQ

that we pick, we delete (as appropriate) either the corresponding vertex or

both vertices of the corresponding pair of vertices from Q in FQ. Let H be the

resulting graph. Our aim is to show that H is splittable with probability Ω(1).

Earlier, we conditioned on deleting an even number of vertices from G. In

this case, we need a little more. Let E∗ be the event that an even number

of vertices were deleted from each clump. By Proposition 2.7, we see that

P(E∗) ≥ (1/2)1/β. Note that a consequence of E∗ is that |V (H)| is even.

One-gadgets. First, we shall show that many of the pairs in So become

one-gadgets in H.
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Lemma 4.4. For any pair (x, y) ∈ So,

P((x, y) is a one-gadget in H |E∗) = Ω(1).

Proof. In FQ, let A be the set of those vertices v 6= x, y such that number

of edges between v and x is more than the number of edges between v and y

and let B be defined analogously by interchanging x and y. Let A = A1 ∪ A2

where A1 and A2 are respectively those vertices v in A such that the number

of edges between v and x is one, respectively two, more than the number of

edges from v to y; define B1 and B2 analogously.

The proof follows that of Lemma 4.1. Clearly,

2k ≤ |A1|+ |A2|+ |B1|+ |B2| < 2k+1.

Furthermore, δ(x, y) = ||A1|+ 2|A2| − |B1| − 2|B2|| and so,

−C4 ≤ |A1|+ 2|A2| − |B1| − 2|B2| ≤ C4.

Using the above two inequalities, it is not hard to check that

max{|A1|, |A2|},max{|B1|, |B2|} ≥ 2k−3 − C4/4.

Since δ(x, y) is odd, suppose without loss of generality that deg(x) > deg(y).

Let E1 be the event that both x and y are not picked to be deleted, E2 the event

that no vertices are picked from B, E3 the event that X1 + 2X2 = δ(x, y)− 1

where X1 and X2 are the number of vertices picked from A1 and A2 respectively,

and E4 the event that the number of vertices picked from K \ (A ∪B ∪ {x, y})

has the same parity as the number of vertices picked from K ∩ (A∪B ∪ {x, y})

for every clump K. The collection of events {E1, E2, E3} is clearly independent,

and it is easy to check that

P((x, y) is a 1-gadget in H |E∗) ≥ P({(x, y) is a 1-gadget in H} ∩ E∗)

≥ P(E1 ∩ E2 ∩ E3 ∩ E4)

= P(E1)P(E2)P(E3)P(E4 |E1, E2, E3).
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Clearly, P(E1) ≥ (1 − ε)2. As in Lemma 4.1, note that p|B| ≤ 2 and so, by

Proposition 2.5, P(E2) ≥ exp (−4).

We now bound P(E3). First suppose that 2k−3 − C4/4 > C4. Recall that

δ(x, y) is odd. If |A2| ≥ |A1|, we consider the event that (δ(x, y)− 1)/2 vertices

are picked from A2 and no vertices are picked from A1 in FQ; as in Lemma 4.1,

we see that p|A2| = Θ(1) and so this event occurs with probability Ω(1). Hence

E3 occurs with probability Ω(1). If |A1| > |A2|, we consider the event that

δ(x, y)− 1 vertices are picked from |A1| and no vertices are picked from A2 and

note that this event occurs with probability Ω(1) and hence E3 occurs with

probability Ω(1).

If, on the other hand, 2k−3 − C4/4 ≤ C4, then clearly k = Θ(1) and

hence p, |A1|, |A2| are all Θ(1). In this case, we consider the event that t =

min{(δ(x, y) − 1)/2, |A2|} vertices are picked from A2 and δ(x, y) − 1 − 2t

vertices are picked from A1. Now, |A1| + 2|A2| ≥ δ(x, y) since we assumed

that deg(x) > deg(y) and so |A1| ≥ δ(x, y) − 1 − 2t. Also, as noted above,

p, |A1|, |A2| are all Θ(1). So this event occurs with probability Ω(1). Hence the

event E3 occurs with probability Ω(1).

Since x and y disagree on at most two thirds of every clump and since every

clump has size at least n1/2, it follows from Proposition 2.7 that for sufficiently

large n, P(E4 |E1, E2, E3) ≥ (1/6)1/β. �

Let SH be the set of pairs from So that form one-gadgets in H. From

Lemma 4.4 and Proposition 2.2, we see that conditional on E∗, |SH | ≥

E[|SH |]/2 = Ω(n/ log n) with probability Ω(1).

Medium-gadgets. We now show that the degree difference of any pair of

vertices which are proximate in F cannot become too large in H.

Lemma 4.5. Conditional on E∗ and |SH | ≥ E[|SH |]/2, the probability that

there exist x, y ∈ V (H) which are proximate in F and satisfy δ(x, y,H) > n2/3

is o(1).
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Proof. Recall that for any two vertices x and y which are proximate in F ,

δ(x, y) = O(n1/2). For such a pair of vertices x and y, note by Proposition 2.10

that

P(δ(x, y,H) > n2/3 |x, y ∈ V (H)) = O(exp(−n1/3/5)).

Consequently, since we have conditioned on an event with probability Ω(1), the

probability that there exist some vertices x, y ∈ V (H) such that x and y are

proximate and δ(x, y,H) > n2/3 is O(n2 exp(−n1/3/5)) = o(1). �

Constructing a splitting. We now describe how to construct a splitting

of H. Let QH be the set of pairs from Q that survive in H. For a clump K

in F , let KH denote the set (K \ SH) ∩ V (H). Clearly V (H) is the disjoint

union of SH , QH and the clumps KH . Note that conditional on E∗, the size

of KH is even for every clump K since both members of any pair in SH must

necessarily belong to the same clump. Since each KH has even cardinality, we

may group the vertices of each KH into pairs. Pair up the vertices in each

KH arbitrarily; let MH be the collection consisting of these pairs and the

pairs in QH . Clearly, every pair of vertices in MH are proximate in F and

by Lemma 4.5, the probability that there exists some pair (x, y) ∈MH with

δ(x, y,H) > n2/3 is o(1).

The expected number of vertices deleted from F is at most εn and the

number of vertices deleted from G to obtain F is O(n1/2). Hence, by Proposi-

tion 2.6, the probability that we have deleted more than 2εn vertices from G is

exp (−Ω(n)).

We conclude that there exists an induced subgraph H of G such that

|V (H)| ≥ (1−2ε)n, and with the further property that V (H) may be partitioned

into

(1) a collection SH of one-gadgets of size Ω(n/ log n), and

(2) a collection MH of medium-gadgets.

It follows from Lemma 3.1 that H is splittable and we are done.
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Case 2B: S contains many even pairs. Now we consider the case where

|Se| ≥ c4n/ log n.

Note that since we intend to delete either both vertices of a pair in Q or

neither, it might be the case that it is impossible to make the parity of the

degree difference of a pair in Se odd in H. Consequently, in this case, we

will need to work with [2, 2]-gadgets, or two-gadgets for short, in addition to

one-gadgets. With the exception of this slight change of tack to account for

parity considerations, the argument is quite similar to the one in the previous

case and proceeds as follows.

Let c5 be a (small) constant depending on ε; the value of c5 will be chosen

later, following the statement of Lemma 4.6.

Recall that every pair of vertices in Se disagree on some vertex in the clump

K∗. Suppose there exists a vertex v ∈ K∗ such that c5n/ log n pairs from Se all

disagree on v. In this case, we may complete the proof as follows. Let Sv ⊂ Se
be the collection of pairs in Se that disagree on v. We shall delete vertices

from F as follows. We first delete v and then delete one other vertex uniformly

at random from K∗. Following this, we proceed as before by picking vertices

of FQ independently with probability p and then deleting the corresponding

vertices or pairs of vertices from Q in F . Let H be the resulting graph. Note

that when we delete v, the degree difference of every pair in Sv changes parity

and becomes odd. When we then delete another vertex uniformly at random

from K∗, the parity of the degree difference of a pair in Sv is unaltered with

probability at least 1/3 since every pair in S disagree on at most two thirds

of any clump. Arguing as in Lemma 4.4, for any pair in Sv, we see that the

probability that this pair forms a one-gadget in H, conditional on deleting

an even number of vertices from every clump, is Ω(1) (albeit with a smaller

constant than in Case 2A). Since |Sv| ≥ c5n/ log n, we can conclude the proof

exactly as in the case where S contains many odd pairs.

Hence we may assume that for every vertex v ∈ K∗, the number of pairs

in Se that disagree on v is at most c5n/ log n. We delete vertices from F as
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before by picking vertices of FQ independently with probability p and then

deleting the corresponding vertices or pairs of vertices from Q in G. Let H be

the resulting graph.

As before, let E∗ be the event that an even number of vertices were deleted

from each clump. The proof of Lemma 4.4, with minor modifications for the

change in parity, yields a proof of the following lemma.

Lemma 4.6. For any (x, y) ∈ Se, P((x, y) is a two-gadget in H |E∗) = Ω(1).

�

Let SH be the collection of pairs from Se that form two-gadgets in H.

From Lemma 4.6 and Proposition 2.2, we see that there exists a small positive

constant c6 such that, conditional on E∗, |SH | ≥ c6n/ log n with probability

Ω(1). Recall that we still have not fixed the value of c5; let us now fix c5 = c6/4.

Constructing a splitting. As before, let QH be the collection of pairs

from Q that survive in H and for each clump K in F , let us write KH for the

set (K \ SH) ∩ V (H).

We have shown that with probability Ω(1), the graph H is such that

(1) |KH | is even for every clump K, and

(2) |SH | ≥ c6n/ log n.

Consider any pair (x, y) ∈ SH and note that in F , x and y disagree on at

most two thirds of any clump; in particular, x and y agree on at least a third

of K∗. Consequently, the probability that x and y disagree on every vertex of

K∗H is exp (−Ω(n1/2)). Hence, with probability 1− o(1), for every (x, y) ∈ SH ,

there exists some vertex in K∗H on which x and y agree.

Next, it follows from Lemma 4.5 that with probability 1− o(1), any two

vertices x, y ∈ V (H) which are proximate satisfy δ(x, y,H) ≤ n2/3. Finally, the

probability that we have deleted more that 2εn − 2 vertices of total from G

is, by Proposition 2.6, exp (−Ω(n)). It follows that with probability Ω(1), the
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graph H, in addition to possessing the aforementioned properties, also has the

following properties.

(3) For every (x, y) ∈ SH , there exists some vertex in K∗H on which x and

y agree.

(4) For any x, y ∈ V (H) such that x and y are proximate in F , δ(x, y,H) ≤

n2/3.

(5) |V (H)| ≥ (1− 2ε)n+ 2.

With a view to making the graph H splittable, we alter H as follows. Fix

a pair (x∗, y∗) ∈ SH and a vertex v ∈ K∗ on which x∗ and y∗ disagree. We

know that there is a vertex u ∈ K∗H on which x∗ and y∗ agree. Delete u from

H. If v ∈ V (H), delete v from H and if v /∈ V (H), add v back. After these

alterations, note that H still has an even number of vertices. Note also that

now, |V (H)| ≥ (1− 2ε)n and δ(x∗, y∗, H) ∈ {1, 3}.

Before we altered H, at most c5n/ log n pairs in SH disagreed on any vertex

in K∗; since c6 = 4c5, the alterations above change the degree differences of

at most 2c5n/ log n = c6n/2 log n pairs in SH . Hence, H contains a collection

SH of least c6n/2 log n− 1 pairs of vertices (x, y) such that δ(x, y,H) = 2 and

a pair (x∗, y∗) such that δ(x∗, y∗, H) ∈ {1, 3}. Furthermore, all the vertices of

V (H) \ (SH ∪ {x∗, y∗}) may be grouped into pairs (x, y) such that δ(x, y,H) ≤

n2/3 + 2; let MH denote this collection of pairs.

It is now easy to check that H is splittable using the argument used to prove

Lemma 3.1. Indeed, we can use pairs inMH to construct a partition such that

sums of the degrees of the vertices of the two halves of the partition differ by

at most n2/3 + 2. For n sufficiently large, we can then reduce the difference

to at most two by using all but one of the pairs in SH . Finally, using the one

remaining pair in SH and the pair (x∗, y∗), we can reduce the difference to at

most one; we are done constructing a splitting of H by parity considerations.

This completes the proof of Theorem 1.1. �
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5. Concluding remarks

We have shown that f(n) ≥ n/2 − o(n). In fact, it should be possible

to read out a bound of f(n) ≥ n/2 − n/(log log n)c from our proof for some

absolute constant c > 0; we chose not to include a proof of this fact to keep the

presentation simple, and because we do not believe that such a bound is close

to the truth. While we have managed to pin down f up to its first order term,

there is still a large gap between the upper and lower bounds for n/2− f(n).

Problem 5.1. What is the asymptotic behaviour of n/2− f(n)?

We know that n/2 − f(n) = Ω(log log n) and n/2 − f(n) = o(n); we

suspect that the truth lies closer to the lower bound and that in particular,

n/2 − f(n) = o(nε) for every ε > 0. Indeed, it is not inconceivable that

n/2− f(n) = Θ(log n).

It is natural to generalise the problem to the case where we have more

than one type of edge, or ask for more than two disjoint subgraphs. For any

r, l ∈ N, given an edge colouring ∆ of the complete graph on n vertices with r

colours, let g(∆) be the largest integer k for which we can find l disjoint subsets

V1, V2, . . . , Vl of [n], each of cardinality k, such that for each 1 ≤ i ≤ r, the

number of edges induced by Vj of colour i is the same for every 1 ≤ j ≤ l. Let

g(n, r, l) be the minimum value of g(∆) taken over all edge colourings of the

complete graph on n vertices. In particular, note that g(n, 2, 2) = f(n). We

conjecture that g(n, r, 2) = n/2− o(n) and more generally, ask the following

question.

Problem 5.2. For r, l ∈ N, what is the asymptotic behaviour of g(n, r, l)?

Finally, we mention a question about digraphs that we find particularly

appealing. Given a digraph D on n vertices, let h(D) denote the largest integer

k for which there exist disjoint subsets A,B ⊂ V such that |A| = |B| = k and

the number of directed edges from A to B is equal to the number of directed
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edges from B to A. Let h(n) be the minimum value of h(D) taken over all

digraphs on n vertices.

Problem 5.3. Determine h(n).
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CHAPTER 9

Catching a fast robber on the grid

Joint work with Paul Balister, Scott Binski and Béla Bollobás

1. Introduction

The game of Cops and Robbers, introduced almost thirty years ago in-

dependently by Nowakowski and Winkler [93] and Quilliot [95], is a perfect

information pursuit-evasion game played on an undirected graph G as follows.

There are two players, a set of cops and one robber. The game begins with

the cops being placed onto vertices of their choice in G and then the robber,

being fully aware of the placement of the cops, positions himself at a vertex

of his choosing. Afterward, they move alternately, first the cops and then the

robber along the edges of the graph G. In the cops’ turn, each cop may move

to an adjacent vertex, or remain where he is, and similarly for the robber; also,

multiple cops are allowed to occupy the same vertex. The cops win if at some

time there is a cop at the same vertex as the robber; otherwise, the robber wins.

The minimum number of cops for which the cops have a winning strategy, no

matter how the robber plays, is called the cop number of G.

Perhaps the most well known problem concerning the game of cops and

robbers is Meyniel’s conjecture which asserts that O(
√
n) cops are sufficient

to catch the robber on any n-vertex graph. While Meyniel’s conjecture has

attracted a great deal of attention (see [9] and the references therein), progress

towards the conjecture in its full generality has been rather slow.

In this chapter, we shall be concerned with a variant of the question where

the robber is allowed to move faster than the cops. Let us suppose that the cops
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move normally as before while the robber is allowed to move at speed R ∈ N;

in other words, the robber may, on his turn, take any walk of length at most R

from his current position that does not pass through a vertex occupied by a cop.

The definition of the cop number in this setting is analogous. This variant was

originally considered by Fomin, Golovach, Kratochv́ıl, Nisse and Suchan [54]

and following them, Frieze, Krivelevich and Loh [60], Mehrabian [90], and Alon

and Mehrabian [4] have obtained results about how large the cop number of an

n-vertex graph can be when the robber has a fixed speed R > 1.

It is natural to ask how the cop number of a given graph changes, if at

all, when the speed of the robber increases from 1 to some R > 1. The most

natural example of a graph where this question is interesting is the n× n grid

of squares where two squares of the grid are adjacent if and only if they share

an edge. Let us write fR(n) for the minimum number of cops needed to catch

a robber of speed R on an n × n grid. Maamoun and Meyniel [88] showed,

amongst other things, that f1(n) = 2 for all n ≥ 2. However, the flavour of the

problem changes completely as soon as the robber is allowed to move faster

than the cops. Nisse and Suchan [92] showed that f2(n) = Ω(
√

log n). Our aim

in this chapter is to prove the following extension.

Theorem 1.1. There exists an R ∈ N and a cR > 0 such that for all

sufficiently large n ∈ N,

fR(n) ≥ exp

(
cR log n

log log n

)
.

To keep the presentation simple, we shall make no attempt to optimise the

speed of the robber; we prove Theorem 1.1 with R = 1025.

Note that fR(n) ≤ n for every R ∈ N since n cops can catch a robber of

any speed on the n× n grid by lining up on the bottom edge of the grid and

then marching upwards together. We suspect that this trivial upper bound is

closer to the truth than Theorem 1.1; we believe that for all sufficiently large

R ∈ N, fR(n) = n1−o(1) as n→∞.
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We give a sketch of the proof of Theorem 1.1 and then the proof proper in

Section 2. We conclude with some discussion in Section 3.

2. Proof of the main result

Our proof of Theorem 1.1 is inspired by the strategy used by Bollobás

and Leader [29] and Kutz [81] to resolve Conway’s angel problem in three

dimensions.

We fix a large positive integer R ∈ N which will denote the speed of the

robber in what follows. We also fix two other positive integers C,N ∈ N such

that C, N and R together satisfy C ≥ 40, N > 100eC and R > 50N . We may,

for example, take C = 40, N = 1020 and R = 1025.

Define a sequence of grids as follows: let A0 be an N ×N grid and for k ≥ 1

let Ak be a (2k + 1)2 × (2k + 1)2 array of copies of Ak−1.

We shall imagine that our n× n grid is tiled with copies of A0, with these

copies of A0 themselves fitting together to form copies of A1, and so on. We

call each copy of Ak in our grid a k-cell. Our strategy for the robber will be

inductive: we shall describe how the robber may run from k-cell to adjacent

k-cell, the path of the robber within a k-cell being inductively determined, all

the while avoiding k-cells where there are too many cops.

Let us suppose that the robber is situated on the bottom edge of a ‘safe’

k-cell and wishes to get to the bottom edge of the k-cell above. Assume for

the moment that the robber’s k-cell is guaranteed to be ‘safe’ for a reasonably

large number of steps.

Here then is an outline of a strategy for the robber: he plots a straight line

from his current (k − 1)-cell to a (k − 1)-cell in the k-cell above that he wishes

to get to. He runs across each of the (k − 1)-cells on the way until he reaches

his destination; within each (k − 1)-cell, his path is determined inductively. Of

course, there is a problem with this strategy: along the way, a (k − 1)-cell that

the robber needs to run across might not be ‘safe’ when he gets to it, or worse,
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a (k − 1)-cell might become ‘unsafe’ while the robber is running through it.

To address these issues, the robber alters his path dynamically and detours

around any (k− 1)-cell along his planned straight line path that he finds might

become ‘unsafe’ while he is running through it. Our definition of ‘safety’ will

ensure that the robber does not have to take too many detours. It will follow,

and it is here that we use the fact that a k-cell is a (2k + 1)2 × (2k + 1)2 array

of (k − 1)-cells, that the ‘average speed’ of the robber is large despite the fact

that he has to take the occasional detour (and detours within detours and so

on). This will provide us with enough elbow room to prove what we need by

induction.

We now go about making the above sketch precise. First, we define a

sequence (Lk)k≥0 of natural numbers by setting Lk =
∏k

j=0(2j + 1)2; clearly

a k-cell is an NLk ×NLk grid of squares. Next, we define another sequence

(Tk)k≥0 of natural numbers by setting T0 = 1 and Tk = (2k + 1)2Tk−1 + CTk−1

for k ≥ 1.

An observation that we shall use repeatedly is that each k ≥ 0,

Tk = Lk

k∏
j=1

(
1 +

C

(2j + 1)2

)
< Lk exp

(
C
∞∑
j=1

1

(2j + 1)2

)
< eCLk.

We need to define some notions of ‘safety’. We say that a k-cell is safe

at some point in time if the number of cops (at that point in time) within

the k-cell is strictly less than 2k. Also, we say that a k-cell is safe for t steps

(at some point) if the set of cops at distance at most t from the k-cell has

cardinality strictly less than 2k. Note that a k-cell safe for t steps is necessarily

safe for t′ steps for every 0 ≤ t′ ≤ t as well.

Next, we say that a square is k-safe if for each 0 ≤ k′ ≤ k, the k′-cell

containing the square is safe for Tk′ steps; also, a square is completely k-safe if

it is guaranteed to be k-safe after a single cop move.
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Figure 1. The bottom landing zone of a 1-cell; each square
here represents a 0-cell.

Notice that if a k-cell is safe, then it contains at most one unsafe (k−1)-cell.

We shall require a straightforward extension of this simple observation. Let us

say that two cells are separated if they share neither an edge nor a corner.

Proposition 2.1. Let X be a k-cell and assume that X is safe for t steps

where 2t < NLk−1. If P and Q are a separated pair of (k − 1)-cells within X,

then either P or Q is safe for t steps.

Proof. Simply notice that since P and Q are separated, the distance

between them is at least NLk−1. Consequently, the set of cops at distance at

most t from P and the set of cops at distance at most t from Q are disjoint

and the proposition follows. �

To help with the induction, we shall demarcate certain regions as ‘landing

zones’. For k ≥ 1, the landing zone of a k-cell is the union of its bottom, top,

right and left landing zones; the bottom landing zone of a k-cell consists of the

3× 1 sub-grid of (k − 1)-cells at the middle of the bottom edge of the k-cell as

shown in Figure 1 and the top, right and left landing zones are analogously

defined by symmetry. Also, a square is called a k-landing square, if the square

is contained in the landing zone of each k′-cell containing it for 1 ≤ k′ ≤ k.

Our proof of Theorem 1.1 hinges on the following lemma.
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Lemma 2.2. Let k ≥ 1 and suppose that it is the robber’s turn to move.

Suppose further that the robber is positioned on a k-safe, k-landing square inside

a k-cell X. If the k-cell Y above X is safe for 2Tk + 1 steps, then the robber has

a strategy to reach, in at most Tk steps and without getting caught, a k-landing

square in the bottom landing zone of Y which is completely k-safe on his arrival

there.

Let us point out that there is some asymmetry in how Lemma 2.2 is stated.

The lemma assumes something about the grid when the robber is about to

move, and says something about the grid after a sequence of moves ending with

the a move for the robber. However, note that a square is completely k-safe

only if it is k-safe after a single cop move; hence, if the robber moves using

the strategy given by Lemma 2.2, then no matter how the cops move on their

turn following his final move, his new location is k-safe (and the lemma may

be applied once again).

Proof of Lemma 2.2. Note that Lemma 2.2 is really a collection of four

different statements, one each for when the robber starts in the bottom, top,

right and left landing zones of his k-cell X. Indeed, Lemma 2.2 says that under

certain conditions, it is possible for the robber to safely move from the landing

zone of a k-cell to (the landing zone of) any of its four neighbouring k-cells in

Tk steps.

We prove the lemma by induction on k. The case k = 1 is easy to check.

Assume that it is the robber’s turn to move, that he is on a 1-safe square in

the landing zone of his 1-cell X, and that the 1-cell Y above him is safe for

2T1 + 1 = 19 + 2C steps. We need to show that he can move in at most T1

steps to a square in the bottom landing zone of Y which is completely 1-safe

on his arrival. The robber can in fact do this in one step as we now describe.

Since the robber’s square is 1-safe, note there are no cops in his 0-cell, say P .

Consider a pair of separated 0-cells, call them Q and Q′, in the bottom landing

zone of Y . Note that at least one of Q or Q′, say Q, must be safe for two steps
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because if not, then since 4 < NL0 = N , it follows from Proposition 2.1 that

Y is not safe for two steps, contradicting our assumption that Y is safe for

19 + 2C steps with room to spare.

Note that a 1-cell is a 9× 9 array of 0-cells. It is easy to check that there

are N disjoint paths, each wholly contained within the union of X and Y and

of length at most 36N , from P to any 0-cell in Y . Since both X and Y are safe

when the robber is about to move, there are at most two cops in total within

X and Y . Hence, there are at least N − 2 paths between P and Q containing

no cops on them. Note that the speed of the robber R is greater than 36N ,

and hence the robber, on his turn, can follow one of these N − 2 paths from his

square in P to a square in Q. Note that Q is safe for two steps and Y is safe

for 19 + 2C ≥ T1 + 1 steps; hence, it clear that any square in Q is completely

1-safe on the robber’s arrival there.

Now assume k > 1 and that we have proved the claim for each 1 ≤ k′ < k.

We describe the robber’s strategy when he starts in the bottom landing zone

of his k-cell. The strategy for the three other landing zones are very similar

and we only highlight the very minor differences.

We shall divide the robber’s journey into two parts. We first describe how

the robber should travel from the bottom landing zone of his k-cell X to the

top landing zone of X. This journey will require at most (2k+ 1)2Tk−1 + 3Tk−1

steps. We then show that robber can dash across from the top landing zone of

X into the bottom landing zone of Y in at most 13Tk−1 steps. Hence, the total

number of steps required will be bounded above by

(2k + 1)2Tk−1 + 16Tk−1 ≤ (2k + 1)2Tk−1 + CTk−1 ≤ Tk

as required.

In what follows, when we speak of the robber arriving at a square in a

(k − 1)-cell, it is implied that the square is a (k − 1)-landing square.
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Figure 2. The planned path to the top landing zone and the
detouring strategy.

The robber begins by plotting a straight line path from his (k − 1)-cell, say

S, to the nearest (k − 1)-cell, say F , in the top landing zone of X as shown in

Figure 2. The robber’s square is k-safe; this means that X is safe for Tk steps

and that the robber’s square is (k − 1)-safe. If the (k − 1)-cell above him is

safe for 2Tk−1 + 1 steps, then the robber may inductively run, in at most Tk−1

steps and without getting caught, to a square in the (k − 1)-cell above him

which is completely (k − 1)-safe on his arrival there. Following the subsequent

cop turn, his square is (k − 1)-safe. The robber may repeat this process until

he gets to F , provided that every time the robber arrives at a (k − 1)-cell (and

the cops have subsequently moved), the (k − 1)-cell above is safe for 2Tk−1 + 1

steps at that point. In this case, the robber reaches the top landing zone of X

in at most (2k + 1)2Tk−1 steps, and we are done.

So we may assume that at some stage of his journey, the robber is on a

(k− 1)-safe square in a (k− 1)-cell P within X, it is his turn to move, and that

the (k − 1)-cell Q above P is not safe for 2Tk−1 + 1 steps. We claim that the

robber only has to deal with such a situation once.

Let us consider the first time such a situation arises. Clearly, the robber has

taken at most (2k+1)2Tk−1 steps from S; as X was safe for Tk = (2k+1)2Tk−1 +

CTk−1 steps to begin with, X is now safe for at least CTk−1 steps. The robber
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F

Figure 3. The final stretch.

takes a detour around Q as follows. He considers the two paths around Q to

a (k − 1)-cell Q′ located above (and separated from) Q as shown in Figure 2;

call these paths Zl and Zr. We claim that each of the (k − 1)-cells along one

of these two paths is safe for 8Tk−1 + 1 steps. Indeed, all the (k − 1)-cells on

these paths with the exception of the two initial (k − 1)-cells Pl and Pr are

separated from Q. If one of these (k − 1)-cells is not safe for 8Tk−1 + 1 steps,

then since Q is not safe for 2Tk−1 + 1 steps and

2(8Tk−1 + 1) ≤ 18Tk−1 < 18eCLk−1 < NLk−1,

if follows by Proposition 2.1 that X is not safe for 8Tk−1 + 1 ≤ 9Tk−1 steps,

contradicting the fact that X is in fact, safe for CTk−1 steps. Again, by

Proposition 2.1, one of Pl and Pr is necessarily safe for 8Tk−1 + 1 steps since Pl

and Pr are separated. So suppose that all the (k− 1)-cells along Zl are safe for

8Tk−1 + 1 steps. Then it is easy to check that the robber may inductively run

along Zl, in at most 7Tk−1 steps and without getting caught, from P to Q′ so

that he reaches a square in Q′ which is completely (k − 1)-safe on his arrival

there.

Since Q was not safe for 2Tk−1 + 1 steps when the robber was at P , we

know that there are at least 2k−1 cops at distance at most 2Tk−1 + 1 from Q; let

us mark these cops. The robber takes 7Tk−1 steps to reach Q′ from P . In those

7Tk−1 steps, the 2k−1 marked cops may move at most 7Tk−1 steps up. However,

since the distance between Q and Q′ is NLk−1 > 100eCLk−1 > 100Tk−1, it is

clear that these 2k−1 marked cops can never overtake the robber vertically, and
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hence the robber will, after this detour, always find that when he arrives at a

(k − 1)-cell, the (k − 1)-cell above him is safe for 2Tk−1 + 1 steps.

It is therefore clear that the robber can safely reach some (k − 1)-cell F in

the top landing zone of X (though, on account of his detours, not necessarily

his initial choice) in at most (2k + 1)2Tk−1 + 3Tk−1 steps. This completes the

first leg of the robber’s journey.

Let us now pause and survey the robber’s situation after the cops have

moved. He is now on a (k− 1)-safe, (k− 1)-landing square in a (k− 1)-cell F in

the top landing zone of his k-cell X. Also, X is now safe for at least (C−3)Tk−1

steps and Y , the k-cell above X, is safe for at least Tk + (2C − 3)Tk−1 + 1 steps.

We now show that the robber can safely reach, in at most 13Tk−1 steps, a

square in the bottom landing zone of Y which is completely (k − 1)-safe when

the robber arrives there; that this square is also completely k-safe follows from

the fact that Y is safe for at least Tk + (2C− 3)Tk−1 + 1 steps before the robber

starts the second leg of his journey.

Consider the set of four paths, as shown in Figure 3, from F to the (k − 1)-

cells in the bottom landing zone of Y . We claim that it follows from the

fact that X is safe for (C − 3)Tk−1 steps, and the fact that Y is safe for

Tk + (2C − 3)Tk−1 + 1 steps, that all the (k − 1)-cells along one of these four

paths are all safe for 14Tk−1 + 1 steps. To see this, note that if a (k− 1)-cell in

X lying on one of the two paths to, say, the right of F is not safe for 14Tk−1 + 1

steps, then we know from Proposition 2.1 that all the (k − 1)-cells in X on

both paths to the left of F are safe for 14Tk−1 + 1 steps; the two paths to the

left of F are completely separated within Y and hence, all the (k − 1)-cells

on one of these two paths must be safe for 14Tk−1 + 1 steps. Since each of

these four paths is composed of at most thirteen (k − 1)-cells, it is clear that

the robber can then complete his journey by following one of these paths in at

most 13Tk−1 steps. This completes the second leg of the robber’s journey.

Clearly this also shows how the robber may proceed if he is initially located

in the top landing zone of X. A similar strategy to the what has just been
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Figure 4. Getting to the top landing zone from the left landing
zone.

described (see Figure 4) can be easily shown to work when the robber starts

on either the right or the left landing zone of X; the robbers path becomes

slightly longer than before if he needs to make a detour as he is ‘turning’, but

our choices of C and N are large enough to ensure that the detouring strategy

works with room to spare. �

Armed with Lemma 2.2, it is a simple exercise to deduce Theorem 1.1.

Proof of Theorem 1.1. We show that if n ≥ 2NLk for some k ≥ 1,

then fR(n) ≥ 2k. It is easy to check by estimating Lk =
∏k

j=0(2j+ 1)2 in terms

of 2k that this implies the result.

Since n ≥ 2NLk, we may fix a 2 × 2 array of k-cells in the grid. If the

number of cops on the grid is strictly less than 2k, each of these k-cells is

guaranteed to be safe forever. After the cops have placed themselves on the

grid, the robber positions himself on a k-safe, k-landing square in one of these

four k-cells; that the robber can actually find such a square is easily checked

by Proposition 2.1. The robber now wins by repeatedly using Lemma 2.2 to

run around this 2× 2 array in a clockwise loop forever. �
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3. Concluding remarks

As remarked earlier, it seems exceedingly unlikely that Theorem 1.1 is

close to the truth; it should be the case that there exists an R ∈ N for which

fR(n) = n1−o(1) as n→∞.

Our proof of Theorem 1.1 is built on ideas used to solve Conway’s angel

problem in three dimensions. We conclude by mentioning that it is not incon-

ceivable that one can, by suitably adapting one of the solutions (see [89, 33, 61])

to the angel problem in two dimensions, prove the existence of an R ∈ N and a

cR > 0 such that fR(n) ≥ ncR for all sufficiently large n ∈ N.
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un intervalle donné, Compositio Math. 51 (1984), 243–263.

106. A. Thomason, An upper bound for some Ramsey numbers, J. Graph

Theory 12 (1988), 509–517.

166



107. D. J. Watts, A simple model of global cascades on random networks, Proc.

Nat. Acad. Sci. 99 (2002), 5766–5771.

167


	Chapter 1. Introduction
	1. Ramsey theory
	2. Probabilistic combinatorics
	3. Extremal graph theory

	Part 1.  Ramsey theory
	Chapter 2. A canonical Ramsey theorem for exactly m-coloured graphs
	1. Introduction
	2. Our results
	3. Proof of the main theorem
	4. Extensions and applications
	5. Concluding remarks

	Chapter 3. Infinite exactly m-coloured complete graphs
	1. Introduction
	2. Lower bounds
	3. Upper bounds
	4. Concluding remarks

	Chapter 4. Approximations to infinite m-coloured complete hypergraphs
	1. Introduction
	2. Proofs of the main results
	3. Concluding remarks


	Part 2.  Probabilistic combinatorics
	Chapter 5. Transference for the Erdos–Ko–Rado theorem, I
	1. Introduction
	2. Preliminaries
	3. Upper bound for the critical threshold
	4. Lower bound for the critical threshold
	5. Concluding remarks

	Chapter 6. Transference for the Erdos–Ko–Rado theorem, II
	1. Introduction
	2. Preliminaries
	3. The number of disjoint pairs
	4. Proof of the main result
	5. Avenues for improvement
	6. Concluding remarks

	Chapter 7. Line percolation
	1. Introduction
	2. Our results
	3. Probabilistic preliminaries
	4. Line percolation in two dimensions
	5. The critical probability in three dimensions
	6. Minimal percolating sets
	7. Concluding remarks


	Part 3.  Extremal graph theory
	Chapter 8. Disjoint induced subgraphs of the same order and size
	1. Introduction
	2. Preliminaries
	3. Overview of our strategy
	4. Proof of the main result
	5. Concluding remarks

	Chapter 9. Catching a fast robber on the grid
	1. Introduction
	2. Proof of the main result
	3. Concluding remarks

	Bibliography


