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a b s t r a c t

Active commuting offers the potential to increase physical activity among adults by being built into daily
routines. Characteristics of the route to work may influence propensity to walk or cycle. Geographic
information system (GIS) software is often used to explore this by modelling routes between home and
work. However, if the validity of modelled routes depends on the mode of travel used, studies of
environmental determinants of travel may be biased.

We aimed to understand how well modelled routes reflect those actually taken, and what
characteristics explain these differences. We compared modelled GIS shortest path routes with actual
routes measured using QStarz BT-Q1000X global positioning system (GPS) devices in a free-living sample
of adults working in Cambridge and using varying travel modes. Predictors of differences, according to
length and percentage overlap, between the two route sets were assessed using multilevel regression
models and concordance coefficients.

The 276 trips, made by 51 participants, were on average 27% further than modelled routes, with an
average geographical overlap of 39%. However, predictability of the route depended on travel mode. For
route length, there was moderate-to-substantial agreement for journeys made on foot and by bicycle.
Route overlap was lowest for trips made by car plus walk (22%). The magnitude of difference depended
on other journey characteristics, including travelling via intermediate destinations, distance, and use of
busy roads.

In conclusion, GIS routes may be acceptable for distance estimation and to explore potential routes,
particularly active commuting. However, GPS should be used to obtain accurate estimates of environ-
mental contexts in which commuting behaviour actually occurs. Public health researchers should bear
these considerations in mind when studying the geographical determinants and health implications of
commuting behaviour, and when recommending policy changes to encourage active travel.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Active commuting, walking or cycling some or all of the journey to and fromwork, offers considerable potential to increase the prevalence
of activity amongst adults as it can be built into daily routines (Department of Health, 2009). However, the prevalence of active travel has
declined in recent decades coincident with increases in car ownership (Jones et al., 2012). There is evidence that characteristics of the physical
environment, such as traffic density (Winters et al., 2010), street lighting (Panter et al., 2010), sidewalk availability (Rodrıǵuez and Joo 2004)
and other aspects of neighbourhood design (Bauman et al., 2012) might influence the propensity of individuals to be active travellers.
Empirical research has therefore attempted to determine associations between travel mode and the objective environmental characteristics of
commuting routes to inform potential interventions. However, the evidence is limited by the fact that studies have often assumed that the
characteristics of the shortest or fastest routes between home and work reflect the true routes of study participants (Panter et al., 2010;
Rodrıǵuez and Joo, 2004). If these assumed routes do not correspond to those actually taken (Oliver et al., 2010; Winters et al., 2010), the
environmental exposures attributed to participants in these studies may not reflect those actually received. For example, the commuter may
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be exposed to a higher number of fast food outlets on their journey than a modelled route would suggest, which may be associated with
higher consumption of energy-dense food and increased risk of obesity (Burgoine et al., 2014).

The choice of route and mode of travel may depend on the social context in which household-level decisions are made (Guell et al., 2012), as
well as on individual preferences (Panter and Jones, 2010). Indeed, route choices may be conditioned by environmental characteristics, with longer
routes potentially being selected to provide more favourable commuting environments such as quieter roads. Such processes have recently been
referred to as being manifestations of ‘selective daily mobility’ (Chaix et al., 2013). Furthermore, trips to and from work are often multi-purpose
(Ye et al., 2007), with stops at locations en-route such as shops and schools (Noland and Thomas, 2007). As a result of this ‘trip chaining’, the
overall length and duration of the commute may be much longer (McGuckin et al., 2005) and the environmental exposures very different from
those that are modelled. Route choice modelling, used in transport planning disciplines to model a set of potential routes that a person may chose
based on individual preferences and route characteristics (Prato, 2009), can be used to explore potential environmental exposures during the
commute. However, these methods are often not adopted due to the need for specialist knowledge and software (Aldred, 2014) meaning that the
evidence base available to inform interventions is potentially limited by the uncertainties inherent in more basic route modelling, usually
performed using geographic information system (GIS) software, to identify shortest or fastest paths between origins and destinations (Badland
et al., 2008; Cronberg and Bonsall, 2006; Panter et al., 2010; Rodrıǵuez and Joo, 2004).

The availability of global positioning system (GPS) receivers – small, low cost, wearable devices which receive information from global
navigation satellites and give a precise point location on the ground – means that it is now possible to track individuals as they use
outdoor environments, and the devices are increasingly being employed in physical activity research (Krenn et al., 2011; Maddison and
Mhurchu, 2009). For example, recent work has used GPS-derived information to validate self-report methods for assessing the level of
physical activity involved in dog walking (Murray et al., 2012), to help correctly identify walking bouts (Kang et al., 2013), and to quantify
the contribution that public parks make to physical activity (Evenson et al., 2013). GPS technology offers particular potential to refine our
understanding of how the environment shapes commuting behaviours because it allows researchers to identify the actual routes that
study participants take to and from work, as well as to validate the use of travel modes reported by participants (Maddison and Mhurchu,
2009). On the other hand, the use of GPS technology increases the burden in studies—both for participants, due to the need to carry
receivers and recharge them frequently (Krenn et al., 2011), and for researchers, due to the need to clean and analyse the large volumes of
data they produce (Duncan et al., 2013; Stopher et al., 2005). As the computation of estimated routes in GIS software is a rapid procedure,
requiring simply the location of the origin and destination of each trip, an important question is whether the refined understanding
obtained from using GPS in studies of travel behaviour justifies their considerable resource implications.

Limited empirical research has compared modelled with actual commuting routes measured using GPS technology. Findings have
shown that children tend to use quieter streets than GIS models suggest (Duncan and Mummery, 2007) and, unsurprisingly the actual
routes of both children and adults are longer than the shortest-route distances that GIS estimate (Duncan and Mummery, 2007; Harrison,
2014; Ramaekers et al., 2013). A small study of 29 journeys made by adults suggested that the mix of land uses suggested by GIS routes had
poor concordance with those actually experienced (Badland et al., 2010), and there is also evidence that deviations between actual and
modelled routes are associated with individual characteristics including sex and employment status (Ramaekers et al., 2013). However, a
limitation of much of the evidence base is that studies have not fully explored the role of travel mode and route characteristics in
determining the concordance between actual and modelled routes, limiting our understanding of the utility of modelling the route in
studies of the determinants of travel behaviour.

This study aims to assess the implications of employing modelled routes (using GIS) versus those actually taken (captured using GPS),
using data from a diverse sample of commuters working in Cambridge, UK. We evaluate whether GIS can produce routes that adequately
reflect the characteristics of the actual routes taken using a set of commonly assessed metrics, and ascertain the circumstances under
which GIS-derived shortest distance path routes may reflect those actually taken either particularly well or poorly. We identify
circumstances in which modelled routes could be useful proxies for actual journey characteristics, and suggest implications of our findings
for the assessment of environmental exposures.

2. Material and methods

2.1. Study design, setting and sample

We used cross-sectional data from a sample of commuters participating in the Commuting and Health in Cambridge study in Cambridge, UK. Participants were aged 16
and over, working in Cambridge, and living within 30 km of the city but not in the immediate vicinity of their workplace. They were sampled using a workplace recruitment
strategy that targeted a variety of workplaces and employers in a range of geographical locations across Cambridge city centre and urban fringe. Full details of the study
protocol are outlined elsewhere (Ogilvie et al., 2010). Data collected during the second and third phases of the study (May to November 2010 and 2011) were used for this
analysis. Participants completed a postal questionnaire that provided information on individual and household characteristics including age, gender, type of work, health,
physical health problems limiting physical activity, level of education, number of children, home ownership and number of cars, as well as postcodes (zip codes) for their
home and workplace locations. The questionnaire included a seven-day retrospective record of travel to and from work, recording the modes of travel used and the time of
starting and finishing work each day (Panter et al., 2011). A subsample of participants also completed a seven-day household travel diary, recording all journeys made during
that period along with the purpose, start time and location and end time and location for each journey, and the duration and mode of travel of each journey stage. A further
subsample of participants wore a QStarz BT-Q1000X GPS data logger, set to record location every 5 s using the American NAVSTAR-GPS network, for seven days. A total of 776
individuals completed the questionnaire, 488 also completed the household travel diary and 194 participants also successfully completed GPS data collection and were
eligible for inclusion in this analysis. Ethical approval was obtained from the Hertfordshire Research Ethics Committee (reference numbers 09/H0311/116 and 10/H0311/65)
and written informed consent was provided by each participant.

Information from the questionnaire and travel diary was used to identify all journeys to and fromwork and themodes of travel used. The GPS-tracked datawere visually inspected
in the GIS software to identify any discrepancies in travel mode with the self-report data. As a result, one trip coded in the diary as ‘car plus walk’ was coded to the questionnaire
response of ‘bus’ and one trip coded as ‘bus plus walk’ in the diary was coded to the questionnaire response of ‘walk’, whilst seven trips (from two participants) were omitted as
agreement could not be found.

The analysis reported here required a sample of commuting trips that were broadly representative of the six most commonly reported types of trip: walk only, car plus
walk, bicycle only, car plus bicycle, bus, and car or motorcycle only. It therefore used data from 51 participants from the second phase of the study (2010) selected by random
quota sampling to achieve at least 50 journeys of each type. Participants reporting bus in combination with walking were combined with those reporting bus only due to
small numbers and the fact that any bus journey would likely involve some walking to access the bus stop. An insufficient number of participants had recorded walk-only
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trips in the second phase of the study to achieve the target sample size, so data for three participants collected during the third phase (2011) were used to augment the
sample. The modal number of journeys analysed per individual was five.

Only journeys that began at home or work and ended at work or home were considered. Participants’ home and work postcodes were geo-referenced using the
Ordnance Survey (OS) Code Points database (Ordnance Survey, 2012), which contains a precise location on the ground for every postcode in the UK, and the ArcGIS
9.3 geographic information system (GIS) software package (ESRI, 2009). A measure of the urban or rural nature of the home location was computed based on the
classification by Bibby and Shepherd (2004), which allocates every census output area of England andWales a classification of either being urban; town and fringe; village; or
hamlet and isolated dwellings, based on population size and the density of residential addresses. For the purposes of this analysis, we define ‘urban’ as urban or town and
fringe, and ‘rural’ as village or hamlet and isolated dwellings.

2.2. Modelling routes for journeys to and from work

Based on a commonly adopted assumption that people would take the shortest distance route (Panter et al., 2010; Rodrıǵuez and Joo, 2004), modelled routes
representing the shortest route between participants’ home and work locations were derived using ArcGIS. A road network was represented using the OS MasterMaps

Integrated Transport Network™ (ITN) database (Ordnance Survey, 2013), and was used to create routes for participant journeys made by car or bus. A pedestrian and bicycle
route network was used to model trips made by bicycle or on foot, constructed by supplementing road data, excluding motorways, with local authority data on rights-of-way
(public footpaths, bridleways and byways) (Cambridge County Council, 2010), cycle route information from the charity Sustrans (2012), and other informal pathways
recorded on the crowd-sourced OpenStreetMap.com (OpenStreetMap, 2010).

2.3. Deriving actual routes for journeys to and from work

For each participant, all GPS points recorded for 2 h either side of self-reported work start and finish times were extracted, with the aim of capturing the entire route to
and fromwork and allowing for any discrepancies between reported and actual arrival and departure times. Additional points were further extracted where the journey was
not entirely captured in these 2 h periods, for example when participants stopped en route. The scattering of data points resulting from signal error or reflection from
buildings, for example where the participants had entered or travelled close to buildings, was cleaned by manually removing erroneous points, and all data points collected
at home/work before or after the journey began/ended were removed. The data points were converted to linear routes using the Hawth’s Tool add-on for ArcGIS (Beyer,
2004). This tool connected temporally consecutive data points into line features using a unique identification field of journey date plus direction (to or from work) to
differentiate between journeys. For these routes, journey duration (based on number of GPS-tracked points recorded at 5 s intervals), mean speed (distance divided by
duration), and time spent stationary (defined as less than 1 km/h) were calculated.

For each trip, the route was manually inspected to determine whether the participant travelled to or fromwork via an additional intermediate location, such as a school
or a shop. The locations were identified by overlaying the routes with background mapping and aerial photography in the GIS software. A ‘via’ was determined to be present
if a participant remained at such a location for more than 5 min without changing mode of travel. These criteria prevented the erroneous identification of ‘via’ locations
attributable, for example, to waiting at traffic lights or public transport interchanges.

2.4. Comparing characteristics of routes

A range of metrics were calculated for both actual and modelled routes. Aspects of the environment that would potentially determine route choice were selected, guided
by the literature on environmental correlates of travel behaviour (Fraser and Lock, 2010; Panter and Jones, 2010; Broach et al., 2012; Winters et al., 2010). These included
route distance; route directness (route distance divided by straight line distance); the number of leisure, retail and food destinations within a 100 m buffer of the route (a
distance commonly used to indicate an accessible distance from a route (Burgoine and Monsivais, 2013; Panter et al., 2010)) taken from OS Points of Interest data (PointX Ltd,
2010), and the percentage of the route which fell on busy roads (‘A’ or ‘B’ roads or motorways). In addition, health-related exposures were included to indicate the impact of
using modelled routes for assessing such exposures. These comprised two subsets of the OS Points of Interest data: ‘healthy intermediate destinations’ (sports places,
athletics facilities, bowling facilities, golf courses, gyms and sports centres, swimming pools, tennis facilities) and ‘unhealthy intermediate destinations’ (fast food
establishments), within 100 m of the route. There has been some suggestion that the availability of such ‘healthy’ facilities may facilitate physical activity (Humpel et al.,
2002; Karusisi et al., 2013; Pascual et al., 2013); and the latter were selected as previous research has suggested that greater exposure to fast food outlets may be linked to
higher consumption of fast food and elevated obesity risk (Burgoine et al., 2014).

Route lengths obtained from the GPS and GIS data were calculated in ArcGIS. Two outcome measures were selected to assess concordance between modelled and actual routes:
the difference in length (as a percentage of the modelled route length) and the percentage spatial overlap between the routes. The differences in length were computed as per previous
research for assessing concordance (Duncan andMummery, 2007), and values were expressed as a percentage of the modelled distance, with a positive value indicating that the actual
(GPS-tracked) route was longer than the modelled (GIS shortest path) route. Overlap was chosen as a way of assessing the spatial comparability of routes. The overlap between actual
and modelled routes was estimated by assessing the percentage of the GPS-tracked route that fell within a 50 m buffer of the GIS-shortest path route. This buffer distance was chosen
to allow for errors in location associated with variations in the quality of GPS signal and the fact that road users do not typically travel along the road centreline which was used for the
computation of modelled routes. This value was found to be appropriate in a previous study of children’s routes to school (Harrison, 2014).

Fig. 1 provides an example of modelled and actual routes for the journey to work, along with one of the measured metrics: the destinations identified en route. The actual
route taken – by bicycle in this case – is clearly longer than the modelled route and overlaps only in parts, with the participant passing fewer destinations en route, taking a
less direct route and travelling along quieter roads.

2.5. Statistical analysis

Absolute differences between actual and modelled routes for each route metric were calculated, along with 95% confidence intervals using the ci command in Stata Corp
(2013), by mode of travel. The level of agreement between metrics was assessed using Lin’s concordance coefficient (Lin, 1989), a method of evaluating the reproducibility or
interchangeability of alternative measurements on a continuous scale by evaluating the proximity of pairs of observations to the line of equivalence, and 95% limits of
agreement (71.96 standard deviations of the mean difference) following Bland–Altman techniques (Bland and Altman, 1999). The p-value was reported and the coefficient
was tested using McBrides’s criteria for strength of agreement (McBride, 2005).

The distribution of each outcome variable was tested for normality using the Shapiro–Wilk test, which indicated neither variable was normally distributed. Differences in
the percentage overlap by mode between modelled and actual routes were therefore assessed for statistical significance using the non-parametric Spearman’s Rho rank
correlation coefficient. Forest plots were used to display mean overlap by mode, along with 95% confidence intervals.

Multilevel mixed-effects generalised linear regression models were fitted (using the meglm command in Stata 13 (Stata Corp, 2013)) to examine which characteristics of
the modelled route environment and participant independently predicted the degree of concordance in route length, percentage overlap with actual routes and difference in
number of unhealthy destinations. A multilevel structure was used to account for the clustering of trips within individuals. Categorical variables with multiple levels (such as
travel mode) were included in the regression models only if their overall contribution to the model was significant at po0.05, tested using the log-likelihood test.

Prior to model fitting, multicollinearity was assessed by producing a pair-wise correlation matrix to identify variables that were highly associated, defined as having a Pearson’s or
Spearman’s correlation coefficient of 40.55 based on previous empirical research (Grewal et al., 2004). Only one variable from each correlated pair was selected for modelling, the
chosen one being that with the strongest association in the expected direction with the outcome. As a result of this, the measure of route directness was dropped from the model of
route environment characteristics as it was significantly correlated with the percentage of busy roads en route at �0.587; route distance, travelling ‘via’ an intermediate location and
the number of intermediate destinations en route were taken forward in model-building. For the model of participant characteristics, no measures were correlated at 40.55.
Therefore age, work type, gender, homeownership, health, and whether participants had physical conditions limiting their activity, a degree, a car, or children, were all taken forward.
To aid interpretation of the model intercept, all continuous variables were centred on their means. All analysis was conducted using Stata 13 (Stata Corp, 2013).
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3. Results

3.1. Sample characteristics

The sample comprises 51 study participants. The characteristics of the sample at the individual and household level are presented in
Table 1. The average age was 45 years and the sample was predominantly female, with most people working in a sedentary occupation

Fig. 1. Example of an actual and a modelled journey between home and work for one participant. Precise home and work locations have been moved in order to preserve
participant anonymity.
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and reporting being in good or very good health. The sample was generally highly educated and most lived in households with no
children, were home owners, and had one or more cars. Most of the sample was drawn from urban environments. A total of 276 separate
trips between home and work were manually extracted from GPS-tracked data. Among the trips studied, the generally even split between
modes reflected the quota sampling strategy employed. The lower prevalence of walk-only and ‘car plus bicycle’ trips reflects the fact that
it was only possible to obtain 24 and 46 of such trips, respectively.

Based on the actual routes derived from the GPS, the mean trip distance was approximately 20 km and the mean duration
approximately 36 min. A comparison of trip characteristics between the six modes for the actual routes taken showed that, unsurprisingly,
walk-only trips were the shortest (1.3 km, 14 min on average) and those made by car plus walking the longest (30.6 km and 47 min)
(Table 2). Walking trips were most direct and car-only trips the least direct. Just over 27% of trips were via an intermediate destination.
However, there were statistically significant differences between modes (p¼0.017), with car/motorcycle trips being most likely to include
a stop en route (on 40% of trips) and walk-only trips the least (on 13% of trips). Average speeds ranged from 5.6 km/h for walking trips to
46.9 km/h for car/motorcycle only trips, whilst trips made by car plus bicycle had a slightly lower average speed (38 km/h) than those
made by car plus walking (41 km/h), reflecting the fact that those combining the car with walking spent a greater proportion of the
journey driving than those who combined the car with cycling. Walking trips involved the least amount of time spent stationary, and bus
trips the most.

3.2. Comparison of actual and modelled shortest path trip characteristics

On average, the routes followed between home and work were 4.3 km (27%) longer (95% CI 3.6 to 4.9 km) than the shortest path routes
modelled in the GIS (Table 3). However, this result conceals differences between modes of travel: the routes followed on trips made by
bicycle, bus and car (whether singly or in combination with other modes) were all longer on average than the modelled routes, whereas
those followed on walking trips were actually 0.2 km (13%) shorter (95% CI �0.1 to �0.2 km), indicating that participants used cut
throughs and other paths not present in the route networks used for analysis. Lin’s concordance coefficient of 0.84 indicates poor
agreement between modelled and actual route length overall, but disaggregating the analysis by mode shows substantial agreement for
journeys made on foot (0.98) and moderate agreement for journeys made by bicycle (0.93). The lowest level of agreement was for trips
made by car or motorcycle only (0.44). Unsurprisingly, route distance was generally longer for participants who travelled via another
destination on their way to or from work (Fig. 2).

Environmental exposures along the route were significantly associated with the difference between actual and modelled routes.
However, these differences also varied according to mode of travel used (Table 2). For example, route directness showed extremely poor

Table 1
Sample characteristics: individual and household (n¼51).

All (n) Male (n) Female (n)

Individual characteristics
Mean age (years) 45.0 (51) 48.9 (21) 42.3 (30)
Gender (%) 100.0 (51) 41.2 (21) 58.8 (30)
Work type (%)

Sedentary occupation 76.5 (39) 90.5 (19) 66.7 (20)
Standing occupation 23.5 (12) 9.5 (2) 33.3 (10)

Health (%)
Excellent 33.3 (17) 28.6 (6) 36.7 (11)
Very good to good 58.8 (30) 57.1 (12) 60.0 (18)
Fair to poor 7.8 (4) 14.3 (3) 3.3 (1)

Physical conditions limit activity (%)
Not at all 74.5 (38) 66.7 (14) 80.0 (24)
Very little 19.6 (10) 19.0 (4) 20.0 (6)
Somewhat 5.9 (3) 14.3 (3) 0.0 (0)

Degree (%)
Lower than degree 15.7 (8) 9.5 (2) 20.0 (6)
Degree 84.3 (43) 90.5 (19) 80.0 (24)

Mode of travel to work (% journeys)
Bicycle 17.4 (48) 16.5 (17) 17.9 (31)
Bus 18.8 (52) 24.3 (25) 15.6 (27)
Car/motorcycle 19.9 (55) 20.4 (21) 19.7 (34)
Carþbicycle 16.7 (46) 5.8 (6) 23.1 (40)
Carþwalk 18.5 (51) 12.6 (13) 22.0 (38)
Walk 8.7 (24) 20.4 (21) 1.7 (3)

Household characteristics
Children (%)

None 68.6 (35) 71.4 (15) 66.7 (20)
One or more 31.4 (16) 28.6 (6) 33.3 (10)

Home ownership (%)
Does not own home 33.3 (17) 33.3 (7) 33.3 (10)
Home owner 67.3 (34) 67.3 (14) 67.3 (20)

Number of cars (%)
None 11.8 (6) 23.8 (5) 3.3 (1)
One or more 88.2 (45) 76.2 (16) 96.7 (29)

Urban rural (%)
Rural 19.6 (10) 14.3 (3) 23.3 (7)
Urban 80.4 (41) 85.7 (18) 76.7 (23)
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levels of agreement for all types of trip involving cars, which consistently involved longer than modelled routes. All journeys, except those
made by car plus walking, were along a route with fewer busy roads than the modelled route suggested, with walkers tending to choose
the quietest routes. Trips made by all modes also passed fewer destinations than a modelled route would predict, although routes followed
by walkers did show substantial agreement on this measure (0.95). The lowest agreement was seen for trips involving cars, which

Table 2
Environmental characteristics of trips: GPS tracked versus GIS shortest path (averages, n¼276).

Characteristic Mode Actual route
(GPS-
tracked)

Modelled route
(GIS shortest
path)

Absolute
difference
(mean)

CI (95%) for
absolute
difference

Limits of
agreement
(95%)

Difference
(%)

Lin's
concordance
coeff.

pa

Lower Upper Lower Upper

Distance (mean, km) Bicycle 7.6 6.7 0.9 0.5 1.3 �1.9 3.6 13.4 0.93 o0.001
Bus 21.0 16.5 4.4 3.2 5.7 �4.6 13.4 26.7 0.86 o0.001
Car/MCb 25.3 18.7 6.5 4.1 9.0 �11.5 24.5 34.8 0.44 o0.001
Carþbicycle 23.7 18.7 5.0 3.9 6.1 �2.3 12.2 26.7 0.64 o0.001
Carþwalk 30.6 24.4 6.2 5.3 7.1 0.1 12.3 25.4 0.78 o0.001
Walk 1.3 1.5 �0.2 �0.2 �0.1 �0.5 0.2 �13.3 0.98 o0.001

Route directness (mean ratio,
1¼most direct)

Bicycle 1.40 1.26 0.14 0.1 0.2 �0.3 0.6 11.1 0.03 0.696
Bus 1.47 1.17 0.29 0.2 0.4 �0.2 0.8 25.6 0.06 0.133
Car/MC 1.79 1.20 0.60 0.3 0.9 �1.8 2.9 50.0 0.07 0.002
Carþbicycle 1.41 1.12 0.29 0.2 0.3 �0.1 0.7 25.9 0.05 0.011
Carþwalk 1.50 1.17 0.32 0.3 0.4 �0.0 0.7 27.4 0.07 0.002
Walk 1.17 1.56 �0.39 �0.6 �0.2 �1.2 0.4 �25.0 �0.18 0.054

Busy roads: A/B roads and
motorways on route (mean, %)

Bicycle 8.4 15.2 �6.8 �11.2 �2.4 �36.4 22.8 �44.7 0.07 0.523
Bus 63.6 68.1 �4.5 �8.6 �0.3 �33.9 25.0 �6.6 0.71 o0.001
Car/MC 67.9 69.0 �1.0 �6.1 4.0 �37.3 35.2 �1.4 0.71 o0.001
Carþbicycle 75.3 84.2 �8.9 �15.3 �2.6 �50.9 33.1 �10.6 �0.16 0.155
Carþwalk 75.7 70.2 5.5 �3.3 14.4 �56.3 67.4 7.8 �0.23 0.071
Walk 3.3 6.8 �3.5 �8.4 1.4 �26.2 19.2 �51.5 0.31 0.044

Intermediate destinations on
routec (mean, number)

Bicycle 96.5 105.2 �8.7 �27.0 9.6 �132.2 114.8 �8.3 0.80 o0.001
Bus 159.5 213.6 �54.1 �96.2 �12.0 �350.5 242.3 �25.3 0.51 o0.001
Car/MC 47.0 132.0 �85.0 �122.0 �48.0 �353.0 183.0 �64.4 0.08 0.264
Carþbicycle 74.2 142.5 �68.3 �106.5 �30.1 �320.6 184.0 �47.9 0.37 o0.001
Carþwalk 65.9 193.7 �127.7 �166.6 �88.9 �398.8 143.2 �65.9 0.02 0.635
Walk 11.4 15.8 �4.4 �6.7 �2.2 �14.8 6.0 �27.8 0.95 o0.001

‘Healthy’ intermediate
destinations (sports) on route
(mean, number)

Bicycle 2.1 1.5 0.6 �0.1 1.3 �4.0 5.2 40.0 0.18 0.145
Bus 5.9 4.9 1.0 0.0 2.0 �6.3 8.3 20.4 0.42 o0.001
Car/MC 5.9 3.1 2.8 2.0 3.6 �2.9 8.5 90.3 0.26 o0.001
Carþbicycle 6.1 6.1 0.0 �1.8 1.8 �12.1 12.0 0.0 0.09 0.493
Carþwalk 7.3 6.9 0.4 �0.6 1.4 �6.7 7.5 5.8 0.41 o0.001
Walk 1.6 1.4 0.3 �0.4 0.9 �2.6 3.1 21.4 0.61 o0.001

‘Unhealthy’ intermediate
destinations (fast food) on route
(mean, number)

Bicycle 2.8 3.1 �0.2 �1.4 0.9 �7.8 7.4 �6.5 0.26 0.043
Bus 8.8 8.9 �0.1 �1.9 1.7 �12.9 12.7 �1.1 0.68 o0.001
Car/MC 2.3 6.0 �3.7 �5.5 �2.0 �16.3 8.9 �61.7 0.07 0.425
Carþbicycle 3.4 6.7 �3.2 �5.4 �1.1 �17.3 10.8 �47.8 0.28 0.002
Carþwalk 2.9 7.9 �5.0 �6.7 �3.3 �17.1 7.1 �63.3 0.02 0.784
Walk 0.8 0.8 0.0 �0.3 0.3 �1.4 1.3 0.0 0.96 o0.001

a p¼difference between GIS shortest path and actual routes according to each characteristic, for each mode, from Lin’s concordance coefficient.
b MC¼motorcycle.
c Retail, food, leisure and education establishments.

Table 3
Best fit multilevel linear regression model of difference in distance between actual and modelled routes to work (as a percentage of the modelled distance), and
environmental characteristics of the predicted routes (n¼276, indicative adjusted R2¼0.234).

Robust Coefficient p CI (95%)

Lower Upper

(Intercept) 38.813 o0.001 25.877 51.748
Distance (GIS, km) �0.957 0.017 �1.746 �0.169
Via intermediate location 26.497 o0.001 15.791 37.202
Mode used (Car/MCa¼ref): �44.056 o0.001 �63.741 �24.371

Bicycle
Bus �18.474 0.041 �36.216 �0.732
Carþbicycle �18.481 0.049 �36.887 �0.074
Carþwalk �10.066 0.283 �28.455 8.324
Walk �74.530 o0.001 �100.489 �48.571

a MC¼motorcycle.
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involved exposure to a significantly lower number of ‘unhealthy’ food outlet intermediate destinations, and a significantly higher number
of ‘healthy’ intermediate destinations, than the modelled routes suggested.

The mean amount of overlap between actual and modelled routes was relatively low at 39%. However, this also showed much variation
according to mode of travel (po0.001). On average, overlap was highest for bus (60%) and walking (59%) trips and lowest for car plus walk
trips (22%) (Fig. 3). The correlation between the measures of difference in distance and percentage overlap was statistically significant
(po0.001), but fairly low at r¼�0.309.

3.3. Predictors of concordance between shortest path and actual routes

In the multivariable regression model, the difference between GIS modelled shortest path and actual route length was independently
associated with modelled route length, the inclusion of an intermediate ‘via’ location and the mode of travel used (Table 3). The difference
declined by just under 1% (coefficient �0.957) for every 1 km increase in modelled route length, but was increased by 26% (coefficient
26.497) by the inclusion of an intermediate ‘via’ location. Regression analysis suggested that trips most likely to include a ‘via’ were ones
made by people with children, and during commutes to rather than from work (results not shown). The difference was also significantly
lower for trips made by bicycle, car plus bicycle, bus or walking than for trips made by car or motorcycle only. No participant
characteristics were significantly associated with the difference in route length. By way of illustration, the model results suggest that a
route with a modelled shortest distance in the GIS of 15.78 km (the mean), did not go via a location en route, and was undertaken solely by
car or motorcycle would have an actual length that was 38.8% greater than that modelled, as shown by the coefficient for the intercept
value. The indicative R2 value of 0.24 is relatively modest, suggesting the presence of considerable unexplained variance in the difference
in route distance.

The best fit model for predicting the degree of overlap between actual and shortest path routes is shown in Table 4. The only
statistically significant environmental characteristic that predicted overlap was the percentage of busy roads, with the coefficient (0.248)

Fig. 2. Comparison of modelled and actual route distance of trips, separated into those that did or did not go via an intermediate location on route, and showing line of
equivalence (modelled distance¼actual distance), n¼276.

Fig. 3. Mean percentage of route overlap: GPS-tracked versus GIS shortest path (n¼276).
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indicating that the overlap between these routes increased marginally with every percentage increase in the number of busy roads en
route. No participant characteristics were significantly associated with route overlap. The shortest path routes that showed the most
overlap with actual routes were those for journeys made by bus (20%) or on foot (36%).

The best fit model for predicting the difference in the number of unhealthy intermediate destinations between actual and shortest path
routes is shown in Table 5. A coefficient below zero indicates an over-prediction of destinations when using the modelled routes as
opposed to actual routes. The results suggest that a modelled route overestimates the number of unhealthy intermediate destinations
when compared to the actual route taken by an average of 57% for people reporting excellent health, yet it underestimates the number of
destinations that commuters with children were exposed to by 65%. Unsurprisingly modelled routes with many destinations on them
were associated with overestimates of exposure compared to actual routes; for every ten intermediate destinations along a modelled
route, there was a 2% over-prediction of exposure to unhealthy intermediate destinations compared to actual routes. Mode of travel was
not significantly associated with differences in exposure to unhealthy food outlets between modelled and actual routes.

4. Discussion

This research has found that using GIS software to model the shortest path between people’s homes and workplaces may be a useful
method to estimate the distance travelled for non-car journeys, with modelled walk and cycle trip distances showing moderate to
substantial agreement with actual trips recorded using GPS technology. Much recent work has examined the predictors of active travel
(Winters et al. 2010; Bauman et al. 2012; Panter et al. 2010; Rodrıǵuez and Joo 2004). The findings from this study suggest that using GIS
for this purpose is adequate, and this may be useful for researchers wishing to model physical activity levels or energy expenditure during
the commute to work. However, modelling performed less well when predicting route location and associated environmental exposures,
a limitation apparent across all modes. This may be problematic for assessing the risk of obesity or for understanding how to design
environments to promote healthy behaviours, such as active travel which has been found to be associated with lower BMI (Flint et al.
2014). In terms of obesogenic environmental exposure, using modelled routes may underestimate exposure to unhealthy food
environments for some people, such as those with children, whereas it may overestimate exposure for others, such as those in better
health. This reflects the fact that different population groups will make varied choice sets when deciding which route to take, which may
introduce bias into studies if health-related behaviours, such as seeking food or physical activity opportunities, are associated with
disparities between modelled routes and those actually taken.

We illustrate the magnitude of observed errors in GIS modelling with some examples. Taking one study participant who travelled
20 km home from work by car on one trip, the shortest route modelled using GIS software underestimated their actual distance by 79%
and overlapped the actual route by only 15%, with the proportion of the actual route that involved busy roads being half of that predicted.
For a second participant who walked a distance of 2.2 km fromwork to home, their route was more similar in length to that predicted (just
16% shorter) but only 19.2% of the route overlapped the modelled route. Further, their actual route passed no destinations and involved no
busy roads, whereas the model indicated that they would pass 14 leisure, food, or retail attractions and spend 41% of the journey on ‘A’ or
‘B’ roads or motorways. Researchers from public health backgrounds using geographical analysis to estimate the health implications of
exposure and route choice during the commute must be aware of the potential impact of using these methods.

Our findings build on previous research describing the modelled versus actual commuting routes by Badland et al. (2010), by testing
associations in a larger sample of participants recruited from multiple workplaces, and commuting to work using different travel modes.

Table 4
Best fit multilevel linear regression model of percentage overlap between actual and modelled routes to work, and environmental characteristics of the predicted routes
(n¼276, indicative adjusted R2¼0.218 (using linear regression).

Robust coefficient p CI (95%)

Lower Upper

(Intercept) 21.239 0.029 2.205 40.273
Busy roads (%) 0.248 0.047 0.003 0.493
Mode used (Car/MC¼ref) �8.222 0.268 �22.762 6.319

Bicycle
Bus 20.280 0.005 6.257 34.302
Carþbicycle �1.361 0.844 �14.893 12.170
Carþwalk �11.023 0.096 �24.010 1.963
Walk 36.182 0.001 14.707 57.657

aMC¼motorcycle.

Table 5
Best fit multilevel linear regression model of percentage difference in the number of unhealthy intermediate destinations between actual and modelled routes to work,
participant characteristics and environmental characteristics of the predicted routes (n¼276, indicative adjusted R2¼0.129 (using linear regression).

Robust coefficient p CI (95%)

Lower Upper

(Intercept) 43.337 0.061 �2.007 88.681
Excellent health (ref¼not excellent) �57.390 0.042 �112.698 �2.082
Children (ref¼no) 64.611 0.025 8.030 121.191
Intermediate destinations (10 s) �2.325 0.007 �4.012 �0.638
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This has allowed us to examine a wider variety of journeys, revealing strong associations between routes taken, propensity to stop at
locations en route and mode of travel, providing an insight into the types of journey for which modelled routes may be more or less
appropriate. It is noteworthy that no participant characteristics, either at the individual or household level, were associated with either of
the outcome variables, suggesting that, at least in our data, there is no particular type of commuter who will choose the most direct route.
It is clear that individuals choose their mode of travel and route to work for reasons other than those of minimising time and distance.
Nevertheless, although using GIS to predict routes and exposures is problematic, it important to recognise that modelled routes can
provide indication of the routes that people might follow, and therefore of the environmental characteristics that might influence their
propensity to choose particular modes. In such situations, they are not predicated on the need to observe real behavioural patterns.

Given that the GIS modelling largely replicates the shortest path methodologies used by in-car satellite navigation systems, we had
expected journeys taken by car to most accurately reflect the GIS modelled routes. However, this was generally not the case, particularly as
the propensity to deviate via destinations was greatest for car and motorcycle journeys. It is unsurprising that actual routes taken tended
to be less direct than those estimated from the shortest path, as individuals deviate from routes to visit destinations. It may also be that
people choose to deviate from theoretically optimal routes for reasons of familiarity, something we were unable to assess. Indeed,
qualitative research into commuting behaviour in Cambridge suggests that choice of route is influenced by how pleasant, safe and
enjoyable the journey is, as well as by family circumstances (Guell et al., 2012) and feelings of well-being (Guell and Ogilvie, 2013).

We did not attempt to model intermediate via locations whenwe used GIS software to calculate routes as our intentionwas to compare
an actual route with the shortest path distance between home and work in order to examine the simplified assumptions that are
commonly made when predicting journey routes. Indeed, most studies of this nature do not have access to information on use of
intermediate destinations and therefore it would not be possible to model them.

4.1. Strengths and limitations

In terms of study strengths, we extracted 276 complete, validated commute journeys from a quota sample of 51 participants and
included a range of different travel modes. Care was taken to manually extract, geolocate and clean the data to ensure that only complete,
validated routes with an identified mode of travel were included in the analysis. However, it was not always possible to match modes,
dates and times provided in the household travel diary and the questionnaire with the data recorded with the GPS device. As a result,
seven trips had to be omitted from the analysis due to insoluble conflicts. Due to the time-intensive nature of data processing, GPS data
were extracted for only 51 people out of a possible 194 in the entire sample, although these participants did provide a total of 276
individual journeys made through the May to November time period. Walkers were underrepresented in the sample due to the limited
number of participants using this exclusive mode of travel for work. This reflected local travel patterns, and the recruitment strategy of the
overall study which excluded individuals who lived very close to work (Ogilvie et al., 2010).

In terms of limitations, georeferencing using postcode information is less accurate in rural areas, as each postcode covers a larger
geographic area because houses are fewer and more dispersed than in urban areas. However, postcode information is widely used to geo-
locate rural residents and was the only option available for 20% of our sample who lived in a rural part of the study area.

Modelling multimodal trips was problematic, as participants did not specify where or for how long they walked or cycled when taking
multimodal journey to or from work. This meant the active travel element of the journey could not be modelled. We assumed the
motorised mode comprised the largest proportion of the journey, and therefore it was that road network that was used for modelling.

In this study, we have taken GPS to represent the best-available method to objectively record actual routes travelled by commuters.
In reality, GPS data is subject to positional error and this has been shown to vary depending on the device, its use, and according to setting,
such as the amount of sky or number of satellites visible to the device (Kerr et al., 2011). A recent study by Schipperijn et al. (2014) tested
the accuracy of the QStarz BT-Q1000X for recording routes taken by different transport modes in a range of settings, finding an overall
median error of just 2.9 m, ranging from 0.7 m in open areas to 5.2 m in heavily built-up urban areas, and from 3.9 m for walking trips to
0.5 m for car journeys. In this analysis, we undertook a comprehensive data cleaning exercise and used buffers to negate such positional
inaccuracies, but it is likely that actual routes delineations are subject to a small error. It is also important to remember that while GPS data
could help to inform or validate route choice models, its use may be inappropriate in some situations such as scenario planning, as
observed behavioural patterns may be determined by factors other than those under study (Chaix et al. 2013).

Our sample worked in the city of Cambridge, UK, and lived within a 30 km radius of the centre. Therefore the findings may not be
representative of other areas or of the general population living in the study area. However, commuting is a widespread behaviour with
the same common aim and it may be possible to overcome any generalisability limitations by taking into account other factors that may
influence commuting behaviour in a particular area. For example, topology may be important if the location is particularly hilly.

A buffer distance of 50 m was chosen for this analysis, as used in a previous study (Harrison 2014), however this raised the question of the
appropriateness of this distance. The sensitivity of the model was tested by using a smaller buffer size of 15 m, and the same variables remained
significant but the model fit was not as good (indicative R2 of 0.129 rather than the 0.218 for the 50 m). A larger value than 50 mwould not have
been appropriate, as this would have resulted in a substantial overlap of roads. We used the best available digital data for the road and pedestrian
route networks, by supplementing OS data with mapping held by local authorities, and additional crowd-sourced information. However, whilst
these data contain some information on building cut-throughs, short-cuts and other informal paths, this is evidently still incomplete.

In this analysis we included journeys taken by bus. In reality commuters do no influence the route that the bus takes and bus routes are
often not distance optimised. However as the purpose of this analysis was to examine the implications of the simplifying assumptions
commonly used when modelling routes using GIS, bus trips were retained to specifically investigate the utility of estimating shortest
routes for bus commuters.

5. Conclusions

The use of GIS to model routes may be acceptable when an approximate estimate of travel distance is required or when estimates of the
features of potential routes that could be taken are needed. This is particularly relevant for active commuting, where actual routes
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travelled may show high levels of agreement with modelled shortest routes. However, the predictability of the commute route clearly
depends on the mode of travel used. Therefore, public health researchers should not rely on uncritical assumptions regarding the validity
of GIS-modelled routes as a proxy for the actual routes followed by commuters, particularly for those travelling by car. If we are to quantify
exposure to environmental features along routes followed to and from work, or accurately estimate distance travelled by car, our results
emphasise the need to obtain information on actual commuting behaviour. To obtain accurate estimates of environmental contexts in
which behaviour actually occurs, the use of GPS data is recommended, as is the consideration of appropriate characteristics of the
local area.
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